
The Evolution of Dispersal in Random Environments and
The Principle of Partial Control

Lee Altenberg
altenber@hawaii.edu

Abstract

McNamara and Dall (2011) identified novel relationships
between the abundance of a species in different environ-
ments, the temporal properties of environmental change,
and selection for or against dispersal. Here, the mathemat-
ics underlying these relationships in their two-environment
model are investigated for arbitrary numbers of environ-
ments. The effect they described is quantified as the
fitness-abundance covariance. The phase in the life cycle
where the population is censused is crucial for the impli-
cations of the fitness-abundance covariance. These rela-
tionships are shown to connect to the population genetics
literature on the Reduction Principle for the evolution of
genetic systems and migration. Conditions that produce
selection for increased unconditional dispersal are found to
be new instances of departures from reduction described
by the “Principle of Partial Control” proposed for the evo-
lution of modifier genes. According to this principle, vari-
ation that only partially controls the processes that trans-
form the transmitted information of organisms may be se-
lected to increase these processes. Mathematical methods
of Karlin, Friedland, and Elsner, Johnson, and Neumann,
are central in generalizing the analysis.1 Analysis of the
adaptive landscape of the model shows that the evolution
of conditional dispersal is very sensitive to the spectrum of
genetic variation the population is capable of producing,
and suggests that empirical study of particular species will
require an evaluation of its variational properties.

1 Introduction

In analyzing a model of a population that disperses in
a patchy environment subject to random environmen-
tal change, McNamara and Dall (2011) describe “how
an underappreciated evolutionary process, which we term
‘The Multiplier Effect’, can limit the evolutionary value
of responding adaptively to environmental cues, and thus
favour the evolutionary persistence of otherwise paradox-
ical unconditional strategies.” By “multiplier effect”, Mc-
Namara and Dall mean,

1Dedicated to the memory of Professor Michael Neumann, one of
whose many elegant theorems provides for a result presented here.

If a genotype is distributed in space and its
fitness varies with location, then selection will
change the spatial distribution of the genotype
through its effect on population demography.
This process can accumulate genotype members
in locations to which they are well suited. This
accumulation by selection is the multiplier effect.

It is possible, they discover, for the ‘multiplier effect’ to
reverse — for there to be an excess of the population in
the worst habitats — when there is very rapid environ-
mental change. The environmental change they model
is a Markov process where are large number of patches
switch independently between two environments that pro-
duce different growth rates for a population of organ-
isms. They find that for moderate rates of environmental
change, populations will have higher asymptotic growth
rates if they reduce their rate of unconditional disper-
sal between patches, which produces effective selection for
lower dispersal.

Their key finding is that the reversal of the ‘multiplier
effect’ due to rapid environmental change corresponds ex-
actly with a reversal in the direction in which dispersal
evolves: when abundance is greater on better habitats,
lower dispersal is selected for; when abundance is greater
on worse habitats because the environment changes so
fast, there is selection for higher dispersal.

McNamara and Dall conclude their paper saying, “the
multiplier effect may underpin the evolution and mainte-
nance of unconditional strategies in many biological sys-
tems.” This is indeed the case. Their results are in fact
part of the phenomenon already known as the “reduction
principle”, which was first described as such in models for
the evolution of linkage (Feldman, 1972), and subsequently
extended to models for the evolution of mutation rates,
gene conversion, dispersal, sexual reproduction, and even
cultural transmission of traditionalism (Altenberg, 1984).
The reduction principle also underlies other phenomena:
the ‘error catastrophe’ in quasispecies dynamics, and the
effect of population subdivision on the maintenance of ge-
netic diversity.

The Reduction Principle can be stated, in a rather gen-
eral form, as the widely exhibited phenomenon that mixing
reduces growth, and differential growth selects for reduced
mixing.
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While the reduction phenomenon studied in McNamara
and Dall (2011) is not a new concept, three particular
aspects of their study are novel:

1. their discovery of conditions that cause mixing to in-
crease growth — which addresses the open problem
posed in Altenberg (2004, Open Question 3.1) as to
the conditions that produce departures from the re-
duction principle;

2. that these departures from reduction emerge from
very rapidly changing environments; and

3. that these departures from reduction correspond to
reversals in the association between fitness and abun-
dance in different environments.

McNamara and Dall produce these results from a two-
environment model. A principal goal here is to generalize
each of these findings to arbitrary numbers of environ-
ments. Insight on how to generalize them is provided by
clues in their results. Some of these clues point to the
main tool used to achieve the generalization, a theorem of
the late Sam Karlin, to be described.

The property described by McNamara and Dall as ‘the
multiplier effect’ is here made mathematically precise, as
a positive covariance between fitness and the excess of
the stationary distribution of the population above what
it would be in the absence of differential growth rates,
as censused just after dispersal. I refer to this quantity
as the fitness-abundance covariance, which is a bit more
descriptive and specific than the term ‘multiplier effect’,
which already has long use as a concept in economics.

A critical aspect to use of the fitness-abundance covari-
ance is the phase in the life cycle at which the census is
taken. When McNamara and Dall say that “individuals
are likely to find themselves in circumstances to which
they are well-adapted,” it matters where in its life cycle
the individual finds itself — whether it is on its natal site
or has already dispersed. McNamara and Dall do not ex-
plicitly address the phase at which they take their census,
but their model shows it to be just after dispersal, before
reproduction.

The issue of census phase is explicitly addressed here,
and is shown to critically affect properties of the fitness-
abundance covariance. For populations censused just after
dispersal, one cannot say in general that “individuals are
already likely to be on the better site.” As a consequence
of this phase dependence, a novel result found here is that
by taking a census of the populations before and after
reproduction, one can in certain situations infer a bound
on the duration of changing environments.

A result in McNamara and Dall (2011) that garnered
considerable attention is that “ ‘stupid strategies’ could
be best for the genes” (University of Exeter, 2011):

One underappreciated consequence of the multi-
plier effect is that because individuals tend to

be in locations to which they are well suited,
its mere existence informs an organism that it
is liable to be in favourable circumstances. This
information can outweigh environmental cues to
the contrary, so that an individual should place
more weight on the fact it exists than on any ad-
ditional cues of location quality. McNamara and
Dall (2011)

The general analysis provided here produces results that
seems to contradict the above: philopatry is never an evo-
lutionarily stable strategy when there is any level of envi-
ronmental change; it can always be invaded by organisms
that disperse from the correct environments.

In an attempt to resolve the apparent contradiction, I
take a closer examination of the adaptive landscape — the
gradient of fitness over the space of conditional dispersal
probabilities. What is found is that the evolutionarily sta-
ble state is highly sensitive to constraints on the organis-
mal variability for dispersal probabilities. Slight changes
in the constraints can shift the evolutionarily stable state
from complete philopatry to complete dispersal from some
environments. This sensitivity means that conditional dis-
persal may be a highly volatile trait evolutionarily. More-
over, to understand the evolution of any particular species
requires an analysis of the constraints on the phenotype,
and the probabilities of generating heritable variation in
any phenotypic direction — in short, an evolvability anal-
ysis (Wagner and Altenberg, 1996).

While it is relatively straightforward to determine the
long-term growth rates of different dispersal phenotypes,
determining the likelihood that such phenotypes will be
produced by the population plunges one into issues of
the organism’s perceptual and cognitive limits, ecologi-
cal correlates, and the genotype-phenotype map, and re-
quires specific empirical knowledge of the organism and
its variability in order to address. This is perhaps why,
as Levinton (1988, p. 494) insightfully writes, “Evolution-
ary biologists have been mainly concerned with the fate of
variability in populations, not the generation of variabil-
ity. . . . Whatever the reason, the time has come to reem-
phasize the study of the origin of variation.” A principle
finding here is that the evolutionary outcome is not de-
termined by the adaptive landscape studied here, and we
are pointed instead to examine the variational properties
of each particular species in question.

1.1 The Reduction Principle and Fisher’s
Fundamental Theorem of Natural Selec-
tion

The intuition as to why there should be selection for lower
dispersal in a population at a stationary balance between
dispersal and selection is well expressed in the following
explanation:
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Even in the absence of genetic variability for local
adaptation in a spatially heterogeneous environ-
ment, migration will be selected against because
on the average an individual will disperse to an
environment worse than the one it was born in,
since better environments harbor more individu-
als. (Olivieri et al., 1995).

This is a description of populations that have equilibrated
to a balance between dispersal and differential growth.
Fisher’s Fundamental Theorem is that differential growth
rates increase the mean fitness of the population by an
amount equal to the variance in the growth rates. When
the population is at a stationary distribution, however,
this requires that dispersal decrease the mean fitness by
exactly the same amount. Fisher uses the phrase “dete-
rioration of the environment” (Fisher 1958; discussed in
Price 1972) to describe this exact counterbalance to the
variance in fitness that increases the mean fitness. But he
includes mutation in this concept:

. . . an equilibrium must be established in which
the rate of elimination is equal to the rate of mu-
tation. To put the matter in another way we may
say that each mutation of this kind is allowed to
contribute exactly as much to the genetic vari-
ance of fitness in the species as will provide a
rate of improvement equivalent to the rate of de-
terioration caused by the continual occurrence of
the mutation. (Fisher, 1958, p. 41)

Fisher was thinking of mutation, not dispersal, in the
above. But as we shall see later, the same mathemat-
ics underlies both. Like a the mutation/selection bal-
ance Fisher describes, dispersal will generally be to lesser
quality environments when the population has reached a
growth/dispersal balance.

The interchangeability of many results in population
genetics between mutation and dispersal reflects the fact
that an organism’s location, like its genotype, is transmis-
sible information about its state, and its degree of preser-
vation during transmission is itself an organismal pheno-
type and subject to evolution (Cavalli-Sforza and Feldman
1973; Karlin and McGregor 1974; Altenberg 1984, pp. 15–
16, p. 178 Schauber et al. 2007; Odling-Smee 2007). The
issue of the faithfulness of transmission brings us to the
reduction principle.

2 A Review of the Reduction Princi-
ple

McNamara and Dall are more correct than perhaps even
they realized in noting that their subject is an “under-
appreciated evolutionary process”. It is clear that aware-
ness of the body of population genetics literature on the

reduction principle has not fully percolated between dis-
ciplines. Karlin’s (1982) key theorem on the reduction
phenomenon, and its application to the evolution of dis-
persal Altenberg (1984), were independently duplicated
recently by Kirkland et al. (2006). And McNamara and
Dall (2011) were evidently unaware of the paper by Kirk-
land et al. (2006), published in a mathematics journal.

One main goal of this paper, therefore, is to provide
a ‘portal’ to the reduction principle, its historical devel-
opment, and methods of analysis for a broader audience.
Here, I tie-in the work of McNamara and Dall (2011) to
the larger stream of work on the reduction principle, and
show that their work contributes toward answering one of
the main open problems in the field: how departures from
the reduction phenomenon are produced.

It may be appropriate to apologize for the density of
equations in this paper, as equations nowadays are often
being relegated to online-only supplements. But the sub-
ject of this paper is in fact mathematical methodology. It
is the mathematics that creates a single conceptual and an-
alytical framework for dispersal, recombination, mutation,
random environments, and multiple genetic processes. To
show how they all share in a single body of results requires
we delve into the mathematics.

It should be noted that many theoretical studies con-
strain their analysis to models having only n = 2 patches
or genotypes, to allow explicit calculation of the eigen-
values and eigenvectors (e.g. McNamara and Dall 2011,
Steinmeyer and Wilke 2009). There are mathematical
tools from the reduction principle literature, however —
in particular the aforementioned theorems of Karlin —
that make analytical results tractable for arbitrary n. Dis-
semination of these tools to a larger audience is another
principal goal of this paper. They are laid out in Methods.

2.1 Development of the Reduction Principle

In the first analyses of genetic modifiers of mutation, re-
combination, and migration by Marc Feldman and cowork-
ers in the 1970s, a common result kept appearing, which
was that reduced levels of mutation, recombination, or mi-
gration would evolve when populations were near equilib-
rium under a balance between the forces of selection and
transmission. The earliest appearance of the reduction
phenomenon in the literature is perhaps Fisher’s (1930,
p. 130) assertion that “the presence of pairs of factors in
the same chromosome, the selective advantage of each of
which reverses that of the other, will always tend to dimin-
ish recombination, and therefore to increase the intensity
of linkage in the chromosomes of that species.” This claim
was mathematically verified by Kimura (1956). Nei (1967;
1969) posed the first three-locus model for the evolution
of recombination, with a modifier locus controlling the re-
combination between two loci under selection, and found
that only reduced recombination would evolve. The first
fixed-point stability analysis of modifiers of recombination
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between two loci under viability selection was by Feldman
(1972), who found that recombination would be reduced
by evolution. Subsequent studies extended the reduction
result to larger and larger spaces of models, including mod-
ifiers of:

dispersal: Karlin and McGregor (1972); Balkau and Feld-
man (1973); Karlin and McGregor (1974); Teague
(1977); Asmussen (1983); Hastings (1983); Feldman
and Liberman (1986); Liberman and Feldman (1989);
Wiener and Feldman (1991, 1993);

recombination: Feldman (1972); Karlin and McGregor
(1972); Feldman and Balkau (1972, 1973); Feldman
and Krakauer (1976); Feldman et al. (1980); Liber-
man and Feldman (1986a); Feldman and Liberman
(1986); and

mutation: Karlin and McGregor (1972); Liberman and
Feldman (1986b); Feldman and Liberman (1986).

(Note that this literature prefers the term ‘migration’,
while ‘dispersal’ is preferred in the ecology literature. Lit-
erature searches need to include both.)

These studies also extended the generality of the re-
duction results to include arbitrary large modified rates,
arbitrary viability selection regimes, and multiple modifier
alleles. They could only analyze the case of two patches or
two alleles per selected locus, however, due to their use of
closed-form solutions for the determinants or eigenvalues.
Hastings (1983) is notable in extending the phenomenon
to continuous spatial variation.

