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Abstract

The evolution of genetic systems has been analyzed through the use of modifier
gene models, in which a neutral gene is posited to control the transmission of other
genes under selection. Analysis of modifier gene models has found the manifesta-
tions of an “evolutionary reduction principle”: in a population near equilibrium, a
new modifier allele that scales equally all transition probabilities between different
genotypes under selection can invade if and only if it reduces the transition prob-
abilities. Analytical results on the reduction principle have always required some
set of constraints for tractability: limitations to one or two selected loci, two alleles
per locus, specific selection regimes or weak selection, specific genetic processes
being modified, extreme or infinitesimal effects of the modifier allele, or tight link-
age between modifier and selected loci. Here, I prove the reduction principle in
the absence of any of these constraints, confirming a twenty-year old conjecture.
The proof is obtained by a wider application of Karlin’s Theorem 5.2 (1982) and
its extension to ML-matrices, substochastic matrices, and reducible matrices.

Keywords: evolution; evolutionary theory; modifier gene; recombination rate; mu-
tation rate; spectral analysis; reduction principle; Karlin’s theorem; ML-matrix;
essentially non-negative matrix.

1 Introduction
Darwinian evolution occurs through the interaction of two fundamental processes: (1)
natural selection, i.e. differential survival and reproduction; and (2) genetic transforma-
tion, i.e. change of genetic content during reproduction, which provides the variation
upon which selection can act. The principal genetic transformations are sexual repro-
duction, recombination, and mutation, while a growing list of other transformations
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includes gene conversion, methylation, deletions, duplications, insertions, transposi-
tions, and other chromosomal alterations.

These two processes, augmented by a third — the randomness of sampling in finite
populations — provide the basis for our causal explanations of the characteristics of
organisms. In its simplest version: Transformation processes create new genetic states
among offspring, and differential survival and reproduction of alternate genetic states
results in the prevalence of states with the highest levels of survival and reproduction.
In a more sophisticated version: evolutionary dynamics are the result of the joint action
of selection, transformation, and random sampling processes that move populations to
distribute over certain regions of genotype space.

The simpler version of the explanation runs into a quandary when trying to explain
traits that in themselves do not cause different levels of survival or reproduction, in
particular, the traits that make up the molecular, cellular, and organismal machinery
of the genetic transformation processes themselves. Variation in the transformation
machinery can produce differing distributions of offspring genotypes, without neces-
sarily affecting the parent’s survival or their quantity of offspring. To understand the
fate of variation in the genetic transformation machinery requires the more sophisti-
cated version of evolutionary causation, the evolutionary dynamics of the joint action
of selection, transformation, and sampling processes.

The earliest mathematical treatments of evolutionary dynamics in the 1920s ‘Mod-
ern Synthesis’ of Darwinism and Mendelian genetics (Fisher, 1922; Haldane, 1924;
Wright, 1931) dealt straightaway with many complex issues; however, the first analysis
of genetic variation in the genetic transformation processes themselves waited another
thirty years for Kimura’s (1956) analysis of a model of recombination modification.
The model examines the fate of a chromosomal alteration that eliminates recombina-
tion between two loci with a stable polymorphism that exhibits linkage disequilibrium.
When the alteration occurs in the chromosome that have above average fitness, it in-
creases in frequency. This result affirmed Fisher’s (1930, p. 130) assertion that “the
presence of pairs of factors in the same chromosome, the selective advantage of each of
which reverses that of the other, will always tend to diminish recombination, and there-
fore to increase the intensity of linkage in the chromosomes of that species.” This result
was the first instance of what was to later be called the “reduction principle” for the
evolution of genetic transformations (Feldman, 1972; Feldman et al., 1980; Altenberg,
1984; Liberman and Feldman, 1986b; Altenberg and Feldman, 1987).

Nei (1967) introduced, and partially analyzed, a model for the evolution of recom-
bination in which recombination rates between two loci are modified by a third, neutral
locus. Feldman (1972) gave a complete linear stability analysis of the model under the
assumption of additive, multiplicative, and symmetric viability selection regimes. He
found that for populations near a polymorphic equilibrium with linkage disequilibrium
under selection and recombination, genetic variation for recombination would survive
if and only if it reduced the rate of recombination between the loci under selection.

