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Abstract - We show how local search can be combined with 
cellular multi -objective genetic algorithms for designing fuzzy 
rule-based classification systems. For achieving a good balance
between genetic search and local search, local search is applied 
to only non-dominated solutions in each generation.
Simulation results show the effectiveness of our approach.

I.  INTRODUCTION

Since Schaffer [1] proposed the Vector Evaluated Genetic
Algorithm (VEGA), evolutionary algorithms have been
applied to various multi-objective optimization problems 
for finding their Pareto-optimal solutions (for reviews, see 
[2] and [3]). Let us consider the following n-objective
maximization problem:

Maximize ))(...,),(),(( 21 xxxz nfff= ,    (1)
Subject to Xx ∈ ,    (2)

where z  is the objective vector, x  is the decision vector, 
and X  is the feasible region in the decision space. If the 
following solution *x  is found in the feasible region X ,

*x  can be said as the optimal solution for the n-objective
optimization problem:

)(*)( xx ii ff ≥  for }...,,2,1{ ni ∈∀  and Xx ∈∀ . (3)

Usually, there is no optimal solution *x . Thus the task of 
multi-objective evolutionary algorithms is not to find a 
single final solution but to find a number of solutions that 
are not dominated by any other solutions. Let a  and b
are two decision vectors ( Xba ∈, ). Then b  is said to be 
dominated by a  if and only if the following two
conditions hold:

)()( ba ii ff ≥  for }...,,2,1{ ni ∈∀ ,    (4)
)()( ba ii ff >  for }...,,2,1{ ni∈∃ .    (5)

When b  is not dominated by any other solutions in X ,
b is said to be a Pareto-optimal solution. That is, b  is a 
Pareto-optimal solution when there is no solution a  in X
that satisfies the above two conditions.

The task of multi-objective evolutionary algorithms is to 
find Pareto-optimal solutions as many as possible. In the 
case of large-scale problems, it is impractical to try to find 

true Pareto-optimal solutions. Thus non-dominated
solutions among examined ones are presented to decision 
makers as a result of the search by multi-objective
evolutionary algorithms. In this case, multi-objective
evolutionary algorithms try to drive a population to true 
Pareto-optimal solutions as close as possible.

In this paper, we introduce local search into a cellular
multi-objective genetic algorithm (C-MOGA) [4, 5], which 
is a kind of genetic algorithms for multi-objective
optimization problems. We refer to a C-MOGA with local 
search as a cellular multi-objective genetic local search 
(C-MOGLS) algorithm. We have already shown the
effectiveness of the C-MOGLS on flowshop scheduling 
problems [6]. In this paper, we employ the C-MOGLS for 
designing fuzzy rule-based classification systems for
pattern classification problems. In our former C-MOGLS,
local search is applied to all individuals in every generation. 
If we simply combine local search with genetic algorithms, 
almost all computation time is spent by local search. Thus 
the contribution of genetic search is very small in hybrid 
algorithms. In order to achieve a good balance between 
genetic search and local search, we have already proposed 
an idea of restricting the number of examined neighborhood 
solutions by local search in [6,7]. While this idea was very 
effective in the application of the C-MOGLS to scheduling
problems, it does not work very well on the design of fuzzy 
rule-based classification systems. In this paper, we propose 
a modified version of the C-MOGLS where local search is 
applied to only non-dominated individuals in every
generation while it was applied to all individuals in our 
former studies. The effectiveness of this modification is 
clearly demonstrated through computer simulations on the 
design of fuzzy rule-based classification systems. Similar 
idea of selecting initial solutions for local search is
proposed in [8]. The algorithm in [8] was compared to other 
recent EMO algorithms on a two-objective flowshop
scheduling problem and its effectiveness was clearly shown.

II.  MULTI-OBJECTIVE OPTIMIZATION BY 

CELLULAR GENETIC ALGORITHMS

The concept of cellular genetic algorithms was proposed 
by Whitley [9]. In cellular genetic algorithms, each

0-7803-7282-4/02/$10.00 ©2002 IEEE



individual (i.e., a chromosome) resides in a cell of a
spatially structured space. Genetic operations for generating 
new individuals are locally performed in the neighborhood 
of each cell. While the term “cellular genetic algorithm” 
was introduced by Whitley, such algorithms had already 
been proposed by Manderik and Spiessens [10]. Since each 
cell in our C-MOGA is related to a uniformly generated 
weight vector, it is allocated in an n-dimensional weight 
space of an n-objective optimization problem. In this
section, we first describe a multi-objective genetic
algorithm (MOGA) [11]. Then the C-MOGA and the
C-MOGLS are shown as extensions of the MOGA.

