
Effect of Local Search on the Performance of Cellular Multi-Objective Genetic
Algorithms for Designing Fuzzy Rule-based Classification Systems

Tadahiko Murata*, Hiroyuki Nozawa**, Yasuhiro Tsujimura+, Mitsuo Gen**, Hisao Ishibuchi++

*: Kansai University, 2-1-1 Ryozenji-cho, Takatsuki, Osaka 569-1095, Japan
**: Ashikaga Institute of Technology, 268-1 Omae-cho, Ashikaga, Tochigi 326-8558, Japan
+: Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro -cho, Minami-Saitama, Saitama 345-8501, Japan
++:Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan

Abstract - We show how local search can be combined with
cellular multi -objective genetic algorithms for designing fuzzy
rule-based classification systems. For achieving a good balance
between genetic search and local search, local search is applied
to only non-dominated solutions in each generation.
Simulation results show the effectiveness of our approach.

I. INTRODUCTION

Since Schaffer [1] proposed the Vector Evaluated Genetic
Algorithm (VEGA), evolutionary algorithms have been
applied to various multi-objective optimization problems
for finding their Pareto-optimal solutions (for reviews, see
[2] and [3]). Let us consider the following n-objective
maximization problem:

Maximize))(...,),(),((21 xxxz nfff= , (1)
Subject to Xx ∈ , (2)

where z is the objective vector, x is the decision vector,
and X is the feasible region in the decision space. If the
following solution *x is found in the feasible region X ,

*x can be said as the optimal solution for the n-objective
optimization problem:

)(*)(xx ii ff ≥ for }...,,2,1{ ni ∈∀ and Xx ∈∀ . (3)

Usually, there is no optimal solution *x . Thus the task of
multi-objective evolutionary algorithms is not to find a
single final solution but to find a number of solutions that
are not dominated by any other solutions. Let a and b
are two decision vectors (Xba ∈,). Then b is said to be
dominated by a if and only if the following two
conditions hold:

)()(ba ii ff ≥ for }...,,2,1{ ni ∈∀ , (4)
)()(ba ii ff > for }...,,2,1{ ni∈∃ . (5)

When b is not dominated by any other solutions in X ,
b is said to be a Pareto-optimal solution. That is, b is a
Pareto-optimal solution when there is no solution a in X
that satisfies the above two conditions.

The task of multi-objective evolutionary algorithms is to
find Pareto-optimal solutions as many as possible. In the
case of large-scale problems, it is impractical to try to find

true Pareto-optimal solutions. Thus non-dominated
solutions among examined ones are presented to decision
makers as a result of the search by multi-objective
evolutionary algorithms. In this case, multi-objective
evolutionary algorithms try to drive a population to true
Pareto-optimal solutions as close as possible.

In this paper, we introduce local search into a cellular
multi-objective genetic algorithm (C-MOGA) [4, 5], which
is a kind of genetic algorithms for multi-objective
optimization problems. We refer to a C-MOGA with local
search as a cellular multi-objective genetic local search
(C-MOGLS) algorithm. We have already shown the
effectiveness of the C-MOGLS on flowshop scheduling
problems [6]. In this paper, we employ the C-MOGLS for
designing fuzzy rule-based classification systems for
pattern classification problems. In our former C-MOGLS,
local search is applied to all individuals in every generation.
If we simply combine local search with genetic algorithms,
almost all computation time is spent by local search. Thus
the contribution of genetic search is very small in hybrid
algorithms. In order to achieve a good balance between
genetic search and local search, we have already proposed
an idea of restricting the number of examined neighborhood
solutions by local search in [6,7]. While this idea was very
effective in the application of the C-MOGLS to scheduling
problems, it does not work very well on the design of fuzzy
rule-based classification systems. In this paper, we propose
a modified version of the C-MOGLS where local search is
applied to only non-dominated individuals in every
generation while it was applied to all individuals in our
former studies. The effectiveness of this modification is
clearly demonstrated through computer simulations on the
design of fuzzy rule-based classification systems. Similar
idea of selecting initial solutions for local search is
proposed in [8]. The algorithm in [8] was compared to other
recent EMO algorithms on a two-objective flowshop
scheduling problem and its effectiveness was clearly shown.