Other transformation processes were analyzed with modifier gene models, in par-
ticular mutation and migration rates, and the reduction principle was found to emerge
again (Karlin and McGregor, 1972; Feldman and Balkau, 1973; Balkau and Feldman,
1973; Karlin and McGregor, 1974; Feldman and Krakauer, 1976; Feldman et al., 1980).
(Note that there is more recent acceptance of the idea that spatial location of organisms,
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and other environmental conditions, may function formally as heritable traits subject
to transformation processes, e.g. Schauber et al. (2007); Odling-Smee (2007). How-
ever, this concept follows quite naturally from the concept of generalized transmission
that appears in models of cultural transmission and modifier genes (Cavalli-Sforza and
Feldman 1973; Karlin and McGregor 1974; Altenberg 1984, pp. 15-16, p. 178).)

These first reduction results were derived under narrow constraints on the selection
regime, number of modifier alleles, or number of alleles under selection. Subsequent
studies of modifiers of these three processes — recombination, mutation, and migration
— have extended the result to cases of modifier polymorphisms and arbitrary selection
coefficients (Liberman and Feldman, 1986a,b; Feldman and Liberman, 1986; Liberman
and Feldman, 1989), but are still restricted to two alleles per selected locus, or two
demes in the case of migration modification.

The repeated emergence of the reduction result in modifier models of different
processes led to a study of mathematical underpinnings that might be common to all of
them (Altenberg, 1984). The approach taken was to represent all possible transmission
processes — in which recombination and mutation comprise special cases — using
a general bi-parental transmission matrix, consisting of probabilities T (i← j, k) that
parental haplotypes j and k produce a gamete haplotype i. Haplotype here refers to a
gamete’s genotype, or a gamete’s contribution to a diploid genotype. (The addition of
spatial subdivisions in the case of migration modification leads to a slightly changed
representation (Altenberg, 1984, pp. 178-199).)

This approach allows the particulars of the processes to be abstracted out of the
model, and reveals that what all the models have in common is the nature of the varia-
tion in transmission produced by variation at the modifier locus. All of the models fit
the form

Tα(i←j, k) = α P (i←j, k) for j, k 6= i,

where α is the modified parameter that represents an overall rate of transformation of
haplotypes, over all haplotypes. This form is referred to as linear variation (Altenberg,
1984; Altenberg and Feldman, 1987) because the modifier gene scales all transmission
probabilities between different haplotypes equally.

In the perturbation analysis of the evolutionary dynamics of the modifier locus (to
be explained in detail in the next section), the stability matrix under linear variation has
the form:

M(α, r)D =
{
(1− α)[(1− r)I + rQ] + α[(1− r)S + rSon]

}
D, (1)

where α is the transmission parameter produced by the new modifier allele, Q, S,
and Son are stochastic matrices, D is a positive diagonal matrix, and r is the rate of
recombination between the modifier and the nearest locus under selection.

The rare modifier allele will increase when rare at a geometric rate if and only if the
spectral radius ρ(M(α, r)D) exceeds 1. This formulation is extremely general, accom-
modating modifier models with arbitrary numbers of modifier alleles, numbers of loci
and alleles per locus under selection, selection regimes, and transmission processes.

Although the model is extremely general, it is tractable thanks to a theorem of
Karlin (1982):
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Theorem 1 (Karlin Theorem 5.2, (1982, pp. 194–196)). Let M be an arbitrary non-
negative irreducible stochastic matrix. Consider the family of matrices

M(α) = (1− α)I + αM

Then for any diagonal matrix D with positive terms on the diagonal, the spectral radius

ρ(α) = ρ(M(α)D)

is decreasing as α increases (strictly provided D 6= dI).

We see that M(α, r)D fits the form in Karlin’s theorem only if r = 0, in which
case the stability matrix becomes {(1− α)I + αS}D, and we immediately see that a
new modifier can invade a population near equilibrium if and only if it reduces α so
as to produce ρ(M(α)D) > 1 (Altenberg 1984, Theorem 3.9, pp. 126-128; Altenberg
and Feldman 1987, Result 3). If r > 0, one is left to evaluate

d

dα
ρ([(1− α)M1 + αM2]D), (2)

where M1,M2 6= I. A closed-form characterization of stochastic matrices M1 and
M2 that produce dρ/dα < 0 is not readily obtained.