A. Multi-Objective Genetic Algorithm
In this subsection, we show the outline of a

multi-objective genetic algorithm [11], which is the basic 
algorithm of the C-MOGA and C-MOGLS. There are two 
main characteristic features in the MOGA. One is that the 
weighted sum of the n objectives is used as a fitness
function:

)()()()( 2211 xxxx nn fwfwfwf +++= K ,    (6)

where nww ,,1 K  are nonnegative weights for the n
objectives. A different set of weights is used in each
selection of parent individuals. Therefore popN  sets of
weights are employed when popN  pairs of individuals are 
selected as parents in each generation. That is, each
selection (i.e., the selection of two parents) is performed 
based on a different weight vector. This means that each of 
newly generated solutions by the genetic operations has its 
own weight vector.

The other characteristic feature of our MOGA is to store 
two different sets of individuals during its execution of the 
algorithm. One is a current population and the other is a 
tentative set of non-dominated solutions. After genetic
operations are applied to the current population, it is
replaced with newly generated solutions. At the same time, 
the tentative set of non-dominated solutions is updated.
That is, if a newly generated solution is not dominated by 
any other solutions in the current population and the
tentative set of non-dominated solutions, this solution is 
added to the tentative set. Then all solutions dominated by 
the added one are removed from the tentative set. In this 
manner, the tentative set of non-dominated solutions is 
updated at every generation in our MOGA. By this trick our 
MOGA can preserve non-dominated solutions on Pareto 
front with concave surface.

From the tentative set of non-dominated solutions, a few 
solutions are randomly selected and their copies are added
to the current population (see Figure 1). The randomly 
selected non-dominated solutions can be viewed as elite 
solutions because they are added to the current population 
with no modification.

B. Cellular Multi-Objective Genetic Algorithms
Next we show how to introduce the cellular concept into 

the MOGA described in the previous subsection. In cellular 
algorithms, each individual (i.e., solution) resides in a cell 
in a spatially structured space (e.g., two-dimensional
grid-world). For utilizing a cellular structure in our MOGA, 
we assign a different weight vector to each cell. For our 
n-objective optimization problem, cells are structured in an 
n-dimensional weight space. Figure 2 shows an example of 
structured cells for a two-objective optimization problem 
where the two weights 1w  and 2w  are used for the
calculation of the fitness function )(xf  as 

)()()( 2211 xxx fwfwf += . In this figure, the population 
size is 11 because a single individual exists in each cell. As 
shown in Figure 2, the location of each cell corresponds to 
its weight vector. In order to allocate cells on uniformly 
distributed weight vectors, we generate weight vectors
systematically (not randomly). For example, weight vectors 
in Figure 2 are (10, 0), (9, 1), ..., (0, 10).

As shown in Figure 2, we can easily generate uniform 
weight vectors on the two-dimensional weight space. In 
order to generate uniformly distributed weight vectors for 
multi-objective optimization problems with three or more
objectives, we proposed a weight specification method on
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Figure 1. Two sets of solutions in the MOGA.
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Figure 2. Location of each cell in the two -dimensional weight 
space.
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an n-dimensional grid-world [5]. Let us consider weight 
vectors satisfying the following conditions.

dwww n =+++ L21 ,    (7)

}...,,2,1,0{ dwi ∈ .    (8)

These conditions show that weight vectors are generated by 
combining n non-negative integers with the sum of d. In our 
cellular algorithm, a cell is located on every weight vector 
satisfying the above conditions. Thus the number of cells 
(i.e., the population size) is equal to the total number of 
weight vectors satisfying the above conditions. This means 
that the population size is determined by d. For example, 
when we specify d as 10=d  in (7) for the case of
two-objective problems, we will have eleven weight vectors
(10, 0), (9, 1), ..., (0, 10). Each of these weight vectors has 
the same direction as the corresponding weight vector in 
Figure 2.