II. MULTI-OBJECTIVE OPTIMIZATION BY

CELLULAR GENETIC ALGORITHMS

The concept of cellular genetic algorithms was proposed
by Whitley [9]. In cellular genetic algorithms, each

0-7803-7282-4/02/$10.00 ©2002 IEEE

individual (i.e., a chromosome) resides in a cell of a
spatially structured space. Genetic operations for generating
new individuals are locally performed in the neighborhood
of each cell. While the term “cellular genetic algorithm”
was introduced by Whitley, such algorithms had already
been proposed by Manderik and Spiessens [10]. Since each
cell in our C-MOGA is related to a uniformly generated
weight vector, it is allocated in an n-dimensional weight
space of an n-objective optimization problem. In this
section, we first describe a multi-objective genetic
algorithm (MOGA) [11]. Then the C-MOGA and the
C-MOGLS are shown as extensions of the MOGA.

A. Multi-Objective Genetic Algorithm
In this subsection, we show the outline of a

multi-objective genetic algorithm [11], which is the basic
algorithm of the C-MOGA and C-MOGLS. There are two
main characteristic features in the MOGA. One is that the
weighted sum of the n objectives is used as a fitness
function:

)()()()(2211 xxxx nn fwfwfwf +++= K , (6)

where nww ,,1 K are nonnegative weights for the n
objectives. A different set of weights is used in each
selection of parent individuals. Therefore popN sets of
weights are employed when popN pairs of individuals are
selected as parents in each generation. That is, each
selection (i.e., the selection of two parents) is performed
based on a different weight vector. This means that each of
newly generated solutions by the genetic operations has its
own weight vector.

The other characteristic feature of our MOGA is to store
two different sets of individuals during its execution of the
algorithm. One is a current population and the other is a
tentative set of non-dominated solutions. After genetic
operations are applied to the current population, it is
replaced with newly generated solutions. At the same time,
the tentative set of non-dominated solutions is updated.
That is, if a newly generated solution is not dominated by
any other solutions in the current population and the
tentative set of non-dominated solutions, this solution is
added to the tentative set. Then all solutions dominated by
the added one are removed from the tentative set. In this
manner, the tentative set of non-dominated solutions is
updated at every generation in our MOGA. By this trick our
MOGA can preserve non-dominated solutions on Pareto
front with concave surface.

From the tentative set of non-dominated solutions, a few
solutions are randomly selected and their copies are added
to the current population (see Figure 1). The randomly
selected non-dominated solutions can be viewed as elite
solutions because they are added to the current population
with no modification.

B. Cellular Multi-Objective Genetic Algorithms
Next we show how to introduce the cellular concept into

the MOGA described in the previous subsection. In cellular
algorithms, each individual (i.e., solution) resides in a cell
in a spatially structured space (e.g., two-dimensional
grid-world). For utilizing a cellular structure in our MOGA,
we assign a different weight vector to each cell. For our
n-objective optimization problem, cells are structured in an
n-dimensional weight space. Figure 2 shows an example of
structured cells for a two-objective optimization problem
where the two weights 1w and 2w are used for the
calculation of the fitness function)(xf as

)()()(2211 xxx fwfwf += . In this figure, the population
size is 11 because a single individual exists in each cell. As
shown in Figure 2, the location of each cell corresponds to
its weight vector. In order to allocate cells on uniformly
distributed weight vectors, we generate weight vectors
systematically (not randomly). For example, weight vectors
in Figure 2 are (10, 0), (9, 1), ..., (0, 10).

As shown in Figure 2, we can easily generate uniform
weight vectors on the two-dimensional weight space. In
order to generate uniformly distributed weight vectors for
multi-objective optimization problems with three or more
objectives, we proposed a weight specification method on

Elite
solutions

Genetic
operations

Current
population

Update

Non-dominated
solutions

Next
population

Update

Non-dominated
solutions

Genetic
operations

Figure 1. Two sets of solutions in the MOGA.

1
2

3
4

5
6

7
8

9
10

0

10

10

11

1w

2w

Figure 2. Location of each cell in the two -dimensional weight
space.