Feldman (1972) proposed that the essential direction of
evolution for the recombination modifiers was reduction
in the recombination rates. Shortly thereafter, Karlin and
McGregor (1972, 1974) proposed an alternative idea, that
the underlying governor for the direction of modifier evolu-
tion was the “Mean Fitness Principle”. The Mean Fitness
Principle proposed that a modifier allele increases when
rare if and only if it changes the parameter it controls
to a value that would increase the mean fitness of the
population at equilibrium. Both reduction and mean fit-
ness principles explained the known results at that time.
However, Karlin and Carmelli (1975, Fig. 1) found an ex-
ample where reducing recombination would decrease the
mean fitness of the population, while Feldman et al. (1980)
showed that, even for this example, an allele reducing re-
combination would grow in the population. Therefore,
only the reduction principle remained unfalsified. Subse-
quent modifier gene studies have found other counterex-
amples to the mean fitness principle (Uyenoyama and
Waller, 1991a,b; Wiener and Feldman, 1993). In Feldman
et al. (1980) is where reduction was first referred to as a
“principle”.

2.2 Karlin’s Theorems

During the time period of these developments, Karlin had,
ironically, elucidated the mathematical foundations for the
reduction principle himself — without realizing it.

Karlin was investigating a seemingly distant topic —
how population subdivision would affect the maintenance
of genetic variation. To understand how the protection of
alleles against extinction depended on migration patterns
and rates, Karlin (1976, 1982) developed two general theo-
rems on the spectral radius of perturbations of migration-
selection systems. The spectral radius is the growth rate
for the whole group of genotypes that comprise the pertur-
bation as they approach a stationary distribution among
themselves.

These theorems show how, for two different kinds of
variation in migration, a greater level of ‘mixing’ reduces
the spectral radius of the stability matrix for the system,
and thus may cause some alleles to lose their protection
against extinction. Hence, greater levels of mixing would
lead to fewer polymorphic alleles. Preparatory to this
work was the paper by Friedland and Karlin (1975). The
theorems first appear, without proof, in Karlin (1976, pp.
642–647), and with proof as Theorems 5.1 and 5.2 in Kar-
lin (1982), restated as follows:

Theorem 1 (Karlin 1982, Theorem 5.1, pp. 114–116,
197–198). Consider a family of stochastic matrices that
commute and are symmetrizable to positive definite ma-
trices:

F := {Mh = LShR : MhMk = MkMh}, (1)

where L and R are positive diagonal matrices, and each
Sh is a positive definite symmetric real matrix. Let D be
a positive diagonal matrix. Then for each Mh,Mk ∈ F ,
the spectral radius, ρ, satisfies:

ρ(MhMkD) ≤ ρ(MkD).

Theorem 2 (Karlin 1982, Theorem 5.2, pp. 117–118,
194–196). Let M be a non-negative irreducible stochastic
matrix. Consider the family of matrices

M(α) = (1− α)I + αM.

Then for any positive diagonal matrix D, the spectral ra-
dius

ρ(α) = ρ(M(α)D)

is decreasing as α increases (strictly provided D 6= dI).

In Theorem 5.1, ‘more mixing’ is produced the applica-
tion of a second mixing operator; in Theorem 5.2, more
mixing is produced by the equal scalar multiplication of
all the transition probabilities between states. In both
cases, greater mixing reduces the spectral radius, which
represents the asymptotic growth rate of a rare allele in
Karlin’s analysis.
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Theorems 5.1 and 5.2 display certain tradeoffs in gener-
ality. In Theorem 5.2, M may be any irreducible stochas-
tic matrix, but the variation in the matrix family is re-
stricted to a single parameter — the scaling of the transi-
tion probabilities. In Theorem 5.1 on the other hand, the
variation in the matrix family is more general in that it
has up to n − 1 degrees of freedom to vary (see Remark
for Lemma 22), but the matrix class itself is narrower with
the constraint that they be symmetrizable.

Karlin’s proof of Theorem 5.2 relied upon the re-
cently minted variational formula for the spectral radius
of Donsker and Varadhan (1975). These results on the
reduction principle, and their means of generalization, all
came into being in the same time period.

3 Application of Karlin’s theorems to
the Evolution of Dispersal and Ge-
netic Systems

My own contribution to the reduction principle began with
a conjecture by Marcus Feldman (1980, personal commu-
nication). The existence of polymorphisms for genes con-
trolling recombination and mutation rates had been dis-
covered theoretically by Feldman and Balkau (1973) and
Feldman and Krakauer (1976)). Generalizing from these
examples, Feldman conjectured that whenever a parame-
ter controlled by a gene enters linearly into the recursion
on the frequency dynamics, then a polymorphism for that
gene would exist in which:

1. the population, when fixed on an allele producing a
particular value of the linear parameter, is at an equi-
librium;

2. each allele’s average value of the parameter is equal
to that particular value; and

3. the gene is in linkage equilibrium with the rest of the
genome.

Because condition 2. was analogous to the condition for al-
leles under viability selection that their marginal fitnesses
be equal at equilibrium, these polymorphisms were called
‘viability-analogous, Hardy-Weinberg’ (VAHW) modifier
polymorphisms.

The repeated appearance of the VAHW polymorphisms,
and the repeated occurrence of the reduction principle in
models of different phenomena (recombination, mutation,
and dispersal) prompted me to investigate the possible
unification of these phenomena, which is provided in Al-
tenberg (1984).

It turns out that the only way a parameter can enter
linearly in the recursion is if it modifies transmission prob-
abilities rather than fitnesses. The approach to unification

was to represent all of the models in one general expres-
sion, in which the specifics of the transmission probabili-
ties P (i← j, k) (parents j and k produce offspring i) are
ignored, while the variation produced by the modifier lo-
cus is made explicit.

The form of variation studied was where the modifier
gene produced an equal scaling, m, of all transmission
probabilities between states, i.e. mP (i←j, k), when j 6= i
or k 6= i. The principle models that exhibited the re-
duction principle all incorporated this form of variation.
Equal scaling of transmission probabilities occurs when a
single transformative event acts on the transmitted infor-
mation, and the modifier gene controls the rate of this
event (Altenberg, 2011).

With this explicit representation of variation, the mod-
els that had exhibited the reduction principle had stability
matrices of the form M(m)D for newly introduced modi-
fier alleles, where M(m) = (1 −m)I + mP as in Karlin’s
theorem. Once this structure is made evident, application
of Karlin’s Theorem 5.2 immediately yields the result that
the growth rate of a new modifier allele was a decreasing
function of m, so if it reduced m below the current value
in the population, it would invade, and if it increased m
above the current level, it would go extinct.

Thus evolution would reduce the rates of all of these
various processes, or others that had never been modeled
before but which were covered by the general formulation.
Prior studies needed to assume only two alleles under se-
lection, or two patches subdividing the population, be-
cause they relied on closed-form solutions to determinants
or eigenvalues. Karlin’s theorem allowed the result to be
generalized to arbitrary numbers of alleles and patches, ar-
bitrary patterns of transformation, and arbitrary selection
regimes.

It should be noted that modifiers of segregation dis-
tortion have altogether different dynamics that merit a
separate classification (Altenberg, 1984, pp. 170–178).

Slight variation among different models led to separate
treatments for modifiers of mutation and recombination
(Altenberg 1984, pp. 106–169, Altenberg and Feldman
1987), modifiers of dispersal (Altenberg, 1984, pp. 77–81,
178–199), modifiers of rates of asexual vs. sexual repro-
duction (ibid. pp. 199–203), and culturally transmitted
modifiers of cultural transmission — i.e. ‘traditionalism’
(ibid. pp. 203–206). All of these phenotypes manifest the
reduction principle for the same underlying reason, the
spectral radius property shown in Karlin’s Theorem 5.2.

3.1 The Dispersal Modifier Results of Al-
tenberg (1984)

The results on the evolution of dispersal modifiers in Al-
tenberg (1984, pp. 77–81, 178–199) will be briefly re-
viewed, so that the work need not be duplicated, as has
recently occurred (Kirkland et al., 2006).
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The model is of an organism that has a multiple-stage
life cycle, consisting of random mating, semelparous re-
production, selection on gametes, zygotes, and adults, and
lastly, dispersal. The reproductive output of an organism
depends on its patch and its diploid genotype for a gene
under selection. The probability of dispersing between
any two patches is scaled by a modifier gene. The model
includes several generalizations of prior work:

• arbitrary numbers of patches;

• arbitrary dispersal patterns between patches, which
may include cycles and asymmetry;

• dispersal of either adults or gametes (but not disper-
sal of zygotes, which breaks the Hardy-Weinberg fre-
quencies of diploids and complicates the analysis);

• arbitrary hard or soft selection patterns on diploids
and gametes;

• arbitrary numbers of alleles at a dispersal-modifying
locus; and

• arbitrary number of alleles for the locus with patch-
specific fitnesses.

Analysis is made of the evolutionary stability of popu-
lations near equilibrium. In order for any new modifier al-
lele to grow or decline at a geometric rate, the equilibrium
must possess variation in the reproductive rates among
patches and/or genotypes. This variation was first identi-
fied as a property of equilibrium populations at mutation-
selection balance by Haldane (1937), and was later called
the ‘genetic load’ by Muller (1950).

The term “fitness load” was used in Altenberg (1984) to
generalize the genetic load concept to circumstances where
there may be no genes involved — in particular, to patches
with different growth rates where the stationary distribu-
tion leaves some patches as sinks and others as sources,
as they were later to be called (Pulliam, 1988). The term
‘selection potential’, V := maxi(Di)/mean(Di) − 1, was
adopted in Altenberg and Feldman (1987) because of the
analogy to potentials in physical systems, and because
V was the actual maximum potential selective advantage
that a modifier allele could accrue. V > 0 is necessary for
any geometric growth in the modifier allele. The condi-
tion V = 0 corresponds to a population at an ‘ideal free
distribution’ (Fretwell and Lucas, 1969; Fretwell, 1972).

For the dispersal modifier model in Altenberg (1984),
a positive selection potential requires some differences at
equilibrium among the terms

NS(e) w(e, i)

ND(e) w(e)
, (2)

over the environments e, and genotypes i, where

NS(e) is the population size in environment e after selec-
tion, and ND(e) after dispersal,

w(e) is the mean fitness in environment e,

w(e, i) is the mean fitness of the allele i under selection in
environment e,

NS(e) = N(e)w(e) under hard selection, and NS(e) is
constant under soft selection.

One can see the two sources for a selection potential in
(2): ecological, i.e. variation in NS(e)/ND(e) (mentioned
in the earlier quote of Olivieri et al. 1995), and genetic,
i.e. variation in w(e, i)/w(e).

Ideal free distributions having V = 0 may be produced
by the “balanced mixture polymorphisms” discussed in
Altenberg (1984, pp. 101–104, 129, 189–190, 218–222),
which are synonymous with the Nash equilibria studied in
Schreiber and Li (2011).

The main results obtained are the manifestation of the
Reduction Principle for dispersal rates. First, we have this
result for modifier allele with extreme effect:

Result. 3.27, Altenberg (1984, p. 195) A modifier al-
lele which stops all migration will always increase when
introduced to a population with an equilibrium selection
potential, for any linkage to the locus under selection.

For modifier alleles with intermediate effects on disper-
sal, tractability requires the assumption of tight linkage
between the modifier locus and the selected locus. Under
tight linkage, the stability matrix for the new modifier al-
lele becomes a direct sum of blocks for each allele i under
selection:

εi(t+ 1) = D1[(1−m)I +mM̄]D2(i) εi(t) (3)

where M̄ is the matrix of average dispersal probabilities
produced by modifier alleles in the equilibrium population,
and

D1 = diag

[
1

ND(e)

]nE
e=1

,D2(i)= diag

[
NS(e)w(e, i)

w(e)

]nE
e=1

,

where nE is the number of patches. Then the following is
obtained:

Result. 3.28, Altenberg (1984, p. 199)

1. The new modifier allele, a, can change frequency at
a geometric rate, that is, ρ(MaD1D2(i)) 6= 1, only if
there is an equilibrium selection potential in the pop-
ulation, so that D1D2(i) 6= I.

2. The spectral radius for the new modifier allele, a, de-
pends only on how its marginal migration matrix Ma

is related to the equilibrium marginal migration ma-
trix M̄. The results of Theorem 3.14 for linear vari-
ation . . . therefore apply directly:
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Theorem. 3.14, Altenberg (1984, p. 137): For a tightly
linked modifier locus, when a new modifier allele, a, is
introduced to a population at a stable viability-analogous,
tensor product equilibrium (VAHW), where there is a vari-
ance in the marginal fitnesses of the selected types present,
then for m as defined in (3), the new modifier allele fre-
quency will increase if m < 1, and it will be excluded if
m > 1.

Theorem 3.14 derives directly from Karlin’s Theorem
5.2, which shows in addition that asymptotic growth
rate of the new modifier allele increases as m decreases
throughout the range of m.

Karlin’s Theorem 5.2, and the dispersal modifier results
above, have recently been duplicated by Kirkland et al.
(2006, Theorem 3.1). They use a novel, structure-based
proof for their version of Theorem 5.2, while Karlin used
the Donsker and Varadhan formula for the spectral ra-
dius. They apply it to the evolution of unconditional dis-
persal, and prove a special case of Altenberg (1984, Result
3.28 and Theorem 3.14) where the genetics and life history
stages are absent. Their results are extended to continuous
time models by Schreiber and Lloyd-Smith (2009, online
Appendix B), while Altenberg (2010) uses the Donsker
and Varadhan formula to extend Theorem 5.2 to the con-
tinuous time case.