This weight specification method is easily used for the 
case with three or more objectives. For example, Figure 3 
shows an example of the three-objective case where d is 
specified as 4=d . From Figure 3, we can observe that the 
value of d can be considered as the number of partitions of 
the edge between two extreme points (e.g., (0,4,0) and 
(4,0,0) in Figure 4). By this weight specification method, 
we can uniformly distribute cells on the n-dimensional
weight space. The number of cells generated for n-objective
problems is calculated as follows:

)(1)(2 dOddN ≈+= ,    (9)

∑∑ == ≈++=+== d
i

d
i dOiiiiNdN 0

2
0 23 )(2/)2)(1()1()()( ,

  (10)

∑ ∑= = ≈++== d
i

d
i dOiiiNdN 0 0

3
34 )(2/)2)(1()()( ,   (11)

M M M

)()()( 1
0 1

−
= − ≈= ∑ nd

i nn dOiNdN ,   (12)

where )(dN j , nj ...,,2= , is the number of generated cells 
for j-objective problems. We can see from the above
equations that the number of cells can be calculated
recursively. We also see that the order of the number of 
cells is 1−nd  for n-objective problems. Since the number 
of cells is determined from the value of d, the population 
size of our cellular algorithm can be specified by d. In other 
words, we should specify the value of d according to an 
appropriate population size.

In the C-MOGA, genetic operations are applied to each 
individual that resides in a cell. In the C-MOGLS, a local 
search procedure is applied to each individual generated by 
genetic operations. Figure 4 shows the outline of the
MOGLS.
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Figure 3. Location of each cell in the three-dimensional weight 
space by the proposed method.
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Figure 4. Local search procedure and two sets of solutions in the 
MOGLS.

III.  INTRODUCTION OF LOCAL SEARCH 

PROCEDURE

Our C-MOGLS was successfully applied to scheduling 
problems [6]. A local search was employed to every
individual in order to improve its fitness value defined by 
the weights in the cell where that solution resides. When we 
compare the C-MOGLS with the  C-MOGA fairly, we 
should apply each algorithm to test problems under the
same computation time  or the same number of examined 
solutions during the execution of the algorithm. In either
case, the number of generation updates by genetic
operations in the C-MOGLS decreases since a local search 
consumes the computational resource. In general, when we 
introduce a local search procedure to a genetic algorithm, 
we need to find a good balance between the global search 
by genetic operations and the local search. In order to cope 
with this issue, we restricted the number of examined 
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neighborhood solutions in a local search procedure in [7]. 
We initially employ the same strategy for local search in the 
C-MOGLS for designing classification systems.

IV.  FUZZY CLASSIFICATION SYSTEMS

In this paper, we apply the C-MOGLS to multi-objective
classification problems . The aim of classification problems 
in this paper is to design classification systems which 
classify a pattern vector with several attributes into one of 
the already-known classes. Therefore, a classification
system can be viewed as a mapping from a pattern vector in 
a multi-dimensional pattern space to a class label. Fuzzy 
theory [12], neural networks [13,  14], decision trees [15]
are often employed to design classification systems. We try 
to design classification systems in the view of the following 
aspects:

1) Learning ability: The classification ability on training 
patterns that were used for the design of classification 
systems.

2) Generalization ability: The classification ability on test 
patterns that were not used for the design of
classification systems . This performance is usually
measured by dividing the given patterns into two 
subsets: training patterns and test patterns. Then
employ the training patterns for designing classification 
systems, and apply the obtained systems to the test
patterns.

3) Interpretability: A criterion of comprehensibility of
classification systems. Each rule should be understood 
easily by users or decision makers.

The learning ability and the generalization ability are
related to the classification performance of classification 
systems. On the other hand, the interpretability is  related to 
understandability of classification systems. This aspect of 
designing classification systems may help users and
decision makers to see input-output relations. Therefore we 
can regard the designing of classification systems with the 
high understandability as one of data mining tools [16, 17].