The case of general r > 0 would seem unlikely to reverse the reduction result, since
the only action of recombination with the modifier locus is to blend the equilibrium
distribution of selected haplotypes with the distribution created by the new modifier
allele. This blending should not alter the tendency of modifier alleles that reduce the
transformation rate to become associated with haplotypes of above-average fitness (and
the converse), which is the essence of the dynamics. The blending would merely lessen
the association. Even free recombination cannot completely eliminate this emergent
association: a modifier allele that produces perfect transmission always invades when
introduced, even if unlinked to the selected loci, i.e. ρ(M(0, 1/2) D) > 1 (Altenberg
1984, Theorem 3.5, p.118; Altenberg and Feldman 1987, Result 2).

Thus it was conjectured in Altenberg and Feldman (1987) that for arbitrary r ∈
[0, 1/2], a new modifier allele can invade if and only if it decreases α. This paper
proves the conjecture through an extension and expanded use of Karlin’s theorem. The
proof requires the extension of Karlin’s theorem to essentially non-negative matrices
(ML matrices), and to reducible matrices. The last of the constraints needed to prove
the general reduction principle is thus removed.

I preface the result with a self-contained review of the general modifier model de-
veloped in Altenberg (1984); Altenberg and Feldman (1987) and also used in Zhivo-
tovsky et al. (1994).

2 The Model
The evolutionary model examined here fits the general form

w z′i =
∑
jk

T (i←j, k) wjk zj zk, (3)
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Ma Gj1
Gj2

Gj3
Gjn

Mb Gk1
Gk2

Gk3
Gkn

Gj

Gk

r

Ma Gi1
Gi2

Gi3
Gin

Gi

Figure 1: The configuration of loci in the modifier gene model considered here. Ma

and Mb are the modifier alleles, Gj and Gk are the haplotypes undergoing viability
selection, consisting of genes Gj1 . . . Gjn and Gkj . . . Gkn. With probabilities under
the control of the modifier genotype Ma/Mb, haplotype MaGi is produced.

where zi is the frequency of haplotype i in the population, z′i is the frequency in the
next generation, T (i← j, k) is the probability that parental haplotypes j and k pro-
duce an offspring haplotype i, wjk = wkj is the fitness of diploid genotype jk, and
w =

∑
jk wjk zj zk is the mean fitness of the population. The model includes the gen-

eral assumptions of an infinite population, frequency-independent viability selection,
random mating, sex symmetry, no sex linkage, and non-overlapping generations.

2.1 The Modifier Gene Model
The modifier gene model is a special case of (3) in which the genome is structured
to contain a group of loci under selection, and a neutral locus external to the group
that modifies their genetic transmission probabilities. The structure is illustrated in
Fig. 1. Haplotypes will now have two indices, one for the allele at the modifier locus
(a, b, c etc.), and one for the haplotype of the selected loci (i, j, k etc.). The modifier
allele is assumed to be transmitted perfectly (no mutation nor segregation distortion),
so that the only force acting upon it arises from its association with the selected loci.
Recombination between the modifier locus and the nearest selected locus occurs at rate
rab.

The situation where the modifier locus is internal to the set of selected loci is not
considered because it is no longer possible to separate recombination events with the
modifier locus from transformations acting on the selected haplotype. In order for
the variation in transmission to be linear in this configuration, there would need to
be complete interference between recombination events on either side of the modifier
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locus and any other transformation processes being modeled.
Under this genetic structure, the transmission probabilities take on the form:

T(r)(ai←aj|bk) := (1− rab)T (ai←aj|bk) + rabT
on(ai←ak|bj)

where the probability that parental genotype aj, bk produces gamete haplotype ai, con-
ditioned on the offspring containing modifier allele a, is:

T (ai←aj|bk), when no recombination occurs between the modifier and nearest se-
lected locus, and

Ton(ai←ak|bj), when recombination occurs between the modifier and nearest se-
lected locus (hence aj|bk becomes ak|bj).