The results in Kirkland et al. (2006), while being special
cases of Altenberg (1984) as far as the genetics are con-
cerned, offer generalizations of the reduction principle in
other new directions, namely, they generalize the work on
density-dependent population regulation first addressed
for dispersal modifiers by Asmussen (1983), and cover the
general case where growth rates decrease with population
size (Kirkland et al., 2006, Assumptions A1-A3). They
also cover the case of reducible dispersal matrices (The-
orem 4.4), the case of lossy dispersal (Assumption A4),
and the fate of the modifier allele far from perturbation
(Theorem 3.3). They examine conditional dispersers, and
analyze the evolutionarily stable state in which dispersal
has been conditioned to the point where the population
reaches an ideal free distribution.

It should be noted that the ideal free distribution was
proposed as ultimate evolutionarily stable state by Kimura
(1967) in his ‘principle of minimum genetic load’. Kimura
was thinking about the evolution of mutation rates, not
dispersal. But the driving force in each case — the genetic
load for mutation, and the presence of sink and source pop-
ulations for dispersal (Pulliam, 1988) — is mathematically
the same phenomenon.

4 Departures from Reduction

While the reduction phenomenon occurs throughout a di-
verse class of evolutionary models, there are two principal
classes in which departures from reduction are found. The

first class, which will not be further addressed here, com-
prises situations in which the population is continually
kept far from equilibrium, due to genetic drift (e.g. the
Hill-Robertson effect (Barton and Otto, 2005; Roze and
Barton, 2006; Keightley and Otto, 2006), also Gillespie
(1981a)), varying selection regimes (Charlesworth, 1976;
Gillespie, 1981b; Ishii et al., 1989; Sasaki and Iwasa, 1987;
Bergman and Feldman, 1990; Wiener and Tuljapurkar,
1994; Schreiber and Li, 2011; Blanquart and Gandon,
2010), or flux of beneficial mutations (Eshel, 1973a,b;
Kessler and Levine, 1998).

The second class comprises cases of populations near
equilibrium where multiple transformation processes act
on the transmissible information of the organism. Stud-
ies of multiple transformation processes where departures
from reduction are found include the evolution of:

• recombination in the presence of mutation (Feldman
et al., 1980; Charlesworth, 1990; Otto and Feldman,
1997; Pylkov et al., 1998). The greatest attention has
been given to this combination. The departures from
the reduction result in this case are the basis of the
‘deterministic mutation hypothesis’ for the evolution
of sex (Kondrashov, 1982, 1984; Kouyos et al., 2007).

• recombination in the presence of dispersal
(Charlesworth and Charlesworth, 1979; Pylkov
et al., 1998);

• multiple mutation processes (Altenberg, 1984, pp.
137–151);

• recombination in the presence of segregation and syn-
gamy (which self-fertilization exposes in the recur-
sion) (Charlesworth et al., 1979; Holsinger and Feld-
man, 1983a);

• mutation in the presence of segregation and syn-
gamy (exposed in the recursion by self-fertilization
(Holsinger and Feldman, 1983b), or fertility selection
(Holsinger et al., 1986; Twomey and Feldman, 1990)).

It is notable that in their studies of dispersal in the pres-
ence of mutation, Wiener and Feldman (1991, 1993) found
no departures from the reduction principle.

The pattern of departures from the reduction principle
caused by multiple transformation processes was summa-
rized in Altenberg (1984, pp. 149, 225–228) by a simple
heuristic:

The principle of partial control: When the modifier
gene has only partial control over the transformations
occurring at loci under selection, then it may be possi-
ble for the part which it controls to evolve an increase
in rates.

In several cases where multiple transformation processes
produce departures from reduction, the stability matrix
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on the modifier gene has the form

M(m) = (1−m)A +mB. (4)

Matrices of the form (4) also appear when the modifier
gene is not tightly linked to the loci under selection (Feld-
man 1972, Altenberg 1984, p. 135, Altenberg and Feld-
man 1987, Altenberg 2009b). Karlin’s Theorem 5.2 does
not apply to such matrices, leaving an entire class of mod-
els as an unsolved open problem. In a survey of open
problems in the spectral analysis of evolutionary dynam-
ics (Altenberg, 2004), the following problem was posed:

Open Question (3.1 in Altenberg 2004 ). Let A and B
be irreducible stochastic matrices, and let D 6= c I be a
positive diagonal matrix. Define

M(µ) = (1− µ)A + µB. (5)

For what conditions on A, B, and D is the spectral radius
ρ(M(µ)D) strictly decreasing in µ, for 0 ≤ µ ≤ 1, or

d

dµ
ρ(M(µ)D) < 0?

This open problem brings us back to the paper by Mc-
Namara and Dall (2011).

5 The Model of McNamara and Dall
(2011)

The model of McNamara and Dall (2011, eq. (D.10)) is
an example of ‘partial control’ (4), where we set A = P
and B = π e>, π being the stationary distribution for
stochastic matrix P, i.e. Pπ = π. A major point of in-
terest is that McNamara and Dall find conditions on P
that produce departures from the reduction phenomenon,
providing another example of the principle of partial con-
trol, and contributing towards answering the open prob-
lem posed in Altenberg (2004), above. The recursion for
their model is

z(t+ 1) = M(m) D z(t), (6)

where

M(m) := (1−m)P +mπ e>. (7)

The control exerted by m over the transformations oc-
curring in the system in (7) is only partial because the
environment itself undergoes transformation, represented
by P, and the organism cannot eliminate P, but only shift
between P and π e>.

The McNamara and Dall model represents the follow-
ing. Let zi(t) be the number of individuals in environment
i at time t, and zi(t+1) be the number after one iteration
of reproduction and dispersal.

1. An individual is born into a site with environment
type i;

2. The individual reproduces on the site, and produces
an average of Di offspring when in environment i;

3. Each offspring disperses independently with probabil-
ity m to a random site;

4. In one generation, sites of environment type j change
randomly and independently to type i with probabil-
ity Mij ;

5. The sites have settled down to a stationary distribu-
tion, so the probability that the site will be in envi-
ronment state i is πi.

Recursion (6) in summation form is:

zi(t+ 1) = (1−m)
∑
j

PijDjzj(t) +mπi
∑
j

Djzj(t).

McNamara and Dall (2011) obtain analytical results for
the case of n = 2 types of environment:[

z1(t+ 1)
z2(t+ 1)

]
= MD

[
z1(t)
z2(t)

]
, where D =

[
D1 0
0 D2

]
,

and

M = (1−m)

[
1− P21 P12

P21 1− P21

]
+m

[
π1 π1

1− π1 1− π1

]
. (8)

The model is notable for how it represents environmen-
tal randomness. The common way to model randomly
changing environments would be to let z(t) represent the
population size in each patch, M represent the disper-
sal between patches, and let the matrix of environment-
specific growth rates, D, be a random or time-dependent
variable on each patch (e.g. Karlin 1982, pp. 90–92, 103–
104, 140–145), yielding a system

z(t) = M D(t) M D(t−1) . . .M D(2) M D(1) z(0). (9)

The analysis of such models can be challenging, requiring a
resort to approximations and numerical analysis (see Gille-
spie 1981b, Tuljapurkar 1990, Wiener and Tuljapurkar
1994). Progress is being made in this area, however, for
example the analysis of a two-cycle model for the evolution
of dispersal by Schreiber and Li (2011).

When the random process of changing environments
is independent among all the patches, as the number of
patches becomes large, the system becomes deterministic
in the same way that the Wright-Fisher model becomes de-
terministic for large populations. This allows one to stop
keeping track of each patch, and just keep track of the
number of individuals in each environment type, which is
what McNamara and Dall do in (6). This tremendously
simplifies the analysis.
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5.1 Clues to the Generalization of the Re-
sults

The original motivation for this paper was to generalize
the results of McNamara and Dall (2011) to an arbitrary
number of environments, and to gain insight into why
their model produces departures from the reduction phe-
nomenon. Their results reveal four clues needed to solve
this generalization:

1. The harmonic mean: McNamara and Dall (2011) find
that departures from the reduction phenomenon are
determined by the critical condition τ−11 + τ−12 < 1,
where τi is the expected duration of environment
i. This expression is part of the harmonic mean,
2/(τ−11 + τ−12 ). Could the harmonic mean of τi figure
into a generalization of their results?

2. The limiting distribution: The two matrices in (7),
P, and π e>, are not arbitrary, but have the relation
π e> = limt→∞Pt. This means, notably, that they
commute: P(π e>) = (π e>)P = π e>, and thus sat-
isfy one key condition of Karlin’s Theorem 5.1.

3. The second eigenvalue: The terms τ−11 and τ−12 derive
from the probabilities in P: τ−11 = 1−P11 and τ−12 =
1 − P22. The condition τ−11 + τ−12 < 1 translates to
1 < P11 + P22. Is it a coincidence that P11 + P22

appears in the second eigenvalue of P, λ2(P) = 1 −
P11 −P22? Because we see that the critical condition
becomes λ2(P) < 0, which is precisely when P no
longer meets the condition of Karlin’s Theorem 5.1
that it be symmetrizable to a positive definite matrix.
By extrapolation, if all the eigenvalues of P besides
1 are negative, could this be a general condition for
departures from reduction?

4. Symmetrizability : Since clues 2. and 3. show the
relationship between the results of McNamara and
Dall an Karlin’s Theorem 5.2, and we note that ir-
reducible 2 × 2 matrices are always symmetrizable,
might we want to retain symmetrizability in P as we
try to generalize the results to n× n matrices?

By following the last clue and constraining P to be sym-
metrizable as in (1), we shall find it tractable to generalize
the results of McNamara and Dall (2011), and we shall see
that the conjectures prompted by the first and third clues
are true.

Symmetrizable stochastic matrices are equivalent to the
transition matrices of ergodic reversible Markov chains
(Altenberg, 2011, Lemma 2). A Markov chain is reversible
when the probability of cycles in one direction equals the
probability of cycles in the opposite direction (Ross, 1983,
Theorem 4.7.1, p. 127). In nature, directional cycles of
environmental change may be more the rule than the ex-
ception, however. Whether cyclical environments would
produce different results remains an open question.

We can step beyond the McNamara and Dall model and
obtain a more general theorem for departures from reduc-
tion for the form M(m) = P[(1−m)I+mQ], where P and
Q satisfy (1). This is provided in Theorem 16 in Results.
The theorem in Altenberg (2009a, 2011) that generalizes
the reduction principle to the evolution of mutation rates
among multiple loci turns out to be a special case of Theo-
rem 16. This again illustrates the fact that genetic, spatial,
cultural, and other transmissible information all belong to
a single mathematical framework, and that results from
one domain can often translate easily into results in other
domains.

6 Results

McNamara and Dall (2011) describe their concept of a
“multiplier effect” without ever giving it a precise math-
ematical definition. But it is clear from their usage in
McNamara and Dall (2011, online Appendix A, Theorem
A) that what they are thinking about can be summarized
as the covariance between 1) the growth rates in each en-
vironment, and 2) the excess abundance of the population
in that environment over what it would be without differ-
ential growth rates. This is defined explicitly below as the
fitness-abundance covariance.

When organisms are semelparous, and generations are
discrete and non-overlapping, there are two phases in the
life cycle that one can census the population: before and
after dispersal, or equivalently, after and before reproduc-
tion. Thus, the fitness-abundance covariance must be de-
fined for both census phases.

The fitness-abundance covariance is an object of interest
in its own right. Section 6.1 ventures beyond the specifics
of the McNamara and Dall model and explores various
properties of the fitness-abundance covariance for the com-
pletely general case of z(t + 1) = MDz(t), where M is a
stochastic matrix representing any process of change be-
tween states, and D represents the state-specific growth
rates. The generality of results in Section 6.1 not only
includes the McNamara and Dall model as a special case,
but goes beyond models of dispersal since M can just as
well represent a mutation matrix between genotypes whose
fitnesses are Di. The results can also apply to a rare geno-
type in a sexual population where MD represents the lin-
ear stability matrix on its growth.

Section 6.3 returns to the specific model of McNamara
and Dall with the chief goal of generalizing the results to
any number of environmental states. Here is where we
pursue the clues described in the previous section.

For clarity, terminology and conventions are provided in
Table 1.
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6.1 The Fitness-Abundance Covariance

A precise definition needs to be given for the degree to
which “individuals tend to be in locations to which they
are well suited.” While it may sound reasonable that an
organism’s “mere existence informs an organism that it is
liable to be in favourable circumstances” (McNamara and
Dall, 2011, p. 237), this is not generally true.

The following is an example where an organism is more
likely to find itself in a sink habitat than a source habitat.
The situation is where there is a small source patch within
a large habitat of sink patches. We get a simple result if
we assume the extremes: that sink habitats are lethal,
and dispersing organisms recruit with fixed probabilities
πi to each patch, i, and the dispersal rate is m. Then v1 =
1−m(1−π1) is the stationary proportion of the population
in the source patch after dispersal. The stationary portion
of the population in the source patch, v1, can be made as
small as one wishes by large dispersal rate m, and small
π1.

Clearly, before dispersal, all organisms in this example
are in the source patch. So one must be clear about when
in the life cycle one is speaking. An organism ‘deciding’ on
whether to disperse or not is obviously at the pre-dispersal
phase. But the post-dispersal phase is the phase that Mc-
Namara and Dall use to measure the ‘multiplier effect’.

Examination of the results of McNamara and Dall also
reveals that when they speak of an organism being “liable
to be in favourable circumstances,” what they actually
mean is that an organism is more likely to be in a fa-
vorable habitat than it would be if there were no growth
advantage there, not that the organisms is actually liable
to be there. This is the concept that I make precise as
the fitness-abundance covariance. Even in this relative
value of abundance, however, we will see that the fitness-
abundance covariance is not always positive.

The fitness-abundance covariance relates three different
sets of values: the environment-specific growth rates Di,
the stationary distribution in the presence of differential
growth rates, referred to as vi, and the stationary distri-
bution in the absence of differential growth rates, referred
to as πi.

The stationary distribution for recursion z(t + 1) =
MD z(t) satisfies

ρ v = MDv,

where v is the eigenvector of MD associated with the
largest eigenvalue of MD, ρ. This is called the right Per-
ron vector. Throughout, v(A) will represent the right
Perron vector of a matrix A (see Table 1).