In this paper, we design fuzzy classification systems from 
the views of the described criteria except for the
generalization ability. A fuzzy classification system consists 
of several fuzzy if-then rules in the following format:

If 1x  is 1jA  and  ...  and mx  is jmA

then Class jC  with jCF , Nj 1,2,...,= ,   (13)

where ),...,( 1 mxx=x  is a pattern vector with m attributes, 

jiA  is a fuzzy set related to a linguistic term (see Figure 5) 
of the i-th attribute of the j-th rule, jC  is  a consequent 
class, and jCF  is a certainty factor of the rule. We employ 
a heuristic method to calculate the consequent class jC
and the certainty factor jCF  for each rule [12].

S MS M ML L

0.0

1.0

1.0

Membership

Input variable

Figure 5. Linguistic fuzzy sets (S: small , MS: medium small , M: 
medium, ML: medium large, and L: large).

We employ the following objective functions related to 
the learning ability and the interpretability.

Maximize )()(1 SNCPSf = ,   (14)
Minimize ||)(2 SSf = ,   (15)
Minimize )()(3 SLengthSf = ,   (16)

where S  is a classification system, )(SNCP  is the
number of correctly classified training patterns by S , || S
is the number of fuzzy rules in S , and )(SLength  is the 
total number of antecedent conditions of all rules in S .

)(SNCP  is related to the learning ability. As for the
interpretability we employed two criteria: || S and

)(SLength . || S and )(SLength are related to the
interpretability for a rule base, and for each rule,
respectively. That is, a classification system with a small 
number of rules is easily understood by users or decision 
makers. Moreover we consider the interpretability of each 
rule. It is difficult for us to understand each rule with a lot 
of conditions. We try to find a better set of non-dominated
solutions by genetic algorithms for multi-objective
optimization problems .

V.  SIMULATION RESULTS

In this paper, we try to find a better set of non-dominated
solutions with respect to the three objectives in (14)-(16).
We employ wine data and glass data as test problems to 
which the C-MOGLS is applied. The wine data set has 178 
training patterns with 13 attributes and 3 classes. The glass 
data set has 214 patterns with 9 attributes and 6 classes.

We compare three algorithms with one another: MOGA,
C-MOGA, and C-MOGLS on the two test problems . In the 
C-MOGLS, we reverse bit values as a local search
operation. Since each bit corresponds to a fuzzy rule where
“0” and “1” show the exclusion and the inclusion of the 
corresponding rule in the classification system S, the bit 
reverse local search tries to find a system including another 
rule with the better classification performance, or to find a 
system excluding a rule with the same or the better
classification ability. As we have already described in 
Section III, we restricted the number of examined solutions 
in our local search procedure. Let us denote the number of 
examined neighborhood solutions by a local search
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procedure for the current solution as k . If there is no better 
solution among k neighborhood solutions, the local search 
for the current solution is terminated. In this paper, we 
specified k as 2=k . That is, if there is no solution which 
improves the fitness function in two randomly selected
neighbors of the current solution, the local search for the 
solution is terminated and the local search for another 
solution in the current generation is executed.

We specified the parameter d in the C-MOGA and the 
C-MOGLS as 13=d . Thus, the number of the cells in the 
cellular algorithms was 105. This parameter was most
effective in simulations on three objective flowshop
scheduling problems in [5]. In order to compare the MOGA 
with the cellular algorithms under the same conditions, we 
specified the population size as 105 in the MOGA. In the 
MOGA and the C-MOGA, we specified the number of the 
generation updates as 1,000. Therefore =×1000105

000,105  classification systems were searched by those
algorithms. In the C-MOGLS, we stopped the algorithms 
when 105,000 classification systems were examined. We 
compared three sets of non-dominated solutions obtained by 
the three algorithms from the same initial population. We 
generated ten different initial populations for each
algorithm, and then obtained averaged results.

In order to compare three algorithms, we show the
averaged number of obtained non-dominated solutions for 
each algorithm, and the number of solutions which are not 
dominated by the non-dominated solutions obtained by
other algorithms . TABLE I shows the simulation results for 
the wine data and the glass data. From TABLE I, we can see 
that the number of obtained solutions and the number of the 
non-dominated solutions by the C-MOGA were the best of 
the three algorithms. On the other hand, we can find the 
cases that the performance of the C-MOGLS is worse than 
that of the MOGA. Thus, we can find that the introduction 
of the local search procedure into the C-MOGA was not 
effective in this case.