So, 1 =
∑
i T (ai←aj|bk) =

∑
i T

on(ai←ak|bj), ∀a, b, j, k.

2.2 Dynamical Recursion for the Modifier Model
With this genetic structure, recursion (3) becomes:

w z′ai =
∑
bjk

T(r)(ai←aj|bk) wjk zaj zbk (4)

where

zai is the frequency of the haplotype with allele a at the modifier locus, and haplotype
i at the selected loci, and z′ai is for the next generation;

wjk is the fitness coefficient for diploid genotype jk at the loci under selection;

w :=
∑
abjk wjk zaj zbk is the mean fitness of the population,

The evolutionary analysis consists of asking how the values of T(r)(ai← aj|bk)
determine whether a modifier allele a can invade a population and be protected from
extinction.

3 Equilibria and their Stability
A population at equilibrium under (4) must satisfy the constraint:

ŵ ẑbi =
∑
cjk

T(r)(bi←bj|ck) wjk ẑbj ẑck. (5)

A perturbation of the equilibrium to zbi = ẑbi + εbi produces:ŵ + 2
∑
bjck

εbjwjkẑck +
∑
bjck

εbjεck

 (ẑbi + ε′bi)

=
∑
cjk

T(r)(bi←bj|ck) wjk (ẑbj + εbj) (ẑck + εck).
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The long term evolution of genetic transmission depends on the properties that
allow a new modifier allele to invade a population and be protected from extinction.
Hence the analysis focuses on perturbations of the equilibrium by rare modifier alleles,
entailing ẑai = 0 for all i for new modifier allele a. Making this substitution, and
ignoring all second and higher order terms in the perturbation, the linear recursion on
a new modifier allele, a, that perturbs (5) can be represented in vector form as:

ε′a = M D εa (6)

where M is a stochastic matrix, D a positive diagonal matrix, and

εa := [εai]
n
i=1, D := diag

[
ŵi/ŵ

]n
i,j=1

, ŵi :=
∑
bj wij ẑbj , and

M :=
[∑

bk T(r)(ai←aj|bk)wjk

ŵj
ẑbk

]n
i,j=1

.

Modifier allele a will increase at a geometric rate when rare if and only if the spectral
radius ρ(MD) exceeds 1. Clearly, if D = I, then ρ(MD) = ρ(M) = 1, so geometric
rates of change in modifier allele frequencies require D 6= I, a situation described
by saying there is a positive selection potential (Altenberg 1984, “fitness load” p. 63;
Altenberg and Feldman 1987):

V =
maxi ŵi

ŵ
− 1 > 0. (7)

The analysis consists of evaluating the relationship between T(r)(ai ← aj|bk) and
ρ(MD).

4 Variation in Transmission
The reduction principle emerges in models where the modifier gene scales all the tran-
sition probabilities between different genotypes equally. Variation in transmission falls
along a line that intersects the matrix for perfect transmission (where parental hap-
lotypes are transmitted unchanged to their gametes, and in equal proportions), which
functions as an “origin” in this space of matrices. For this reason it is called “linear
variation” (Altenberg, 1984; Altenberg and Feldman, 1987).

A mechanistic derivation of linear variation is that each selected haplotype j has a
certain probability, α, of being “hit” by some transforming process, and given that it is
hit, it is transformed into various other selected haplotypes with different probabilities.
These probabilities, T (i← j|k), include possible dependence on both parental haplo-
types j and k. When the effect of the modifier gene is to scale the “hit” rate, α, up or
down equally for all haplotypes, it produces linear variation in transmission.