0-7803-7282-4/02/$10.00 ©2002 IEEE

an n-dimensional grid-world [5]. Let us consider weight
vectors satisfying the following conditions.

dwww n =+++ L21 , (7)

}...,,2,1,0{ dwi ∈ . (8)

These conditions show that weight vectors are generated by
combining n non-negative integers with the sum of d. In our
cellular algorithm, a cell is located on every weight vector
satisfying the above conditions. Thus the number of cells
(i.e., the population size) is equal to the total number of
weight vectors satisfying the above conditions. This means
that the population size is determined by d. For example,
when we specify d as 10=d in (7) for the case of
two-objective problems, we will have eleven weight vectors
(10, 0), (9, 1), ..., (0, 10). Each of these weight vectors has
the same direction as the corresponding weight vector in
Figure 2.

This weight specification method is easily used for the
case with three or more objectives. For example, Figure 3
shows an example of the three-objective case where d is
specified as 4=d . From Figure 3, we can observe that the
value of d can be considered as the number of partitions of
the edge between two extreme points (e.g., (0,4,0) and
(4,0,0) in Figure 4). By this weight specification method,
we can uniformly distribute cells on the n-dimensional
weight space. The number of cells generated for n-objective
problems is calculated as follows:

)(1)(2 dOddN ≈+= , (9)

∑∑ == ≈++=+== d
i

d
i dOiiiiNdN 0

2
0 23)(2/)2)(1()1()()(,

 (10)

∑ ∑= = ≈++== d
i

d
i dOiiiNdN 0 0

3
34)(2/)2)(1()()(, (11)

M M M

)()()(1
0 1

−
= − ≈= ∑ nd

i nn dOiNdN , (12)

where)(dN j , nj ...,,2= , is the number of generated cells
for j-objective problems. We can see from the above
equations that the number of cells can be calculated
recursively. We also see that the order of the number of
cells is 1−nd for n-objective problems. Since the number
of cells is determined from the value of d, the population
size of our cellular algorithm can be specified by d. In other
words, we should specify the value of d according to an
appropriate population size.

In the C-MOGA, genetic operations are applied to each
individual that resides in a cell. In the C-MOGLS, a local
search procedure is applied to each individual generated by
genetic operations. Figure 4 shows the outline of the
MOGLS.

0

(1, 0, 3)

(0, 1, 3)

(0, 2, 2)

(0, 3, 1)
(1, 3, 0)

(4, 0, 0)

(3, 1, 0)

(3, 0, 1)
(2, 0, 2)

(1, 1, 2)

(2, 2, 0)
(1, 2, 1)

(0, 0, 4)

(0, 4, 0)

(2, 1, 1)

1w

2w

3w

Figure 3. Location of each cell in the three-dimensional weight
space by the proposed method.

Local
search

Elite
solutions

Genetic
operations

Current
population

Update

Non-dominated
solutions

Next
population

Update

Non-dominated
solutions

Figure 4. Local search procedure and two sets of solutions in the
MOGLS.

III. INTRODUCTION OF LOCAL SEARCH

PROCEDURE

Our C-MOGLS was successfully applied to scheduling
problems [6]. A local search was employed to every
individual in order to improve its fitness value defined by
the weights in the cell where that solution resides. When we
compare the C-MOGLS with the C-MOGA fairly, we
should apply each algorithm to test problems under the
same computation time or the same number of examined
solutions during the execution of the algorithm. In either
case, the number of generation updates by genetic
operations in the C-MOGLS decreases since a local search
consumes the computational resource. In general, when we
introduce a local search procedure to a genetic algorithm,
we need to find a good balance between the global search
by genetic operations and the local search. In order to cope
with this issue, we restricted the number of examined

0-7803-7282-4/02/$10.00 ©2002 IEEE

neighborhood solutions in a local search procedure in [7].
We initially employ the same strategy for local search in the
C-MOGLS for designing classification systems.

IV. FUZZY CLASSIFICATION SYSTEMS

In this paper, we apply the C-MOGLS to multi-objective
classification problems . The aim of classification problems
in this paper is to design classification systems which
classify a pattern vector with several attributes into one of
the already-known classes. Therefore, a classification
system can be viewed as a mapping from a pattern vector in
a multi-dimensional pattern space to a class label. Fuzzy
theory [12], neural networks [13, 14], decision trees [15]
are often employed to design classification systems. We try
to design classification systems in the view of the following
aspects:

1) Learning ability: The classification ability on training
patterns that were used for the design of classification
systems.

2) Generalization ability: The classification ability on test
patterns that were not used for the design of
classification systems . This performance is usually
measured by dividing the given patterns into two
subsets: training patterns and test patterns. Then
employ the training patterns for designing classification
systems, and apply the obtained systems to the test
patterns.