The magnitude of ρ determines whether the population
grows (ρ > 1) or declines (ρ < 1) or is stationary (ρ =
1), and ecological models typically impose some kind of
negative density dependence so that as population size z
gets large enough, ρ decreases with z, and a stationary
state of ρ = 1 can be attained. The problems addressed

Table 1: Definitions and Symbols

A,M,D,P,S or other boldface capital letters represent
n×n matrices, and v,x,y, e, or other bold face lower
case characters represent n-vectors; the identity ma-
trix is I; a scalar matrix is c I for c ∈ R;

Aij ≡ [A]ij represents the elements of A, i, j = 1, . . . , n,
and xi represents the elements of x;

Di ≡ [D]ii represents the diagonal elements of diagonal
matrix D;

a positive diagonal matrix has Di > 0, i = 1, . . . , n;

[A]i represents the ith row of matrix A, and [A]j repre-
sents the jth column.

e represents the unit vector, where all elements are 1;

ej represents the jth basis vector, which has 1 at position
j and 0 elsewhere;

diag[x] ≡ Dx is a diagonal matrix of the vector x;

A>, z>, e>, etc., represent the transpose;

λi(A) ≡ λAi, i = 1 . . . n represent the eigenvalues of A;

symmetrizable to S means that an n × n matrix can be
represented as a product A = LSR, where S is a
symmetric real matrix, and L and R are positive
diagonal matrices;

stochastic means an n × n matrix with nonnegative ele-
ments and whose columns (by convention here) sum
to one (column stochastic);

positive definite means a matrix that is symmetric and
has only positive eigenvalues;

irreducible means an n× n nonnegative matrix where for
every i, j there is some t such that [At]ij > 0;

ρ(A) := maxi |λi(A)| represents the spectral radius, the
largest modulus of any eigenvalue of A.

λ1(A) by convention will refer to the Perron root of a
nonnegative irreducible matrix A, which is the posi-
tive eigenvalue guaranteed by Perron-Frobenius the-
ory (Seneta, 2006, Theorems 1.1, 1.5) to exist, to be
the spectral radius, and to be as large as the mod-
ulus (i.e. magnitude) of any other eigenvalue. So
λ1(A) = ρ(A) ≥ |λi(A)| for i = 2, . . . , n.

v(A) and u(A)> represent the right and left Perron
vectors of nonnegative irreducible A, the eigenvec-
tors associated with the Perron root, guaranteed by
Perron-Frobenius theory to be strictly positive. So
Av(A) = ρ(A)v(A), and u(A)>A = ρ(A)u(A)>.
By convention e>v(A) = 1 and u(A)>v(A) = 1.

v ≡ v(A), u ≡ u(A), and ρ ≡ ρ(A), throughout, where
A is obvious from context.

π ≡ v(P) traditionally represents the stationary distri-
bution of irreducible (column) stochastic matrix P.

The harmonic mean of a set of numbers {τi} is

EH(τi) :=
1

1

n

n∑
i=1

1

τi

.
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here do not concern the absolute value of ρ, but only the
relative changes to ρ and v under changes in M and D.
For a general treatment of negative density dependence,
Kirkland et al. (2006) provide a thorough analysis.

The stationary distribution in the presence if differen-
tial growth rates depends on the phase in the life cy-
cle at which the census is taken. The life cycle consists
of alternation between differential growth and dispersal,
. . .DMDMDM . . .. When censused just after dispersal,
the stationary distribution is v(MD). Censused just be-
fore dispersal it is v(DM).

We see that v(MD) and v(DM) have a simple relation-
ship from the cyclical structure. D v(MD) is the Perron
vector of DM up to scaling, since

D[MD v(MD)] = ρ(MD) D v(MD)

When scaled to satisfy e>v(DM) = 1, one gets the rela-
tionship:

v(DM) =
1

ρ(MD)
D v(MD). (10)

It should be noted that in continuous-time models such
as quasispecies (Eigen and Schuster, 1977), selection and
transformation happen simultaneously so there are no sep-
arate life cycle phases, hence no distinction between pre-
and post-dispersal stationary states.

For semelparous organisms with discrete, non-
overlapping generations, the fitness-abundance covariance
is now defined for both phases of the life cycle.

Definition (Fitness-Abundance Covariance).
The fitness-abundance covariance is defined as the

unweighted covariance between the environment-specific
growth rates and the excess of the stationary distribution
above the distribution that the population would attain in
the absence of differential growth rates:

1. Post-dispersal:

FA(MD) := Cov(Di, vi(MD)− vi(M))

=
1

n

n∑
i=1

Di(vi(MD)− vi(M))

− 1

n

n∑
i=1

Di
1

n

n∑
j=1

(vj(MD)− vj(M)).

2. Pre-dispersal:

FA(DM) := Cov(Di, vi(DM)− vi(M))

=
1

n

n∑
i=1

Di(vi(DM)− vi(M))

− 1

n

n∑
i=1

Di
1

n

n∑
i=1

(vi(DM)− vi(M)).

Several elementary results are described. The first
shows that the relationship between the pre- and post-
dispersal fitness-abundance covariances is Fisher’s Funda-
mental Theorem of Natural Selection in a slightly new
context.

Theorem 3 (Fitness-Abundance Covariance and Census
Phases).

Let M be an irreducible column stochastic matrix and
D a positive diagonal matrix.

Then

FA(DM) = FA(MD) +
1

nρ(MD)
Varv(Di),

where Varv(Di) is the v(MD)-weighted variance of Di,

Varv(Di) :=

n∑
i=1

vi(MD)D2
i −

(
n∑
i=1

vi(MD)Di

)2

.

Proof. Here, π ≡ v(M), v ≡ v(MD), and ρ ≡ ρ(MD).
We first note that

n∑
i=1

Divi = e>D v = e>MD v = ρ e>v = ρ.

FA(MD) = Cov(Di, vi − πi)

=
1

n

n∑
i=1

Di(vi − πi)−
1

n

n∑
i=1

Di
1

n

n∑
j=1

(vj − πj)

=
1

n

(
ρ−

n∑
i=1

Diπi

)
− 0. (11)

Substitution with (10) and (11) gives

FA(DM) = Cov(Di, vi(DM)− πi)

=
1

n

n∑
i=1

Di(
1

ρ
Divi − πi)−

1

n2

n∑
i=1

Di

n∑
j=1

(vj(DM)− πj)

=
1

n

(
1

ρ

n∑
i=1

D2
i vi −

n∑
i=1

Diπi

)
− 0 (12)

=
1

n

(
1

ρ

[
n∑
i=1

D2
i vi − (

n∑
i=1

Divi)
2

]
+ ρ−

n∑
i=1

Diπi

)
(13)

=
1

nρ
Varv(Di) + FA(MD). �

Corollary 4 (Derivatives of Fitness-Abundance Covari-
ances and ρ).

Let M(m) be a family of irreducible stochastic matri-
ces, differentiable in m, and assume v(M(m)) = π for
all m ∈ (0, 1]. Let D be a positive diagonal matrix. Set
ρ ≡ ρ(M(m)D).

Then

d

dm
FA(M(m)D) =

1

n

dρ

dm
, (14)
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and

d

dm
FA(DM(m))

=
1

n

(
dρ

dm
+

1

ρ

d

dm
Varv(Di)−

1

ρ2
Varv(Di)

)
. (15)

Proof. Differentiation of (11) and (13) directly gives (14)
and (15). �

By plain intuition we would expect the fitness-
abundance covariance to be positive. But McNamara and
Dall found circumstances in which the fitness-abundance
covariance is negative just after dispersal. The question
then remains, what about just before dispersal, when indi-
viduals are still in the environment whose growth rate they
just replicated under? Here is where intuition suggests the
fitness-abundance covariance should be positive. This is
proven to be the case when M is the transition matrix of
a reversible Markov chain with positive eigenvalues. But a
counterexample is provided when M represents a periodic
chain that cycles through the states, which has complex
eigenvalues.

Theorem 5 (Positivity of the Pre-Dispersal Fit-
ness-Abundance Covariance).

Let M be the transition matrix of an ergodic reversible
Markov chain, with only nonnegative eigenvalues. Let
D 6= c I be a positive diagonal matrix.

Then

FA(DM) := Cov(Di, vi(DM)− vi(M)) > 0.

Proof. Here, π ≡ v(M), v ≡ v(MD), and ρ ≡ ρ(MD).
From (12),

FA(DM) > 0 ⇐⇒
n∑
i=1

D2
i vi > ρ

n∑
i=1

Diπi.

Since D 6= c I, and v > 0,

Varv(Di) =

n∑
i=1

D2
i vi − (

n∑
i=1

Divi)
2 > 0. (16)

The condition that M be the transition matrix of an er-
godic reversible Markov chain is equivalent to it being
diagonally similar to a symmetric matrix (Keilson 1979,
Proposition 1.3B; Altenberg 2011, Lemma 2). Since M
has all nonnegative eigenvalues, that matrix is positive
semidefinite. This allows application of the inequality in
Friedland and Karlin (1975, Theorem 4.1): ρ(DM) ≥∑n
i=1Diπi. In (16) this gives

n∑
i=1

D2
i vi > (

n∑
i=1

Divi)
2 = ρ2 ≥ ρ

n∑
i=1

Diπi. �

For a counterexample to the positivity of the pre-
dispersal fitness-abundance covariance, we try a transition
matrix M that is as far from Theorem 5 as possible, so
the states are periodic and the eigenvalues other than 1
are complex roots of unity. This represents the situation
of pelagic organisms along a gyre (e.g. Cowen et al. 2006).

Theorem 6. Let M be an n-cyclic matrix,

M =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0

1
. . .

... 0
...

. . . 0
...

0 0 0 · · · 1 0


.

Then for D 6= c I,

FA(MD) =
1

n

(
n∏
i=1

D
1/n
i − 1

n

n∑
i=1

Di

)
< 0 (17)

Proof. For a matrix cyclic in this direction, given any
z > 0, [MDz](i mod n)+1 = Dizi. Thus (MD)nz =
(
∏n
i=1Di)z. So (MD)nv(MD) = (

∏n
i=1Di)v(MD) =

ρ(MD)nv(MD). Hence ρ(MD) =
∏n
i=1D

1/n
i . Substitu-

tion in (11) gives (17). FA(MD) is negative because it is
1/n times the difference between the geometric and arith-
metic means of Di, which is always negative if not all Di

are equal (Steele, 2004, pp. 20–26). �

Theorem 7. When the states are transformed in a cy-
cle, it is possible for the pre-dispersal fitness-abundance
covariance to be negative.

Proof. An example is constructed. Let M represent the
period-3 cycle of states 1→ 2→ 3→ 1 . . .

M =

0 0 1
1 0 0
0 1 0

 ,
and let D = diag

[
D1, D2, D3

]
.

The spectral radius is ρ = (D1D2D3)1/3. By symme-
try, πi = 1/3, i = 1, 2, 3. Symbolic computation with
MathematicaTM shows that

v(DM)

=


(

1 +D
2/3
2 /(D

1/3
1 D

1/3
3 ) + (D

1/3
2 D

1/3
3 )/D

2/3
1

)−1(
1 + (D

1/3
1 D

1/3
3 )/D

2/3
2 +D

2/3
3 /(D

1/3
1 D

1/3
2 )

)−1(
1 + (D

1/3
1 D

1/3
2 )/D

2/3
3 +D

2/3
1 /(D

1/3
2 D

1/3
3 )

)−1
 .

A numerical survey shows that FA(DM) is positive
over most values of (D1, D2, D3) except for a very nar-
row range of D near the boundary where FA(DM)
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becomes negative. One such value is (D1, D2, D3) =
(1/40000, 1, 1/8), which yields ρ = 0.0146, v(MD)> =
(0.894, 0.0015, 0.105), v(DM)> = (0.0015, 0.105, 0.894),
and FA(DM) = −0.159. �

The point of this odd counterexample is not that it rep-
resents something we might find in nature, but rather to
say that we cannot entirely trust our intuition about the
fitness-abundance covariance, and that something more
subtle is going on mathematically than we might suppose.

6.2 Individual Stationary State Frequencies

Let us now examine the relationships between individual
values of vi, Di and πi.

McNamara and Dall show for the case of n = 2 that the
post-dispersal fitness-abundance covariance is positive or
negative depending on the durations of the environments,
restated in their terms here:

Theorem 8 (McNamara and Dall (2011, online Appendix
A, Theorem A)). Let n = 2 in (7) to give (8).

1. If τ−11 + τ−12 < 1 then ρ(MD) >
∑2
i=1Diπi and

(a) D1 < D2 =⇒ v2(MD) > v2(M) = π2

(b) D1 > D2 =⇒ v2(MD) < v2(M) = π2.

2. If τ−11 +τ−12 = 1 then vi(MD) = vi(M) = πi, i = 1, 2,

and ρ(MD) =
∑2
i=1Diπi.

3. If τ−11 + τ−12 > 1 then ρ(MD) <
∑2
i=1Diπi and

(a) D1 < D2 =⇒ v2(MD) < v2(M) = π2

(b) D1 > D2 =⇒ v2(MD) > v2(M) = π2.

The third case exhibits the very counterintuitive behav-
ior that increasing the reproductive output of an environ-
ment will lower the stationary proportion in that environ-
ment. We can compare this result to the following general
theorem on how changes to a matrix affect its Perron vec-
tor:

Theorem 9 (Elsner et al. (1982, Theorem 2.1)).
Let A be an n×n nonnegative irreducible matrix. Then

for any nonnegative n-vector a ≥6= 0, i 6= j ∈ {1, . . . , n},

vi(A + eia
>)

vi(A)
>
vj(A + eia

>)

vj(A)
. (18)

It is more useful for us to put it in the following form:

Corollary 10 (Change in the Perron Vector).
When normalized to frequencies, e>v = 1, then

vi(A + eia
>) > vi(A).