4.1 Perfect Transmission
A genetic system that perfectly transmits parental selected haplotypes to gametes can
be represented by:

Tid(ai←aj|bk) = Ton
id(ai←aj|bk) = δij , (8)
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where δij = 1 if i = j and 0 otherwise. Any genetic system can be characterized by
the probability with which perfect transmission occurs. For a given modifier genotype
ab, a global characterization of the extent of perfect transmission can be captured by
a lower bound, 1 − αab, on the probability of perfect transmission over all selected
haplotypes, where

1− αab := min
i,k

{
T (ai←ai|bk), Ton(ai←ai|bk)

}
∈ [0, 1]. (9)

This lower bound can be used to parameterize the transmission probabilities:

T (ai←aj|bk) = (1− αab) δij + αab P (ai←aj|bk) (10)

and
Ton(ai←aj|bk) = (1− αab) δij + αab P

on(ai←aj|bk), (11)

Thus P (ai← aj|bk) ≥ 0 and Pon(ai← aj|bk) ≥ 0 for all i, j, k, and for some i, k,
P (ai←ai|bk) = 0 or Pon(ai←ai|bk) = 0.

Linear variation is defined to be where the sole effect of the modifier locus is to
determine α:

T (ai←aj|bk) = (1− αab) δij + αab P (i←j|k) (12)

and
Ton(ai←ak|bj) = (1− αab) δik + αab P

on(i←k|j). (13)

4.2 External Stability of a Modifier Monomorphism
For the purposes of brevity, it becomes useful at this point to restrict the analysis to
populations that are initially fixed on a single modifier allele. The steps that follow
apply to modifier polymorphisms, but require additional characterizations of the poly-
morphisms; modifier polymorphisms under generalized transmission are analyzed in
Altenberg (1984), and for particular cases of transmission processes, in Liberman and
Feldman (1986a,b); Feldman and Liberman (1986); Liberman and Feldman (1989).

The population will initially be at equilibrium, fixed on modifier allele b where
αbb > 0. Haplotypes will be listed only if they occur with positive frequency, so
ẑbi > 0 for all i at equilibrium. To this population at equilibrium, modifier allele
a is introduced. Linear variation and αbb > 0 preclude the possibility that the new
modifier allele will cause the production of selected haplotypes not already present in
the population.

For readability, let α̂ represent αbb, α represent αab, and r represent rab. For linear
variation (12)(13), the stability matrix M in (6) can be expressed as a function of α and
r:

M(α, r) =

[∑
k

T(r)(ai←aj|bk)wjk
ŵj

ẑbk

]n
i,j=1

= (1− α)[(1−r)I + rQ]+ α[(1−r)S + rSon],

(14)
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where [∑
k

δij
wjk
ŵj

ẑbk

]n
i,j=1

= I,

Q :=

[∑
k

δik
wjk
ŵj

ẑbk

]n
i,j=1

=
[
wij
ŵj

ẑbi

]n
i,j=1

,

S :=

[∑
k

P (i←j|k)wjk
ŵj

ẑbk

]n
i,j=1

, and

Son :=

[∑
k

Pon(i←k|j)wjk
ŵj

ẑbk

]n
i,j=1

.

Letting e be the vector of ones, and e> its transpose, note that

e>Q = e>S = e>Son = e>, (15)

since
∑
i P (i←j|k) =

∑
i P

on(i←k|j) =
∑
k wjkẑbk/ŵj = 1. M(α̂, r) can be used

to express the equilibrium constraint (5):

ẑb = M(α̂, r)Dẑb
=
{
(1− α̂)[(1−r)I + rQ] + α̂[(1−r)S + rSon]

}
Dẑb.

(16)

5 Results
The strategy for proving the reduction result for arbitrary r is to try to allow the im-
mediate application of Karlin’s Theorem 5.2 by representing M(α, r) as M(α, r) =
(1− β)I + βM, for a choice of M where we know ρ(MD). Finding an irreducible
stochastic such M would give

ρ(M(α, r)D) > ρ(MD) for 0 < β < 1,

and
ρ(M(α, r)D) < ρ(MD) for β > 1.