In order to find a good balance between global genetic 
search and local search, we specified the parameter k  as 

1=k  to examine more systems by genetic operations. The 
results are shown in TABLE II. From this table, we can find 
that the performance of the C-MOGLS is  slightly improved, 
but still worse than that of the MOGA. In order to consider 
the reason why the performance of the C-MOGLS is worse 
than that of the MOGA, we examined the number of
generation updates in the algorithms. TABLE III shows the 
averaged number of generation updates. From the table, we 
can see that the number of generation updates in the
C-MOGLS with 2=k is 1/3 of those in the MOGA and 
the C-MOGA. In the case of 1=k , the number of
generation updates is less than half of 1,000 generations. In 
our previous study [7], 1/5 generation updates of the
MOGLS were enough for the flowshop scheduling
problems. Therefore we can see that a good balance
between global genetic search and local search should be 

found for each problem carefully.
In order to examine more solutions by genetic operations, 

we apply the local search procedure only to non-dominated
solutions. As the weight vector in the local search
procedure, we used the weight vector of the cell from which 
the non-dominated solution was obtained. We specified the 
number of examined neighborhood solutions k  in the
modified MOGLS as 1=k . TABLE IV shows simulation 
results. We can see that the best performance is obtained by 
the modified C-MOGLS in this table. 

TABLE I. MOGA, C-MOGA, and C-MOGLS ( 2=k ).

Data set Wine Glass

Obtained

solutions

Non-

dominated

Obtained

solutions

Non-

dominated

MOGA 11.6 7.8 18.9 17.4

C-MOGA 12.4 12.0 21.1 18.9

C-MOGLS 12.2 5.5 18.6 12.3

TABLE II. MOGA, C-MOGA, and C-MOGLS ( 1=k ).

Data set Wine Glass

Obtained

solutions

Non-

dominated

Obtained

solutions

Non-

dominated

MOGA 11.6 7.5 18.9 17.2

C-MOGA 12.4 12.0 21.1 18.8

C-MOGLS 12.0 8.0 18.7 13.4

TABLE III. Generation updates by MOGA, C-MOGA, and 
C-MOGLSs.

Wine Glass

MOGA 1000 1000

C-MOGA 1000 1000

C-MOGLS ( 2=k ) 317.4 299.8

C-MOGLS ( 1=k ) 471.5 434.6

TABLE IV.  MOGA, C-MOGA, and Modified C-MOGLS.

Data set Wine Glass

OS NS G OSs NS G

MOGA 11.6 7.2 1000 18.9 15.8 1000

C-MOGA 12.4 11.0 1000 21.1 16.6 1000

M-C-MOGLS 14.2 11.5 835.8 25.9 23.3 793.9

OS: # of Obtained Solutions,
NS: # of Non-dominated Solutions,
G: # of Generation updates.

Figures 6 and 7 show the numb er of non-dominated
solutions among the three sets of non-dominated solutions. 
The horizontal axis of each figure is the number of
examined solutions by the algorithm. From Figure 6 for the 
wine data, we can see that the number of non-dominated
solutions of the modified C-MOGLS is large in an early 
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stage of evolution. Then the result of the C-MOGA
approaches that of the proposed method. This is because 
non-dominated solutions by the C-MOGA will be similar to 
those of the proposed method. On the other hand, we can 
see that the effectiveness of the local search is significant 
for the glass data since the number of non-dominated
solutions increases in the latter stage of the horizontal axis.
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Figure 6. The number of non-dominated solutions of each
algorithm over the number of examined solutions (Wine).
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Figure 7. The number of non-dominated solutions of each
algorithm over the number of examined solutions (Glass).

VI.  CONCLUSION

In this paper, we considered how to introduce a local 
search procedure into the cellular multi-objective genetic 
algorithm (C-MOGA) [4]. In our previous study in [10], we 
obtained better results by applying a local search procedure 
to all individuals in each generation for scheduling
problems. However, we did not obtain better results by the 
same hybridization scheme of the local search procedure for 
pattern classification problems. This may be because the
balance between genetic global search and local search was 
not good for the application to pattern classification
problems. Therefore, we applied the local search procedure 
only to non-dominated solutions. Simulation results show 
the effectiveness of this modification.
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