Proof. The result follows immediately from rearrangement
of (18) and summation using e>v = 1:∑

j 6=i

vj(A + eia
>)

vi(A + eia>)
=

1− vi(A + eia
>)

vi(A + eia>)

<
∑
j 6=i

vj(A)

vi(A)
=

1− vi(A)

vi(A)
. �

In this case, the behavior of the Perron root follows our
intuition that increasing the ith row of A should increase
the stationary proportion of vi.

Something must be very different, therefore, between
theorems 8 and 9, since they both deal with changes in the
Perron vector when elements of the matrix are changed.
Theorem 8 produces counterintuitive results that depend
on τ−11 +τ−12 , while Theorem 9 has no conditions on details
of the matrix. How can this discrepancy be reconciled?

We must write A in terms of M and D to compare the
two results. Let [M]i be the ith row of M. We can write

A + eia
> =



D1 0 0 0 0 0
0 D2 0 0 0 0

0 0
. . . 0 0 0

0 0 0 Di + ε 0 0

0 0 0 0
. . . 0

0 0 0 0 0 Dn


M

where A = DM and a = ε[M]i, ε > 0. Corollary 10 shows
that increasing the reproductive output of environment i
from Di to Di + ε increases the stationary proportion in
environment i. In the limit ε→ 0, this gives:

Corollary 11. For irreducible column stochastic matrix
M and positive diagonal matrix D:

∂vκ(DM)

∂Dκ
≥ 0. (19)

In the case n = 2, we have D2 > D1 ⇐⇒ D2 = D1 + ε,
ε > 0, a> = ε(M21,M22), and

A + e2a
> =

[
D1 0
0 D1 + ε

]
M = DM.

So Theorem 9 gives v2(DM) > v2(M) regardless of any
details of M.

The discrepancy is resolved by noticing that the order of
M and D is reversed between Theorem 8 and Theorem 9.
The difference between the two is essentially in the phase
of the life cycle at which the population is censused.

We can contrast (19) with the following:

Corollary 12. For irreducible column stochastic matrix
M and positive diagonal matrix D,

∂

∂Dκ
log(vκ(MD)) ≥ ∂

∂Dκ
log

(
ρ(MD)

Dκ

)
. (20)
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Proof. Substitution of (10) in (19) and differentiation
gives:

0 ≤ ∂vκ(DM)

∂Dκ
=

∂

∂Dκ

(
Dκvκ(MD)

ρ(MD)

)
=
−1

ρ2
∂ρ

∂Dκ
Dκvκ +

1

ρ
vκ +

1

ρ
Dκ

∂vκ
∂Dκ

⇐⇒

0 ≤ −1

ρ

∂ρ

∂Dκ
+

1

Dκ
+

1

vκ

∂vκ
∂Dκ

⇐⇒

∂

∂Dκ
(log(ρ)− log(Dκ)) ≤ ∂

∂Dκ
log(vκ). �

Comparing (19) and (20) we see that the stationary dis-
tributions at different census phases behave differently.

To summarize:

• the portion in environment i censused before dispersal
always increases with growth rate Di;

• the portion in environment i censused after dispersal
can, under the right environment transition matrix,
decrease with increasing growth rate Di.

This allows us to make inferences on the duration of the
environments based on changes in the proportions of the
population in each environment before and after reproduc-
tion:

Corollary 13 (Census Inference on Durations of Envi-
ronments).

Consider the model of McNamara and Dall, z(t+ 1) =
M(m)Dz(t), with M(m) = [(1−m)P+mπ e>] (7), where
π = Pπ = v(P). At a stationary distribution, let v ≡
v(MD) be the vector of proportions of individuals in each
environment before reproduction, and vR ≡ v(DM) be the
proportions after reproduction. For n = 2 environments,

1. If vR1 > π1, we know that D1 > D2.

2. If in addition, v1 < π1, then we know EH(τ1, τ2) < 2;
or if v1 > π1, then EH(τ1, τ2) > 2.

6.3 Generalization of The McNamara and
Dall Model

We shift now from general M to the specific model of dis-
persal in randomly changing environments of McNamara
and Dall (2011). First, we see how the direction of selec-
tion on unconditional dispersal corresponds to the sign of
the post-dispersal fitness-abundance covariance.

Corollary 14 (McNamara and Dall Model with general
n).

Let M(m) := [(1−m)P +mπ e>], where P is an irre-
ducible stochastic matrix, and Pπ = π. Let D 6= c I be a
positive diagonal matrix. Set v ≡ v(MD). Then

FA(MD) = Cov(Di, vi − πi) > 0

⇐⇒ d

dm
ρ(M(m)D) < 0, (21)

(the reduction phenomenon) and

FA(MD) = Cov(Di, vi − πi) < 0 (22)

⇐⇒ d

dm
ρ(M(m)D) > 0. (23)

(departure from reduction).

Proof. At m = 1,

M(1)D v = π e>D v = ρ(M(1)D) π,

so v = π, hence Cov(Di, vi(M(1)D)−πi) = 0. For m < 1,
(21) and (23) follow from (14). �

Remark. It should be noted that this correspon-
dence between the reduction phenomenon and the sign of
the post-dispersal fitness-abundance covariance is specific
to McNamara and Dall’s model, M(m) = (1 − m)P +
mv(P) e>. Shortly we will examine the more general
M(m) = P[(1 − m)I + mQ], in which v(PQD) 6= v(P)
generically, so Cov(Di, vi(M(1)D) − vi(P)) 6= 0. Thus
departures from reduction do not necessarily correspond
to a negative fitness-abundance covariance. For the gen-
eral open problem M(m) = (1 − m)A + mB (5), it is
not at all generic for v(AD) = v(A) or v(BD) = v(B),
hence there is no general relationship between the reduc-
tion phenomenon and the sign of the fitness-abundance
covariance.

Next, the expression in McNamara and Dall (2011) in-
volving the durations of the environments, τ−11 + τ−12 , is
generalized to the harmonic mean of the durations of n
environments. The harmonic mean of the expected dura-
tions of states in a Markov chain (expected run lengths or
‘exit times’) is shown to have a fundamental relationship
to the sum of the eigenvalues (the trace) of its transi-
tion matrix, an identity whose earliest reference I find is
Shorrocks (1978, p. 1017), cited by Geweke et al. (1986):

Lemma 15 (Markov Chain Harmonic Mean and the Trace
of the Transition Matrix).

For a Markov chain with transition matrix P, let τi be
the expected duration of state i (the mean length of runs
of i), and let EH(τi) be their unweighted harmonic mean.
Let λi(P) be the eigenvalues of P. These are related by
the following:

EH(τi) :=
1

1

n

n∑
i=1

1

τi

=
1

1− 1

n

n∑
i=1

λi(P)

≥ 1, (24)

or, equivalently

E(λi(P)) :=
1

n

n∑
i=1

λi(P) = 1− 1

EH(τi)
≥ 0. (25)
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Proof. The expected length of runs of any environmental
state i is (Prais, 1955)

τi := E(duration of i) =

∞∑
t=0

tP t−1ii (1− Pii)

=

∞∑
t=0

(t+ 1)P tii −
∞∑
t=1

tP tii =

∞∑
t=0

P tii =
1

1− Pii
.

Since Pii ≥ 0, then τi ≥ 1 so EH(τi) ≥ 1. Since the trace
of the matrix is

∑n
i=1 Pii =

∑n
i=1 λi(P), we have

n∑
i=1

λi(P) =

n∑
i=1

Pii =

n∑
i=1

(
1− 1

τi

)
= n−

n∑
i=1

1

τi
≥ 0.

Rearrangements of the terms gives (24) and (25). �

The main result is now presented, tying together the
eigenvalues of the environment transition matrix, P, the
effect of dispersal on the population growth rate, and the
harmonic mean of environment durations. The result gives
sufficient conditions in terms of the eigenvalues of P for
departures from the reduction phenomenon.

This theorem must sacrifice some generality in the envi-
ronment transition matrices in order to obtain tractability.
The environmental change process must be a reversible
Markov chain, which means it does not exhibit direc-
tional cycles (which requires complex eigenvalues in P),
which might be thought of as ‘currents’ through the set
of states. This is the symmetrizability constraint that ap-
pears in Karlin’s Theorem 5.1, and is required for technical
reasons described in Methods. It remains an open prob-
lem whether the following theorem extends to all ergodic
Markov chains.

Theorem 16 (Eigenvalues, Reduction Phenomenon, and
Harmonic Mean of Environment Durations).

Let P and Q ∈ Rn,n be transition matrices of reversible
ergodic Markov chains that commute with each other. Let
τi = 1/(1 − Pii) be the expected length of runs of state i
under iteration of P. Let

M(m) := P[(1−m)I +mQ], (26)

and D 6= c I be a positive diagonal matrix.

1. If all eigenvalues of P are positive, then

d

dm
ρ(M(m)D) < 0, (27)

(the reduction phenomenon) and

EH(τi) > 1 +
1

n− 1
. (28)

2. If all eigenvalues of P other than the Perron root 1
are negative, then

d

dm
ρ(M(m)D) > 0, (29)

(departure from the reduction phenomenon) and

1 ≤ EH(τi) < 1 +
1

n− 1
. (30)

The proof is given in Methods section 7.1.
Remark. One should be careful here not to in-

terpret this result as an implication from EH(τi) to
dρ(M(m)D)/dm. While it would be ideal to derive condi-
tions for the reduction phenomenon from conditions on the
durations of the environments, this is not possible here for
n ≥ 3; rather, both implications derive from the condition
on the eigenvalues.

However, for n = 2 environments, the implication be-
comes possible, as seen in this slight generalization of Mc-
Namara and Dall (2011, Theorem B Corollary):

Corollary 17. Let P and Q be 2×2 irreducible stochastic
matrices that commute, and D 6= c I be a positive diagonal
2× 2 matrix. Then

d

dm
ρ(P[(1−m)I +mQ]D > 0,

if and only if P12 +P21 > 1, or equivalently, EH(τ1, τ2) <
2.

Proof. In the case of n = 2, there is only one other eigen-
value, λ2 = 1− (P12 + P21). We have

EH(τ1, τ2) =
1

1− 1

2
[1 + 1− (P12 + P21)]

=
2

P12 + P21
.

So P12 + P21 > 1 ⇐⇒ EH(τ1, τ2) < 2 ⇐⇒ λ2 < 0, and

by Theorem 16,
dρ(MD)

dm
> 0. �

The model (8) of McNamara and Dall is a special case
of Theorem 16 and Corollary 17. Note that all irreducible
stochastic 2×2 matrices are transition matrices of ergodic
reducible Markov chains:

Corollary 18. Theorem 16 includes, as special cases,
Q = Pt for t ≥ 1, and Q = P∞ = π e>, where π = Pπ
is the stationary distribution of P.

Proof. P and Pt commute, as do P and P∞ = π e>,
since Pπ e> = π e> = π e>P. When P is the transition
matrix of a reversible ergodic Markov chain, so too are Pt

and P∞. �

Theorem 16 is able to give us results only for the ex-
trema of the distribution of eigenvalues of the environment
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transition matrix, where all non-Perron eigenvalues are ei-
ther positive or are all negative. It would be desirable to
obtain some results for the interior region where there a
mixture of positive and negative eigenvalues. Short of this,
the location of the interior region can at least be made pre-
cise in terms of its relation to the space of matrices whose
non-Perron eigenvalues are all negative.

This is done by forming a path from such extreme P to
the opposite extreme, I — a homotopy [0, 1] 7→ {M} ⊂
Rn×n. For M(m), the two endpoints of the path are
M(0,m) = (1−m)I +mQ, and M(1,m) = P[(1−m)I +
mQ]. The path can be easily created by a convex com-
bination, M(α,m) = [(1 − α)I + αP][(1 − m)I + mQ],
parameterized by α ∈ [0, 1]. It is straightforward from
Lemma 15 that

EH(τi([1− α]I + αP) =
1

α
EH(τi(P)),

so as α goes to 0, the harmonic mean of the environment
durations goes to infinity. Using the homotopy between
two extremes, we will now see that, for any P, there is
always some α below which the reduction phenomenon
holds.

Corollary 19 (Convex Combination with an Extreme
P).

Let

M(α,m) := [(1− α)I + αP][(1−m)I +mQ],

where P and Q be transition matrices of ergodic reversible
Markov chains that commute with each other, and α,m ∈
[0, 1]. Let D 6= c I be a positive diagonal matrix.

Suppose that
∂

∂m
ρ(M(1,m)D) > 0 for m ∈ (0, 1]. Then

there exist critical values α0, α1 with 1/2 ≤ α0 ≤ α1 < 1,
such that for m ∈ (0, 1],

∂

∂m
ρ(M(α,m)D) < 0 for α ∈ [0, α0),

and

∂

∂m
ρ(M(α,m)D) > 0 for α ∈ (α1, 1].

Proof. M(α, 0) = (1 − α)I + αP plays the role of P in
Theorem 16, so we need to know when λi(M(α, 0)) > 0 ∀i.
Let λmin(P) := mini λi(P). Then

λmin([(1− α)I + αP]) = (1− α) + αλmin(P) > 0 ⇐⇒
λmin(P) > (α− 1)/α = 1− 1/α.

By Perron-Frobenius theory, irreducible stochastic P
means λmin(P) > −1. So −1 > 1 − 1/α (i.e. α ≤ 1/2)
assures λi(M(α, 0)) > 0 ∀i. Thus α0 is no smaller than
1/2.

Since ρ(M(α,m)D) is a continuous function of α and
m, we know ∂ρ(M(α,m)D)/∂m > 0 for α in some neigh-
borhood (α1, 1]. �

So now we have characterized the interior regions as
[a0, a1] where the behavior of ∂ρ(M(α,m)D)/∂m needs to
be characterized. We do not know, for example, if ∂ρ/∂m
keeps the same sign for all m at a given α, or whether it
can change sign more than once on [α0, α1], and so forth.
It remains an open problem.