For our choice of M, we possess the crucial fact from (16) that ρ(M(α̂, r)D) = 1,
so we might hope to find β and r to give (1− β)I + βM(α̂, r) = M(α, r), but this is
unworkable. Fortunately, there exists a matrix solution M(α, r) = (1− β)I + βM?,
but M? may have negative elements along the diagonal for certain combinations of α,
α̂, and r. Such a matrix is known as a ‘Metzler-Leontief’ (Seneta, 1981) or ‘essentially
nonnegative’ (Cohen, 1981) matrix. An extension of Karlin’s Theorem 5.2 to ML-
matrices is provided which allows proof for all α, α̂, and r. We proceed in stages.
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5.1 Metzler-Leontief (ML) Matrices
An ML-matrix is a square real matrix where all non-diagonal elements are non-negative.
The spectral abscissa of a matrix A is defined as π(A) = maxi{Re(λi)}, where {λi}
are the eigenvalues of A. Let B refer to an ML-matrix, where bij ≥ 0 for all i 6= j.
We utilize the following properties of ML-matrices:

Lemma 1 (Spectral Abscissa of ML Matrices).

1. π(B) is an eigenvalue of B, referred to as the Perron root as it is for positive
matrices;

2. π(B) = ρ(B + gI)− g, for any g ≥ −mini{bii};

3. If Bz = λB and z > 0, then λ = π(B). If in addition B is irreducible, then
there also exists v > 0 such that v>B = π(B)v>, and z and v are unique up
to constant multiples.

Proof. These are found in, or follow directly from, Theorem 2.6 in (Seneta, 1981, pp.
45–46) and Theorem 3 in (Gantmacher, 1959, p. 66).

5.2 Solving for M?

Lemma 2. Define

M(α, c1, c2) := (1− α) [(1− c1) I + c1Q] + α[(1− c2)S + c2Son].

Then for α, α̂ ∈ (0, 1), and r ∈ [0, 1]:

1. M(α, r) = (1− β)I + βM(α̂, c1, c2) is solved by

β = α/α̂, c1 = rα̂(1− α)/[α(1− α̂)], and c2 = r,

to give
M(α, r) =

(
1− α

α̂

)
I +

α

α̂
M?, (17)

where

M? := M
(
α̂, r

α̂(1− α)
α(1− α̂)

, r

)
(18)

=
(

1− α̂−r α̂
α

+rα̂
)

I + rα̂

(
1
α
− 1
)

Q + α̂[(1− r)S + rSon].

2. e>M(α̂, c1, r) = e> and M(α̂, c1, r)Dẑb = ẑb for any c1 ∈ <.

3. M? is an ML-matrix and, if (1 − α̂)rQ + α̂[(1 − r)S + rSon] is irreducible,
π (M?D) = 1.

4. If, in addition, α ≥ α̂ or α ≥ α̂ r/[1− α̂(1− r)], then M? is non-negative and
π (M?D) = ρ (M?D) = 1.
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Proof. Straightforward evaluation verifies (17) and (18) from:

M? = (1− α̂)
[(

1− r α̂(1− α)
α(1− α̂)

)
I + r

α̂(1− α)
α(1− α̂)

Q
]

+ α̂ [(1− r)S + rSon].

By (15), e>M(α̂, c1, c2) = [(1− α̂)(1−c1 +c1)+ α̂(1−c2 +c2)]e> = e>. Observe
that IDẑb = QDẑb = Dẑb:

QDẑb =
[
wij
ŵj

ẑbi

]n
i,j=1

diag

[
ŵi

ŵ

]n
i,j=1

ẑb

=

∑
j

wij

ŵ
ẑbiẑbj

n
i,j=1

=

[
ŵi

ŵ
ẑbi

]n
i,j=1

= Dẑb.

Hence M(α̂, c1, r)Dẑb =

(1− α̂) [(1−c1) I + c1Q] + α̂[(1− r)S + rSon]Dẑb

is invariant for all c1 ∈ <. Since M(α̂, r, r) := M(α̂, r), then

M(α̂, c1, r)Dẑb = M(α̂, r, r)Dẑb = M(α, r)Dẑb = ẑb. (19)

The off-diagonal elements in (18) are non-negative as they all derive from non-
negative stochastic matrices—Q, S, and Son—multiplied by non-negative coefficients
under conditions α̂ ∈ (0, 1), c1 ≥ 0, and r ∈ [0, 1].