3) Interpretability: A criterion of comprehensibility of
classification systems. Each rule should be understood
easily by users or decision makers.

The learning ability and the generalization ability are
related to the classification performance of classification
systems. On the other hand, the interpretability is related to
understandability of classification systems. This aspect of
designing classification systems may help users and
decision makers to see input-output relations. Therefore we
can regard the designing of classification systems with the
high understandability as one of data mining tools [16, 17].

In this paper, we design fuzzy classification systems from
the views of the described criteria except for the
generalization ability. A fuzzy classification system consists
of several fuzzy if-then rules in the following format:

If 1x is 1jA and ... and mx is jmA

then Class jC with jCF , Nj 1,2,...,= , (13)

where),...,(1 mxx=x is a pattern vector with m attributes,

jiA is a fuzzy set related to a linguistic term (see Figure 5)
of the i-th attribute of the j-th rule, jC is a consequent
class, and jCF is a certainty factor of the rule. We employ
a heuristic method to calculate the consequent class jC
and the certainty factor jCF for each rule [12].

S MS M ML L

0.0

1.0

1.0

Membership

Input variable

Figure 5. Linguistic fuzzy sets (S: small , MS: medium small , M:
medium, ML: medium large, and L: large).

We employ the following objective functions related to
the learning ability and the interpretability.

Maximize)()(1 SNCPSf = , (14)
Minimize ||)(2 SSf = , (15)
Minimize)()(3 SLengthSf = , (16)

where S is a classification system,)(SNCP is the
number of correctly classified training patterns by S , || S
is the number of fuzzy rules in S , and)(SLength is the
total number of antecedent conditions of all rules in S .

)(SNCP is related to the learning ability. As for the
interpretability we employed two criteria: || S and

)(SLength . || S and)(SLength are related to the
interpretability for a rule base, and for each rule,
respectively. That is, a classification system with a small
number of rules is easily understood by users or decision
makers. Moreover we consider the interpretability of each
rule. It is difficult for us to understand each rule with a lot
of conditions. We try to find a better set of non-dominated
solutions by genetic algorithms for multi-objective
optimization problems .

V. SIMULATION RESULTS

In this paper, we try to find a better set of non-dominated
solutions with respect to the three objectives in (14)-(16).
We employ wine data and glass data as test problems to
which the C-MOGLS is applied. The wine data set has 178
training patterns with 13 attributes and 3 classes. The glass
data set has 214 patterns with 9 attributes and 6 classes.

We compare three algorithms with one another: MOGA,
C-MOGA, and C-MOGLS on the two test problems . In the
C-MOGLS, we reverse bit values as a local search
operation. Since each bit corresponds to a fuzzy rule where
“0” and “1” show the exclusion and the inclusion of the
corresponding rule in the classification system S, the bit
reverse local search tries to find a system including another
rule with the better classification performance, or to find a
system excluding a rule with the same or the better
classification ability. As we have already described in
Section III, we restricted the number of examined solutions
in our local search procedure. Let us denote the number of
examined neighborhood solutions by a local search

0-7803-7282-4/02/$10.00 ©2002 IEEE

procedure for the current solution as k . If there is no better
solution among k neighborhood solutions, the local search
for the current solution is terminated. In this paper, we
specified k as 2=k . That is, if there is no solution which
improves the fitness function in two randomly selected
neighbors of the current solution, the local search for the
solution is terminated and the local search for another
solution in the current generation is executed.

We specified the parameter d in the C-MOGA and the
C-MOGLS as 13=d . Thus, the number of the cells in the
cellular algorithms was 105. This parameter was most
effective in simulations on three objective flowshop
scheduling problems in [5]. In order to compare the MOGA
with the cellular algorithms under the same conditions, we
specified the population size as 105 in the MOGA. In the
MOGA and the C-MOGA, we specified the number of the
generation updates as 1,000. Therefore =×1000105

000,105 classification systems were searched by those
algorithms. In the C-MOGLS, we stopped the algorithms
when 105,000 classification systems were examined. We
compared three sets of non-dominated solutions obtained by
the three algorithms from the same initial population. We
generated ten different initial populations for each
algorithm, and then obtained averaged results.