Next, a particular kind of environmental change pro-
cess is considered in which there is no causal connection
between sequential environments. In other words, when
the environment changes, it has no memory of its previ-
ous state. In genetics this is Kingman’s ‘House of Cards’
model of mutation (Kingman, 1978, 1980)). It is shown
for such a memoryless environment that the reduction phe-
nomenon is the only possible outcome.

Theorem 20 (‘House of Cards’ Environmental Change).
Let M(m) be defined as in (26) of Theorem 16. Let D 6=

c I be a positive diagonal matrix. Suppose that when the
environment changes, its current state has no influence on
its next state. Suppose further that the expected duration
of an environment is τi = τ for all environments i.

If τ = 1, then
d

dm
ρ(M(m)D) = 0.

If τ > 1, then
d

dm
ρ(M(m)D) < 0.

The proof is given in Methods section 7.2. Note that in
this case, τ > 1 becomes a sufficient condition for selection
for reduced dispersal, which it is not in the general case
in Theorem 16.

6.4 The Conditional Dispersal Model

The result of McNamara and Dall (2011) that drew partic-
ular attention was their finding that, under a broad range
of circumstances, it is better for the organism to ignore
cues about the environment and instead follow philopatry.
The general form for their cue model is a modification of
(7):

MD = P[(I−C) + π e>C]D,

where C is a diagonal matrix of the conditional dispersal
probabilities, Ci, that an individual disperses given it is in
environment i.

A change in an organism’s response to cues about its
environment is manifest as changes to Cj , hence the ob-
ject of interest is the change in asymptotic growth as the
conditional dispersal rate is changed:

∂

∂Cj
ρ(P[(I−C) + π e>C]D).

The next result shows that an organism should increase
its dispersal from any environment where its destinations
correlate better with left Perron vector u(MD) than does
staying put, and that in general there is always at least
one such environment.
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Theorem 21 (Conditional Dispersal).
Let M := P[(I−C) + π e>C], where P be an irreducible
stochastic matrix, C and D are positive diagonal matrices,
with Ci ∈ (0, 1), and π = Pπ. Refer to the left and right
Perron vectors as u ≡ u(MD) and v ≡ v(MD). Then:

1. The derivative of the spectral radius with respect to
each Cκ is

∂

∂Cκ
ρ(P[(I−C) + π e>C]D)

= Dκ vκ

n∑
i=1

ui(πi − Piκ) (31)

= Dκvκn [Cov(ui, πi)− Cov(ui, Piκ)] .

2. There is always at least one κ for which

∂

∂Cκ
ρ(P[(I−C) + π e>C]D) > 0,

and at least one κ for which

∂

∂Cκ
ρ(P[(I−C) + π e>C]D) < 0,

unless D = c I or P = π e>.

3. The gradient of the spectral radius with respect to C
is:

∇C ρ(MD) :=

[
∂ρ(MD)

∂Cκ

]κ=1

n

= u>(πv> −PDv)D.

4. There is always a subspace, N , of perturba-
tions of C that are neutral for ρ(MD). N =
{ξ : ∇C ρ(MD) ξ = 0} is an n − 1 dimensional
linear subspace. Its basis includes strictly positive
ζ = D−1v D−1π, i.e.

ζκ =
πκ
Dκvκ

. (32)

The proof is given in Methods section 7.3.
Theorem 21 shows that an organism can increase

its asymptotic growth rate by dispersing more from
any environment κ for which Cov(ui(MD), πi) >
Cov(ui(MD), Piκ), which means that its environment if it
disperses (distributed as π), correlates better with u(MD)
than its environment if it stays put (distributed as [P]κ).

Furthermore, there is always at least one such environ-
ment where increased dispersal is advantageous, and at
least one other environment where decreased dispersal is
advantageous, unless dispersal is neutral. Dispersal is neu-
tral when growth rates are the same in all environments
(D = c I), or the present environment has no influence on
the next environment (P = π e>).
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Figure 1: Gradient of the asymptotic growth rate, ρ(MD),
over (C1, C2) ∈ [0, 1]2. Lighter means higher ρ(MD). Model
parameters: (D1, D2) = (1.0, 0.5), (p12, p21) = (0.204, 0.107).
Diagonal dashed line C1 = C2 corresponds to variation in
unconditional dispersal rates. Perturbations are away from
(C1, C2) = (0.1, 0.1). Regions A+B+C increase ρ(MD). Re-
gions D+E decrease ρ(MD). McNamara and Dall constrain
variation to fall within the parallelogram, with slope ε/(1− ε)
for the bottom, and (1 − ε)/ε for the side, where ε is the er-
ror rate for environmental cues; the error rate must be small
enough for the parallelogram to enter region C for condi-
tional dispersal to evolve. But the unconstrained ESS here
is (C1, C2) = (0, 1), and mutants anywhere in regions B+C
increase conditional dispersal rate C2 and are advantageous.

We see that Theorem 21 provides another situation that
departs from the reduction phenomenon. Conditional dis-
persal is analogous to directed mutation (Cairns et al.,
1988; Hall, 1990; Lenski and Mittler, 1993). I would not
go so far as to say it exemplifies the principle of partial
control, which was conceived for the situation of multiple
undirected transformation processes, such as recombina-
tion in the presence of mutation. It is possible, however,
to view conditional dispersal as control over only a part of
the set of dispersal probabilities.

The existence of this departure from reduction holds
for any environment transition matrix P 6= π e>. The en-
vironment may even be constant, P = I, in which case

as long as D 6= c I so u 6= e, then
∂

∂Cκ
ρ([(I − C) +

π e>C]D) > 0 for every κ where uκ is below the π-
weighted average

∑n
i=1 uiπi (see (31)).

Philopatry is clearly not the evolutionarily stable state
(ESS) when there is environmental change, since there is
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always at least one environment where conditional disper-
sal is advantageous. To understand how McNamara and
Dall conclude that philopatry can be an ESS, it is helpful
to look at the entire ‘adaptive landscape’ of ρ(MD) as a
function of conditional dispersal rates (C1, C2).

McNamara and Dall posit a species that can vary its
probabilities, (p1, p2), of dispersing in response to a binary
cue, where environment i produces the wrong cue with
probability εi. The conditional dispersal rates are thus[

C1

C2

]
=

[
1− ε1 ε1
ε2 1− ε2

] [
p1
p2

]
+

[
Cmin

Cmin

]
, (33)

Assuming that the species can vary (p1, p2) over the range
[0, 1]× [0, 1], the variation in (C1, C2) falls within the par-
allelogram in Figure 1.

The example depicted in Figure 1 has a moderate rate
of environmental change and differential growth between
two environments. Darker means smaller ρ(MD). Vari-
ation along the white diagonal line represents uncondi-
tional dispersal, and the gradient exhibits the reduction
phenomenon. The contour lines of constant ρ(MD) are
shown by (32) to have slope(

π2
D2v2

)
/

(
π1
D1v1

)
=
π2D1v1
π1D2v2

.

The dispersal rates of the resident population are
(C1, C2) = (0.1, 0.1), the minimal dispersal attainable.
The labeled regions A, B, C, D, and E demarcate the be-
havior where (C1, C2) departs from (0.1, 0.1). Any mutant
that falls within regions A, B, or C is advantageous. Re-
gions B and C comprise increases in conditional dispersal
from environment C2. The slopes of the sides of the par-
allelogram derive from the cue error rate, ε.

Advantageous mutants arise only from in the intersec-
tion of the parallelogram and region C. For the intersec-
tion to be non-empty, ε must be small enough. When the
error rate is so high that the parallelogram is contained
entirely in region D, then the ESS is the lower left corner,
the minimal value of dispersal.

We can see that the ESS is very sensitive to the error
rate, however. With a slight decrease in ε, the ESS can
shift from the lower left corner to the upper left corner of
the parallelogram, which describes McNamara and Dall’s
result.

Therefore, in this adaptive landscape, it becomes very
important how well the genetic and developmental sys-
tem fills out the parallelogram with heritable variation. If
the variation does not fully fill it out, at least two novel
outcomes become possible. A slightly convex distribution
overlapping region C would yield an intermediate level of
dispersal as the fittest that occur. A slightly concave dis-
tribution would result in a bimodal distribution of the
fittest phenotypes. This opens up potential for polymor-
phisms, disruptive selection, history dependence, or evo-
lutionary volatility in the phenotype.

Moreover, the parallelogram is based on a particular
model (33) of how organisms disperse. There is no cat-
egorical exclusion of genetic variation from accessing any
point in the square (C1, C2) ∈ [0, 1]2. Rather, it depends
on the details of the organism, its capabilities, and its
genotype-phenotype map. Any time an evolutionary out-
come is sensitive to such details, one is bound to find in-
teresting phenomena in the natural history.

7 Methods

The lengthier proofs for Theorems 16, 20, and 21 are now
provided, prefaced by preparatory results, Lemma 22 and
Theorem 23. It is here that we encounter the tractability
afforded by using the transition matrices of reversible er-
godic Markov chains, which is the key technique adopted
from Friedland and Karlin (1975, Theorem 4.1) and Kar-
lin’s Theorem 5.1.

It should be noted that Karlin’s Theorem 5.2 is not us-
able here, because of the presence of matrix P in M(m) =
P[(1−m)I+mQ]. This is why it has been an open problem
(Altenberg, 2004). An initial inroad on this open problem
was obtained through application of elements from Kar-
lin’s Theorem 5.1 to the analysis of multivariate, multiple
locus mutation rate evolution in Altenberg (2011). The
application of these techniques is further extended here.
Theorem 2 in Altenberg (2011) — a multivariate reduction
principle for multiple loci in mutation-selection balance —
is in fact a special case of (27) in Theorem 16 given here.

In the proofs to follow, (41), (43), (44) derive from Kar-
lin’s Theorem 5.1 proof. Other steps, including the use
of a canonical form for symmetrizable M(m) (37), (38),
(39), and (53) are drawn from the analysis in Altenberg
(2011). Most of the remaining steps arise naturally from
the problem, and may prove useful in other contexts.

Theorem 16 first requires a characterization of the spec-
tral radius of M(m)D, which relies on the canonical form
for M(m) that exists when it is constrained to be sym-
metrizable.

Lemma 22 (Canonical Form for Symmetrizable M(m)).
Let P and Q ∈ Rn,n be transition matrices of ergodic

reversible Markov chains that commute with each other.
Let

M(m) := P[(1−m)I +mQ].

Then P, Q, and M can be decomposed as

P = D1/2
π KΛPK>D−1/2π , (34)

Q = D1/2
π KΛQK>D−1/2π , (35)

and

M(m) = D1/2
π KΛP [(1−m)I +mΛQ]K>D−1/2π , (36)
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where Pπ = Qπ = π, with e>π = 1, K is an orthogo-
nal matrix, and ΛP and ΛQ are diagonal matrices of the
eigenvalues of P and Q, respectively.

Furthermore, the first column of K is [K]1 = π1/2

(element-wise square root).

Proof. The transition matrices of ergodic reversible
Markov chains, M, can be represented in a canonical way
(Keilson 1979, p. 33; Ababneh et al. 2006, p. 296; Al-
tenberg 2011, Lemmas 1 and 2) as

M = BKΛK>B−1, (37)

where B is a positive diagonal matrix, unique up to scal-
ing, and K is an orthogonal matrix, i.e. KK> = K>K = I.

Any such M is clearly diagonalizable since Λ is a diago-
nal matrix. Diagonalizable P and Q commute by hypoth-
esis, so they can be simultaneously diagonalized (Horn and
Johnson, 1985, Theorem 1.3.19, p. 52), which means there
exists invertible X such that

P = XΛPX−1 and Q = XΛQX−1.

Hence M(m) = XΛP [(1 −m)I + mΛQ]X−1. Combining
these two forms, the common matrix X can be represented
as X = BK.

Next, it is shown that

[K]1 = π1/2 (38)

and

B = c D1/2
π , c > 0, (39)

satisfy e>P = e> and Pπ = π. Since K is orthogonal,
[K]1 = π1/2 if and only if (π1/2)>K = e1

>, in which case,
recalling that λP1 = 1, substitution gives

e>P = e>D1/2
π KΛPK>D−1/2π = e1

>ΛPK>D−1/2π

= e1
>K>D−1/2π = [K]1D−1/2π = e>,

and

Pπ = D1/2
π KΛPK>D−1/2π π = D1/2

π KΛPK>π1/2

= D1/2
π KΛP e1 = D1/2

π [K]1 = π.

Substitution of B = c D
1/2
π in the form (37) produces (34),

(35), and (36).
Remark. For any family of commuting symmetrizable

stochastic matrices, K and B (up to scaling) are uniquely
determined. Therefore, the only variation possible for the
family is in λi, i = 2, . . . , n, which means there are at most
n− 1 degrees of freedom of variation in the family. �

Theorem 23 (The Spectral Radius).
Let P and Q ∈ Rn,n be transition matrices of ergodic re-
versible Markov chains that commute with each other, let

π be their common right Perron vector, and let {λPi} and
{λQi} be their eigenvalues. Let

M(m) := P[(1−m)I +mQ].

Let D be a positive diagonal matrix. Set v ≡ v(M(m)D)
and u ≡ u(M(m)D).

Then

ρ(M(m)D) =

n∑
i=1

λPi[(1−m) +mλQi]y
2
i , (40)

where

y = (v> D−1π Dv)−1/2 K>D−1/2π D v,

and K is from the canonical form in Lemma 22.
The left and right Perron vectors of M(m)D are related

by

u =
1

(v>D−1π Dv)
D−1π D v.

Proof. Canonical form (36) is used to produce a symmet-
ric matrix similar to M(m)D, which allows use of the
Rayleigh-Ritz formula for the spectral radius. The expres-
sion simplifies to a sum of terms involving the eigenvalues
of the stochastic matrices P and Q.