If (1− α̂)rQ + α̂[(1− r)S + rSon] is irreducible, then since ẑb is strictly positive,
ẑb is the right Perron eigenvector of M(α̂, c1, r)D with Perron root 1, by Lemma 1
(3). The coefficient on I, 1 − α̂ − rα̂/α + rα̂, is non-negative when α > α̂, for then
1− α̂− rα̂/α+ rα̂ ≥ (1− α̂)(1− r) ≥ 0, but is negative if α < α̂ r/[1− α̂(1− r)]
(found by simple rearrangement). Thence M? may have negative diagonal elements.
When M? is non-negative, then π(M?D) = ρ(M?D).

5.3 Extending Karlin’s Theorem 5.2 to ML-Matrices

Friedland’s (1981) Donsker-Varadhan related variational formula for the spectral radius
is applied to A ≥ 0 in order to show that it applies also to the Perron root of B =
A− g I:

Lemma 3 (Variational Formula for ML-Matrices). For any irreducible ML-matrix B,
the spectral abscissa is

π(B) = sup
p∈Pn

inf
x>0

n∑
i=1

pi
[Bx]i
xi

, (20)

where Pn = {p : p ≥ 0, e>p = 1}.
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Proof. Define for any matrix A,

f(A,p,x) :=
n∑
i=1

pi
[Ax]i
xi

. (21)

The Donsker-Varadhan related variational formula (Friedland, 1981, Corollary 3.1) for
irreducible A ≥ 0 gives us ρ(A) = supp∈Pn

infx>0 f(A,p,x). Substituting A =
B + g I:

ρ(A) = ρ(B + g I) = sup
p∈Pn

inf
x>0

n∑
i=1

pi
[(B + g I)x]i

xi

= sup
p∈Pn

inf
x>0

n∑
i=1

pi
[Bx]i
xi

+ g.

Knowing from Lemma 1 (2) that ρ(A) = π(B) + g proves the lemma. Moreover,

sup
p∈Pn

inf
x>0

f(A,p,x)

and
sup
p∈Pn

inf
x>0

f(B,p,x)

are both attained for the same p and x.

Lemma 4 (Derivative of the Spectral Abscissa). Let B(β) be a function of β ∈ <, in
continuity class C2, such that B(β) is an ML-matrix for β ≥ 0. Let p(β) and x(β) (x
normalized so e>x(β) = 1) be the vectors at which the supremum and the infimum in
(20), are attained, respectively. Then

d

dβ
π(B(β)) =

n∑
i=1

pi(β)
[
dB(β)
dβ

x(β)]i

xi(β)
.

Proof. Let A(β) = B(β) + g I ≥ 0 be a non-negative matrix associated with B(β).
So d

dβA(β) = d
dβB(β). By Lemma 1 (2), d

dβ ρ(A(β)) = d
dβπ(B(β)). Differentiating

(21):

d

dβ
f(A,p,x) =

∂f(A,p,x)
∂A

dA
dβ

+
∂f(A,p,x)

∂p
dp
dβ

+
∂f(A,p,x)

∂x
dx
dβ

Since p(β) and x(β) are unique critical points of f(A(β),p(β),x(β)) (Friedland and
Karlin, 1975; Friedland, 1981; Karlin, 1982):

∂f(A,p,x)
∂p

dp
dβ

∣∣∣∣ A(β),
p(β),x(β)

=
∂f(A,p,x)

∂x
dx
dβ

∣∣∣∣ A(β),
p(β),x(β)

= 0,
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hence

d

dβ
ρ(A(β)) =

d

dβ
π(B(β)) =

∂f(A,p,x)
∂A

dA
dβ

∣∣∣∣ A(β),
p(β),x(β)

=
n∑
i=1

pi(β)
[dA(β)

dβ x(β)]i
xi(β)

=
n∑
i=1

pi(β)
[dB(β)

dβ x(β)]i
xi(β)

.

Theorem 2 (Extension to ML-Matrices). Let L be an irreducible ML-matrix such that
e>L = e>. Consider the family of matrices

C(β) = (1− β)I + β L

with β > 0. Then for any diagonal matrix D not a multiple of I, with positive terms on
the diagonal, the spectral abscissa and Perron root

π(C(β)D)

is strictly decreasing as β increases.