In order to compare three algorithms, we show the
averaged number of obtained non-dominated solutions for
each algorithm, and the number of solutions which are not
dominated by the non-dominated solutions obtained by
other algorithms . TABLE I shows the simulation results for
the wine data and the glass data. From TABLE I, we can see
that the number of obtained solutions and the number of the
non-dominated solutions by the C-MOGA were the best of
the three algorithms. On the other hand, we can find the
cases that the performance of the C-MOGLS is worse than
that of the MOGA. Thus, we can find that the introduction
of the local search procedure into the C-MOGA was not
effective in this case.

In order to find a good balance between global genetic
search and local search, we specified the parameter k as

1=k to examine more systems by genetic operations. The
results are shown in TABLE II. From this table, we can find
that the performance of the C-MOGLS is slightly improved,
but still worse than that of the MOGA. In order to consider
the reason why the performance of the C-MOGLS is worse
than that of the MOGA, we examined the number of
generation updates in the algorithms. TABLE III shows the
averaged number of generation updates. From the table, we
can see that the number of generation updates in the
C-MOGLS with 2=k is 1/3 of those in the MOGA and
the C-MOGA. In the case of 1=k , the number of
generation updates is less than half of 1,000 generations. In
our previous study [7], 1/5 generation updates of the
MOGLS were enough for the flowshop scheduling
problems. Therefore we can see that a good balance
between global genetic search and local search should be

found for each problem carefully.
In order to examine more solutions by genetic operations,

we apply the local search procedure only to non-dominated
solutions. As the weight vector in the local search
procedure, we used the weight vector of the cell from which
the non-dominated solution was obtained. We specified the
number of examined neighborhood solutions k in the
modified MOGLS as 1=k . TABLE IV shows simulation
results. We can see that the best performance is obtained by
the modified C-MOGLS in this table.

TABLE I. MOGA, C-MOGA, and C-MOGLS (2=k).

Data set Wine Glass

Obtained

solutions

Non-

dominated

Obtained

solutions

Non-

dominated

MOGA 11.6 7.8 18.9 17.4

C-MOGA 12.4 12.0 21.1 18.9

C-MOGLS 12.2 5.5 18.6 12.3

TABLE II. MOGA, C-MOGA, and C-MOGLS (1=k).

Data set Wine Glass

Obtained

solutions

Non-

dominated

Obtained

solutions

Non-

dominated

MOGA 11.6 7.5 18.9 17.2

C-MOGA 12.4 12.0 21.1 18.8

C-MOGLS 12.0 8.0 18.7 13.4

TABLE III. Generation updates by MOGA, C-MOGA, and
C-MOGLSs.

Wine Glass

MOGA 1000 1000

C-MOGA 1000 1000

C-MOGLS (2=k) 317.4 299.8

C-MOGLS (1=k) 471.5 434.6

TABLE IV. MOGA, C-MOGA, and Modified C-MOGLS.

Data set Wine Glass

OS NS G OSs NS G

MOGA 11.6 7.2 1000 18.9 15.8 1000

C-MOGA 12.4 11.0 1000 21.1 16.6 1000

M-C-MOGLS 14.2 11.5 835.8 25.9 23.3 793.9

OS: # of Obtained Solutions,
NS: # of Non-dominated Solutions,
G: # of Generation updates.

Figures 6 and 7 show the numb er of non-dominated
solutions among the three sets of non-dominated solutions.
The horizontal axis of each figure is the number of
examined solutions by the algorithm. From Figure 6 for the
wine data, we can see that the number of non-dominated
solutions of the modified C-MOGLS is large in an early

0-7803-7282-4/02/$10.00 ©2002 IEEE

stage of evolution. Then the result of the C-MOGA
approaches that of the proposed method. This is because
non-dominated solutions by the C-MOGA will be similar to
those of the proposed method. On the other hand, we can
see that the effectiveness of the local search is significant
for the glass data since the number of non-dominated
solutions increases in the latter stage of the horizontal axis.

0

2

4

6

8

10

12

14

16

0 20000 40000 60000 80000 100000

of Examined Solutions

of

 N
on

-d
om

in
at

ed
 s

ol
ut

io
ns

MOGA C-MOGA C-MOGLS (proposed)

Figure 6. The number of non-dominated solutions of each
algorithm over the number of examined solutions (Wine).