For brevity let Φ := KΛP [(1 − m)I + mΛQ]K>, so
M(m) = BΦB−1. Multiplication by B, D1/2, and their
inverses (where the positive diagonal D ensures the exis-
tence of D1/2 and D−1/2) gives the identities:

ρ(M(m)D) = ρ(BΦB−1D) = ρ(ΦB−1DB)

= ρ(ΦD) = ρ(D1/2ΦD1/2) = ρ(S),

where

S := D1/2ΦD1/2

= D1/2KΛP [(1−m)I +mΛQ]K>D1/2. (41)

Since S is symmetric, we may apply the Rayleigh-Ritz
variational formula for the spectral radius (Horn and John-
son, 1985, Theorem 4.2.2, p. 176):

ρ(A) = max
x>x=1

x>Ax. (42)

This yields

ρ(M(m)D) =

max
x>x=1

x>D1/2KΛP [(1−m)I +mΛQ]K>D1/2x. (43)

Since M is irreducible and D a positive diagonal matrix,
MD is irreducible, so by Perron-Frobenius theory there is
a unique eigenvector x̂ > 0 that yields the maximum in
(43), allowing us to write

ρ(M(m)D)

= x̂>D1/2KΛP [(1−m)I +mΛQ]K>D1/2x̂. (44)
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Define

y := K>D1/2x̂. (45)

Substitution of (45) into (44) yields (40):

ρ(M(m)D) = x̂>D1/2KΛP [(1−m)I +mΛQ]K>D1/2x̂

= y>ΛP [(1−m)I +mΛQ]y

=

n∑
i=1

λPi[(1−m) +mλQi]y
2
i .

Next, y will be solved in terms of v by solving for
x̂, using the following two facts. For brevity, define
Λ(m) := ΛP [(1 −m)I + mΛQ], and write M ≡ M(m) =

BKΛ(m)K
>B−1:

1. ρ(MD) v = MDv = BKΛ(m)K
>B−1Dv; (46)

2. ρ(MD) x̂ = D1/2KΛ(m)K
>D1/2x̂. (47)

Multiplication on the left by BD−1/2 in (47), and sub-
stitution of (46) reveals the right Perron vector of MD:

ρ(MD) (BD−1/2)x̂ = (BD−1/2)D1/2KΛ(m)K
>D1/2x̂

= BKΛ(m)K
>(B−1DBD−1)D1/2x̂)

= (BKΛ(m)K
>B−1D)(BD−1/2x̂)

= MD(BD−1/2x̂), (48)

which shows that BD−1/2x̂ is the right Perron vector of
MD, unique up to scaling, i.e.

v = BD−1/2x̂ = ĉD1/2
π D−1/2x̂,

for some ĉ to be solved. This almost finishes the solution
of x̂, giving

x̂ =
1

ĉ
D−1/2π D1/2 v. (49)

The constraint x̂>x̂ = 1 gives

1 = x̂>x̂ =
1

ĉ2
(v>D−1π D v),

so

ĉ = (v> D−1π Dv)1/2. (50)

Substitution for x̂ now produces the expression in the the-
orem,

y := K>D1/2x̂ = K>D1/2 1

ĉ
D−1/2π D1/2 v

= (v> D−1π Dv)−1/2 K>D−1/2π D v. (51)

By the same method as (48), u(M(m)D) is derived,
using multiplication on the right by D−1/2B to reveal the
left Perron vector of MD:

ρ(MD) x̂>(D1/2B−1) = x̂>D1/2KΛ(m)K
>D1/2(D1/2B−1)

= x̂>(D1/2B−1)MD = c∗ u(MD)>

for some c∗ > 0. From B = cD
1/2
π (39), we get

(1/c∗)x̂>D1/2D
−1/2
π = u(MD)>. Substituting (49) and

noting u>v = 1, we see the simple relationship to
v(M(m)D):

u(M(m)D) =
1

(v>D−1π Dv)
D−1π D v(M(m)D).

�

One additional property that stems from the symmetriz-
ability of M(m) in (26) is that ρ(M(m)D) is convex in m.

Theorem 24 (Convexity of ρ(M(m)D) in m).
Let P and Q ∈ Rn,n be transition matrices of ergodic

reversible Markov chains that commute with each other.
Let D be a positive diagonal matrix and

M(m) := P[(1−m)I +mQ].

Then ρ(M(m)D) is convex in m.

Proof. This follows the same lines as in Karlin (1982, The-
orem F.1, p. 199). ρ(M(m)D) = ρ(S) in (41), and S =
(1−m)A +mB, where A = D1/2KΛPK>D1/2 and B =
D1/2KΛPΛQK>D1/2. The convexity of ρ((1−m)A+mB)
is established by Lemma 25, to follow. �

Lemma 25 (Convexity of the Spectral Radius). Let A
and B be two symmetric matrices with unique eigenvec-
tors x̂A and x̂B associated with their largest eigenvalue,
normalized so x̂A

>x̂A = x̂B
>x̂B = 1.

Then ρ((1 − m)A + mB) is convex in m, and strictly
convex if x̂A 6= x̂B

Proof. By hypothesis x̂A uniquely yields the maximum in
(42), and likewise x̂B for B, and x̂h for (1−m)A +mB.
Therefore,

ρ((1−m)A +mB) = x̂m
>((1−m)A +mB)x̂m

= (1−m) x̂m
>Ax̂m +mxm

>Bx̂m

≤ (1−m) x̂A
>Ax̂A +m x̂B

>Bx̂B = (1−m)ρ(A) +mρ(B).

Equality requires x̂A = x̂h = x̂B , because otherwise,
x̂A
>Ax̂A > x̂h

>Ax̂h, or x̂B
>Bx̂B > x̂h

>Bx̂h, either of
which produces strict inequality. �

7.1 Proof of Theorem 16

Theorem 23 is now applied to the derivative of the spectral
radius. The general relation is

∂ρ(A)

∂m
= u(A)>

∂A

∂m
v(A) (52)

(Caswell, 2000, Sec. 9.1.1).
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This is derived for the specific case here by differentiat-
ing Sx̂ = ρ(MD)x̂ (recall S from (41)), and then multi-
plying on the left by x̂>. Set ρ ≡ ρ(MD).

x̂>
d(Sx̂)

dm
= x̂>

(
dS

dm
x̂ + S

dx̂

dm

)
= x̂>

dS

dm
x̂ + ρ x̂>

dx̂

dm

= x̂>
d

dm
(ρx̂) = x̂>

(
dρ

dm
x̂ + ρ

dx̂

dm

)
=

dρ

dm
+ ρ x̂>

dx̂

dm
.

Subtraction of ρ(MD) x̂>
dx̂

dm
from both sides and substi-

tuting with (44) leaves:

dρ(MD)

dm
= x̂>

dS

dm
x̂

= x̂>
d

dm

[
D1/2KΛP [(1−m)I +mΛQ]K>D1/2

]
x̂

= x̂>D1/2KΛP [ΛQ − I]K>D1/2x̂.

Substitution with y := K>D1/2x̂ yields the derivative of
(40):

dρ(MD)

dm
= y>ΛP (ΛQ − I)y =

n∑
i=1

λPi(λQi − 1)y2i . (53)

Remark. Were P and Q not symmetrizable, but only di-
agonalizable and commuting, the analysis would arrive at
an expression similar to (53) except that the nonnegative
y2i terms would be replaced by products whose signs we
do not know, preventing further evaluation.

We know several things about the terms in the sum in
(53):

1. Since P and Q are stochastic matrices, their Perron
roots are 1, which here are labelled as λP1 = λQ1 = 1.

2. λQ1 − 1 = 0. Thus the first term of the sum is zero.

3. λQi−1 < 0, for i ∈ {2, . . . , n}, hence (λQi−1)y2i ≤ 0.

Since P and Q are symmetrizable, λPi, λQi ∈ R.
Since P and Q are irreducible, by Perron-Frobenius
theory Seneta (2006, Theorems 1.1, 1.5), eigenvalue
1 has multiplicity 1, and |λQi| ≤ 1, which together
imply λQi < 1 for i ∈ {2, . . . , n}.

4. yi 6= 0 for at least one i ∈ {2, . . . , n}, whenever D 6=
c I for any c > 0. This fact will take a bit of work
to show: Suppose to the contrary that yi = 0 for all
i ∈ {2, . . . , n}. That means y = y1 e1. Using ĉ from
(50), (51) becomes

y1 e1 = ĉ−1 K>D−1/2π D v.

Multiplication on the left with D
1/2
π K, and substitu-

tion with [K]1 = π1/2 (38) yields

y1 D1/2
π Ke1 = y1 D1/2

π [K]1 = y1 π = ĉ−1D v.

Multiplication of y1ĉπ = Dv by M gives

Mπ y1ĉ = y1ĉπ = Dv = MDv = ρ(MD) v.

Hence, Dv = ρ(MD) v, implying D = ρ(MD) I, con-
trary to hypothesis. Therefore, D 6= c I for any c > 0
implies that yi 6= 0 for at least one i ∈ {2, . . . , n}.

Points 3., and 4. above together imply that (λQi−1)y2i <
0 for at least one i ∈ {2, . . . , n}. Inclusion of point 2.
immediately implies for (53) that:

1. If λPi > 0 for all i, then
d

dm
ρ(MD) < 0.

2. If λPi < 0 for i = 2, . . . , n, then
d

dm
ρ(MD) > 0.

3. Otherwise: there may be positive, negative, or zero

terms λPi(λQi − 1)y2i , so the sign of
d

dm
ρ(MD) de-

pends on the particular values of the terms, of which
we know little at this point.

Remark. Condition λPi > 0 for all i is equivalent to P
being symmetrizable to a positive definite matrix, which is
the hypothesized condition in Karlin’s Theorem 5.1. The
condition λPi < 0 for i ∈ {2, . . . , n} in case 2. happens
to be the same as the well-known condition on the fitness
matrix for a stable multiple-allele polymorphism (King-
man, 1961). Here this appears to be coincidence, rather
than a clue to some deeper result. However, that condi-
tion is central to the ‘viability-analogous’ modifier poly-
morphisms, where the matrix [1−mij ]

n
i,j=1 (from diploid

modifier genotypes i|j), must have all negative eigenvalues
except the Perron root to assure stability of the modifier
polymorphism (Feldman and Liberman, 1986; Liberman
and Feldman, 1986a,b, 1989), supporting the analogy be-
tween viability coefficients and modifier values 1−mij .

The Harmonic Mean. The following inequalities are
equivalent:

EH(τi) :=
1

1

n

n∑
i=1

1

τi

< 1 +
1

n− 1
=

n

n− 1
(54)

⇐⇒ n− 1 <

n∑
i=1

1

τi
= n−

n∑
i=1

Pii

⇐⇒ 1 >

n∑
i=1

Pii =

n∑
i=1

λi(P) = 1 +

n∑
i=2

λi(P)

⇐⇒ 0 >

n∑
i=2

λi(P). (55)

Hence, λi(P) < 0 for i = 2, . . . , n implies (55), or equiva-
lently, (54). Conversely, λi(P) > 0 for i = 2, . . . , n implies∑n
i=2 λi(P) > 0, hence (28). �
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7.2 Proof of Theorem 20, ‘House of Cards’
Environmental Change

By hypothesis, the probability that environment remains
unchanged in one generation is σ = 1−1/τ . If the current
environment has no influence on which environment comes
next (Kingman’s ‘House of Cards’ model, Kingman 1978,
1980) then

Pij = (1− σ)πi + σδij

where πi be the probability that any changed environment
becomes i, giving

P = (1− σ)π e> + σI.

Since π e> is a rank-one matrix, λi(π e>) = 0 for i =
2, . . . , n (Horn and Johnson, 1985, p. 62). Hence λi(P) =
σ for i = 2, . . . , n.

For the case τ = 1, then λi(P) = σ = 0, i = 2, . . . , n, so
(53) evaluates to

dρ(MD)

dm
=

n∑
i=1

λPi(λQi − 1)y2i

= 1(1− 1)y21 +

n∑
i=2

0(λQi − 1)y2i = 0.

For the case τ > 1, then λi(P) = σ > 0, i = 2, . . . , n, so
(53) evaluates to

dρ(MD)

dm
=

n∑
i=1

λPi(λQi − 1)y2i

= 1(1− 1)y21 +

n∑
i=2

σ(λQi − 1)y2i < 0,

since D 6= c I for any c ∈ R implies that λQi − 1 < 0
for i ∈ {2, . . . , n}, and by 4. in the proof of Theorem 16,
yi 6= 0 for some for i ∈ {2, . . . , n}. �

7.3 Proof of Theorem 21, Conditional Dis-
persal.

1. Basic identities used are ∂C/∂Cκ = Deκ , e>eκ =
1, and Peκ = [P]κ. The derivative formula (52),
∂ρ(A)/∂β = u(A)>(∂A/∂β)v(A) (Caswell, 2000,
Sec. 9.1.1), with respect to parameter β, is applied
to yield

∂

∂Cκ
ρ(MD) =

∂

∂Cκ
ρ(P[(I−C) + π e>C]D)

= u>
∂M

∂Cκ
Dv = u>P(−Deκ + π e>Deκ)Dv

= u>(Pπ e>eκ −Peκ)Dκ vκ (56)

= u>(π − [P]κ)Dκ vκ = Dκ vκ

n∑
i=1

ui(πi − Piκ)

= Dκ vκ n [Cov(ui, πi)− Cov(ui, Piκ)]. (57)

Note: 1/n2 in the covariance terms cancels in (57),
e.g.

Cov(ui, Piκ) =
1

n

∑
i

uiPiκ −
1

n2

∑
i

ui
∑
i

Piκ

=
1

n

∑
i

uiPiκ −
1

n2
.

2. There is always at least one environment in which in-
creased dispersal is advantageous, and at least one
environment where decreased dispersal is advanta-
geous: If no environment selects for increased dis-
persal, that means ∂ρ(MD)/∂Cκ ≤ 0 for all κ, hence
u>(π− [P]κ) ≤ 0, or, combined, u>(π e> −P) ≤ 0>.
Then u>(π e> −P)π ≤ 0. But

u>(π e> −P)π = u>π − u>π = 0,

so u>(π − [P]κ) = 0 for all κ, which implies either
π = [P]κ ∀ κ since u > 0, or u> = e> which requires
D = c I for some c ∈ R. If neither π = [P]κ ∀ κ nor
D = c I, then there must be some κ for which u>(π−
[P]κ) > 0, hence

∂

∂Cκ
ρ(P[(I − C) + π e>C]D) > 0.

The parallel argument follows when ≤ is replaced by
≥ above.

Remark. When n = 2, then it must be the case that
the spectral radius is maximized at either (C1, C2) =
(1, 0), or at (C1, C2) = (0, 1). This is illustrated in
the numerical example in Figure 1.

3. A row vector is made from (56), over κ:

∇C ρ(MD) :=

[
∂ρ(MD)

∂Cκ

]κ=1

n

=

[
u>

∂M

∂Cκ
Dv

]κ=1

n

=
[
u>(Pπ e> −P)eκDκ vκ

]κ=1

n

= u>(πv> −PDv)D.

4. Since N := {ξ : ∇C ρ(MD) ξ = 0} is defined by a
single constrain, it is an n−1 dimensional linear sub-
space. Verification is given that ζ = D−1v D−1π ∈ N :

∇C ρ(MD) ζ = u>(πv> −PDv)D(D−1v D−1π)

= u>(πv>DD−1v D−1π −Pπ) = u>(πv>D−1v π − π)

= u>(πe>π − π) = u>(π − π) = 0.

�

8 Discussion

There are two sets of take-home messages from the results
here: one, content, and the other, methodology. Some of
the content can be summarized simply as, “the results of
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McNamara and Dall (2011) generalize to n environments,”
but in that generalization, new relationships emerge that
were not visible from the parameters with only 2 environ-
ments.

The content in general may be understood to be part
of the larger body of literature on the Reduction Principle
and the departures from it, which include domains reach-
ing from the evolution of recombination to the evolution of
cultural traditionalism. The environmental change model
of McNamara and Dall produces some specific new results
for the reduction phenomena.

We see first that the “build up of the genotype on good
sites” can be defined precisely as the fitness-abundance
covariance — the covariance between the environment-
specific growth rate and the excess abundance above what
would emerge without differential growth. The phase of
the census — whether taken before or after dispersal — is
critical to the properties of the fitness-abundance covari-
ance.

Exploration of the stationary state fitness-abundance
covariance and its dependence on census phase is made
for general combination of stochastic M and growth rates
D in Theorem 3, and Corollaries 4, 11, 12. The only con-
straints are that M be irreducible and growth rates Di

be positive. Thus, they could just as well apply to mu-
tation/selection balances as to dispersal/growth balances.
Results for specific classes of M are found in Theorems 5,
6, and 7, and Corollary 13.

Theorem 3 shows that the process of dispersal de-
creases the fitness-abundance covariance by the variance
in growth rates — a version of Fisher’s Fundamental The-
orem. Corollary 4 shows that the derivatives of post-
dispersal FA(MD) and of ρ(MD) always have the same
sign with respect to any differentiation of M. Theorem 5
finds that the pre-dispersal fitness-abundance covariance,
FA(v(DM)), is always positive when M is the transi-
tion matrix of an ergodic reversible Markov chain with all
nonnegative eigenvalues, and growth rates differ between
environments. Reversibility is important here, because a
counterexample with FA(v(DM)) < 0 is found for peri-
odic chains where one environment has a very small growth
rate (Theorem 7). It is reasonable to conjecture, given the
small region of growth rates in which FA(v(DM)) < 0,
that FA(v(DM)) > 0 for all reversible chains regardless
of the signs of their eigenvalues. Cyclic M, on the other
hand, always produce a negative post-dispersal fitness-
abundance covariance, FA(MD) (Theorem 6).

When the growth rate of an environment is increased,
then its stationary proportion of the population increases
when the census is just prior to dispersal (Corollary 11).
When the population is censused just after dispersal,
the relationship can be reversed, as McNamara and Dall
(2011) discovered, by extreme patterns of environmental
change. Thus, we have a novel implication, for popula-
tions near their stationary distribution, that comparison

of the abundance relationships before and after dispersal
can provide information about the extremity of the envi-
ronmental change pattern (Corollary 13).

A number of results are obtained for a generalization
of the McNamara and Dall (2011) model to n environ-
ments (7). Corollary 14 finds , just as McNamara and Dall
do for two environments, that the post-dispersal fitness-
abundance covariance, FA(MD) (which McNamara and
Dall call the “multiplier effect”), is positive exactly when
the reduction principle operates — i.e. when the growth
rate of the population increases from reduced uncondi-
tional dispersal. It is negative when there are departures
from reduction. This correspondence between a negative
fitness-abundance covariance and departures from the re-
duction phenomenon is, however, specific to the model of
McNamara and Dall and not a general property of depar-
tures from reduction for operators of the form MD.

The field ecologist would want to know how feasible it is
to measure the fitness-abundance covariance. Recall that
M can represent a variety of processes. When M repre-
sents the dispersal probabilities between patches, then vi
represents the portion of the population in patch i, and
the quantity πi represents the portion that patch i would
have in the absence of differential growth rates. Thus πi is
not something that actually exists but is a counterfactual.
It may be feasible, however, to estimate π by estimating
M from a measurement of the amount of dispersal be-
tween each patch (e.g. through mark and recapture exper-
iments), and computing the Perron vector of the resulting
estimated M.

M has a different meaning in the model of McNamara
and Dall, where it represent the Markov chain that the en-
vironmental states independently follow in all the patches,
and πi is simply the portion of patches that are in envi-
ronmental state i, while vi is the portion of the population
in patches of environmental state i. Each of these is an
actual quantity that is potentially measurable.

The expression τ−11 + τ−12 from McNamara and Dall
(2011) is seen in the general case to be a part of the
harmonic mean of the expected durations of states in a
Markov chain. The harmonic mean is shown in Lemma
15 to be a simple function of the sum of the eigenvalues
of the chain’s transition matrix. Thus the condition on
τ−11 + τ−12 discovered by McNamara and Dall is really a
condition on the eigenvalues of the environment transition
matrix.

In Theorem 16, these three entities — the reduction
phenomenon, the harmonic mean of environment dura-
tions, and the eigenvalues of the environment transition
matrix — are tied together in the case of environmental
change processes that are reversible Markov chains. A
sufficient condition for departures from reduction (selec-
tion for increased unconditional dispersal) is that all of
the non-Perron eigenvalues of the environment transition
matrix be negative, which represents an extreme pattern
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of change, in which the harmonic mean of environment
durations is less than 1 + 1/(n − 1), where n is the num-
ber of environments. This means the environment changes
almost every generation.

This departure from reduction identified by McNamara
and Dall and generalized in Theorem 16 provides a new
example summarized by the “principle of partial control”
(Altenberg, 1984). The ‘partial control’ in Theorem 16 is
that while the organism can control the transformation of
its location (i.e. dispersal), it cannot control the transfor-
mations that change its environment.

Theorem 16 shows that a sufficient condition for the re-
duction phenomenon (selection for reduced unconditional
dispersal) is that all eigenvalues of the environment tran-
sition matrix be positive, corresponding to less extreme
environmental change. A general treatment of the inter-
mediate case — of mixed positive and negative eigenvalues
— remains an open question. But Corollary 19 shows that
there is always some intermediate level of environmental
change below which the reduction principle operates. The
reduction principle would be expected to operate for more
common patterns of environmental change.

Theorem 20 shows that this complexity of behavior dis-
appears when the process of environmental change does
not have any causal connection between the identity of
sequential environments. In this case, only the reduction
principle operates.

McNamara and Dall’s model of conditional dispersal is
here generalized to arbitrary numbers of environments.
Theorem 21 shows that conditional dispersal provides an-
other situation where we observe departures from the re-
duction principle. Conditional dispersal is mathematically
analogous to directed mutation. Theorem 21 finds that
there is always some environment from which it pays to
increase dispersal, provided that there is: 1) some level of
environmental change, 2) a causal connection between the
current and next environments, and 3) different growth
rates among environments. Therefore, philopatry is not
the global evolutionarily stable state. This result holds
for arbitrary environmental change Markov chains, and
holds whether or not unconditional dispersal follows the
reduction principle.

This seems to contradict the conclusion of McNamara
and Dall (2011) that there are “conditions under which
reliable, cost-free cues to habitat quality, which might in-
tuitively influence optimal dispersal decisions, should be
ignored in favour of blind natal philopatry.” This con-
tradiction is resolved by examining the complete adaptive
landscape for the conditional dispersal rates (the n = 2
case in Figure 1).

We see that the evolutionarily stable state of dispersal is
highly sensitive to any genetic or phenotypic constraints
placed on the range of dispersal combinations. The hy-
pothesized error rate for environmental cues in the Mc-
Namara and Dall model can constrain the variation to a

region where the population growth rate is maximized by
philopatry. But a slight decrease in the error rate can shift
the evolutionarily stable state to maximize conditional dis-
persal from one environment, as shown by McNamara and
Dall.

Other patterns of phenotypic constraint can be envi-
sioned, and the sensitivity of the ESS in this model to
phenotypic constraints leads to a diversity of potential
phenomena: intermediate ESS states, bimodal states, or
a general condition of evolutionary volatility. The evolu-
tionary outcome becomes highly dependent on the varia-
tional properties (Altenberg, 1995) of the organism. To
the extent that the McNamara and Dall model of random
environments applies to the real world, the results suggest
that empirical studies of the evolution of dispersal should
find volatile relationships between an organism’s dispersal
behavior, the variational properties of its dispersal pheno-
type, and the pattern of environmental change its lineage
has experienced.

8.1 Mathematical Methods

The second set of take-home messages from this paper re-
gards the mathematical methods. The primary message
is that techniques from the Reduction Principle literature
and contemporary linear algebra allow one to obtain ana-
lytical results in greater generality than is often pursued.
The common restriction to 2× 2 matrices can be dropped
for many results.

There is the added benefit from generalizing 2× 2 mod-
els to the n × n case, which is that one is forced to see
beyond the four particular entries of the 2 × 2 matrices
to their deeper underlying structures, in particular their
eigenvalues and eigenvectors, covariances, and the varia-
tional structure of the matrices. In the case of McNamara
and Dall (2011, online Appendix A, Theorem A), the set
of inequalities on the particular vector elements can be
unified by a single inequality on a covariance expression,
as in Corollary 14. It is hoped that the tractability of
many results for general n, and the insights provided from
such results, will encourage this approach more widely.

Tractability for Theorems 5, 16, 20, and 23, and Corol-
laries 17, 18, and 19 requires the assumption that the en-
vironments form a reversible Markov chain. The transi-
tion matrices of reversible Markov chains are synonymous
with symmetrizable stochastic matrices. The tractability
provided by symmetrizable stochastic matrices is the key
tool adopted from Karlin’s Theorem 5.1 (1982) and Fried-
land and Karlin (1975, Theorem 4.1). Karlin’s Theorem
5.1 appears to have never been used since its publication
until it was applied to the analysis of the evolution of
mutation rates at multiple loci in (Altenberg, 2009a). Re-
cently, however, symmetrizable stochastic matrices have
been used by Schreiber and Li (2011) to analyze the evo-
lution of dispersal in cyclic environments.

The environmental cycling that produces a departure
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from the reduction principle in the model of Schreiber and
Li (2011) satisfies the same condition of extreme environ-
mental change as in Theorem 16, and the matrices are
symmetrizable as well. But it is fundamentally a differ-
ent model in that the environments change synchronously
throughout all the patches, not independently as in (7),
so it is represented by (9), z(t + 2) = MD(2)MD(1)z(0).
Nevertheless, the parallels in its behavior with that of the
McNamara and Dall model are intriguing. Recall that
Karlin (1982) represented periodic environments by using
cyclic matrices, so the model of Schreiber and Li (2011)
can be represented as[

0 M(m)
M(m) 0

] [
D(1) 0

0 D(2)

]
=

(
(1−m)

[
0 I
I 0

]
+m

[
0 P
P 0

])[
D(1) 0

0 D(2)

]
.

We note that this has the form (1−m)A +mB (4) from
the open problem posed in Altenberg (2004), and there-
fore provides another set of conditions on A and B that
produce departures from reduction.

The case of general Markov chains remains an open
problem for the above results. The principle difference
when considering general Markov chains is that the non-
Perron eigenvalues may come in complex-conjugate pairs,
which represent cycles of states that are more probable in
one direction than the reverse. Whether directional cycles
of the environments can produce any new phenomena for
the evolution of dispersal is here an open question.

8.2 Conclusions

Andrewartha (1961) classically defined ecology as “the sci-
entific study of the distribution and abundance of organ-
isms.” In this respect, the fitness-abundance covariance
investigated here is a basic quantity for ecology.

What makes its behavior more complex than intuition
would suggest is that differential growth rates between
patches or environments can interact with the multitude of
possible dispersal, environmental change, and other mix-
ing processes to produce novel relationships. The relation-
ships identified by McNamara and Dall (2011) between
the fitness-abundance covariance, the temporal properties
of environmental change, and selection for or against dis-
persal provided the motivation for the present study.

The goal here has been to pursue the mathematics un-
derlying these relationships. In so doing, these relation-
ships are shown to connect to the body of work in the
population genetics literature on the Reduction Principle
for the evolution of genetic systems and migration, and
provide new examples of departure from reduction. The
common mathematics underlying all of these models may
lead to the eventual development of a unified theoretical
treatment in which the different ecological and evolution-
ary phenomena are seen as different aspects of a single

phenomenological structure.
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