0

5

10

15

20

30

0 20000 40000 60000 80000 100000

of Examined Solutions

of

 N
on

-d
om

in
at

ed
 S

ol
ut

io
ns

MOGA C-MOGA C-MOGLS (proposed)

25

Figure 7. The number of non-dominated solutions of each
algorithm over the number of examined solutions (Glass).

VI. CONCLUSION

In this paper, we considered how to introduce a local
search procedure into the cellular multi-objective genetic
algorithm (C-MOGA) [4]. In our previous study in [10], we
obtained better results by applying a local search procedure
to all individuals in each generation for scheduling
problems. However, we did not obtain better results by the
same hybridization scheme of the local search procedure for
pattern classification problems. This may be because the
balance between genetic global search and local search was
not good for the application to pattern classification
problems. Therefore, we applied the local search procedure
only to non-dominated solutions. Simulation results show
the effectiveness of this modification.

REFERENCES

[1] J.D. Schaffer, “Multi-objective optimization with vector
evaluated genetic algorithms,” Proc. of 1st International
Conference on Genetic Algorithms and Their Applications,
pp. 93-100 (1985).

[2] C.A. Coello Coello, “A comprehensible survey of
evolutionary -based multi-objective optimization techniques,”
Knowledge and Information Systems, vol. 1, no. 3, pp.
269-308 (1999).

[3] D.A. Van Veldhuizen and G.B. Lamont, “Multi-objective
evolutionary algorithms: Analyzing the state-of-art,”
Evolutionary Computation , vol. 8, no. 2, pp. 125-147 (2000).

[4] T. Murata, M. Gen, “Cellular genetic algorithm for
multi-objective optimization,” Proc. of The Fourth Asian
Fuzzy System Symposium, pp. 538-542 (2000).

[5] T. Murata, H. Ishibuchi, M. Gen, “Specification of genetic
search directions in cellular multi-objective genetic
algorithms,” Proc. of First International Conference on
Evolutionary multi-criterion optimization , pp. 82-95 (2001).

[6] T. Murata, H. Ishibuchi, M. Gen, “Cellular genetic local
search for multi-objective optimization,” Proc. of The
Genetic and Evolutionary Computation Conference 2000, pp.
307-314 (2000).

[7] H. Ishibuchi, T. Murata, “A multi-objective genetic local
search algorithm and its application to flowshop scheduling,”
IEEE Transaction on Systems, Man, and Cybernetics, Part C,
vol. 28, no.3, pp.392-403 (1998).

[8] H. Ishibuchi, T. Yoshida, T. Murata, “Selection of initial
solutions for local search in multiobjective genetic local
search,” Proc. of 2002 Congress on Evolutionary
Computation , in this proceedings.

[9] D. Whitley, “Cellular genetic algorithms,” Proc. of 5th
International Conference on Genetic Algorithms, p.658
(1993).

[10] B. Manderick, P. Spiessens, “Fine-grained parallel genetic
algorithms,” Proc. of 3rd International Conference on
Genetic Algorithms, pp. 428-433 (1989).

[11] T. Murata, H. Ishibuchi, “MOGA: Multi-objective genetic
algorithms,” Proc. of The 2nd IEEE International Conference
on Evolutionary Computing , pp. 289-294 (1995).

[12] H Ishibuchi, K. Nozaki, H. Tanaka, “Distributed
representation of fuzzy rules and its application to pattern
classification,” Fuzzy Sets and Systems , vol. 52, pp. 21-32
(1992).

[13] D. Hammerstrom, “Neural networks at work,” IEEE
Spectrum, June, pp. 26-32 (1993).

[14] D. Hammerstrom, “Working with neural networks,” IEEE
Spectrum, July, pp. 46-53 (1993).

[15] J.R. Quinlan, “Introduction of decision trees,” Machine
Learning , vol. 1, pp. 71-99 (1985).

[16] U. Fayyad, G. Piatetsky -Shapiro, P. Smyth, “Knowledge
discovery and data mining: Towards a unifying framework,”
Proc. of 2nd International Conference on Knowledge
Discovery and Data Mining , 82-88 (1996).

[17] H. Ishibuchi, T. Yamamoto, and T. Nakashima, “Fuzzy data
mining: Effect of fuzzy discretization,” Proc. of 1st IEEE
International Conference on Data Mining , pp. 241-248
(2001).

0-7803-7282-4/02/$10.00 ©2002 IEEE

	CEC Main Menu
	CEC Table of Contents
	CEC Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