Proof. Let B(β) = C(β)D. Applying Lemma 4 we have:

d

dβ
π(C(β)D) =

n∑
i=1

pi(β)
[(L− I)Dx(β)]i

xi(β)
,

since d
dβB(β) = d

dβC(β) D = (L− I)D.
Following Karlin’s proof in Karlin (1982), we note that for β > 0,

L− I =
1
β

([(1− β)I + βL]− I) =
1
β

[C(β)− I].

Hence

dπ(C(β)D)
dβ

=
1
β

n∑
i=1

pi(β)
[(C(β)− I)Dx(β)]i

xi(β)
=

1
β

[
π(C(β)D)−

n∑
i=1

pi(β)
Diixi
xi

]

=
1
β

[
π(C(β)D)−

n∑
i=1

pi(β)Dii

]
. (22)

As x(β) is unique and produces the infimum, for 0 < x 6= x(β):

n∑
i=1

pi(β)
[C(β)Dx(β)]i

xi(β)
<

n∑
i=1

pi(β)
[C(β)Dx]i

xi
.

Let y > 0 be the right Perron eigenvector of C(β). Since e>L = e>C(β) = e>,
we know that π(C(β)) = 1, hence C(β) y = y. Now, set x = D−1y, where y is
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scaled so that e>x = 1. Assuming D−1y 6= x(β), we get:

π(C(β)D) =
n∑
i=1

pi(β)
[C(β)Dx(β)]i

xi(β)
(23)

<

n∑
i=1

pi(β)
[C(β)DD−1y]i

(D−1y)i
=

n∑
i=1

pi(β)
yi

yi/Dii
=

n∑
i=1

pi(β)Dii

We verify that D−1y 6= x(β): should D−1y = x(β), then (23) is an equality, thence
π(C(β)D) = supp∈Pn

piDii = maxiDii. The supremum requires pi(β) = 0 for
all {i : Dii < maxj Djj}, which is nonempty because D 6= d I for any d. In con-
tradiction, irreducible L implies p > 0 (Friedland, 1981, eq. (3.5), Theorem 3.2, and
Corollary 3.1).

Application to (22) gives:

d

dβ
π(C(β)D) =

1
β

(
π(C(β)D)−

n∑
i=1

pi(β)Dii

)
< 0.

Corollary 1 (Extension to Substochastic-ML Matrices). Let L be an irreducible ML-
matrix such that e>L ≤ e> and e>L 6= e>. By extension from non-negative matrices
this will be referred to as a substochastic-ML matrix. Consider the family of matrices
C(β) = (1−β)I+β L with β > 0. Then for any diagonal matrix D with positive terms
on the diagonal, the Perron root and spectral abscissa π(C(β)D) is strictly decreasing
as β increases.

Proof. The steps are identical to those in the proof of Theorem 2 except that e>L ≤6=
e> means e>C(β) ≤6= e>, hence π(C(β)) < 1 (Seneta 1981, Corollary 3, p. 30;
Corollary 3, p. 52 and Lemma 1 (2)). No assumption that D−1y 6= x(β) is needed,
and (23) becomes:

π(C(β)D) ≤
n∑
i=1

pi(β)
π(C(β)) yi
(D−1y)i

= π(C(β))
n∑
i=1

pi(β)di <
n∑
i=1

pi(β)di.

Hence from (22), d
dβπ(C(β)D) < 0. No assumption D 6= d I is used.

5.4 Main Result
Theorem 3 (The Reduction Principle for Linear Variation). Suppose a new allele at
a modifier locus is introduced into a population fixed at the modifier locus near an
equilibrium with a positive selection potential among the selected haplotypes, and α̂ <
1. The new modifier allele produces linear variation in the transmission of the selected
loci, and is linked to the nearest selected locus with recombination rate r.

If M(α, r) is irreducible, the new modifier allele will increase (decrease) in fre-
quency at a geometric rate if it brings the transmission closer to (further away from)
perfect transmission, i.e., α < α̂ (α > α̂).

If M(α, r) is reducible, then:
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1. the new modifier allele will increase in frequency at a geometric rate if α < α̂,
provided it occurs in at least one haplotype whose marginal fitness differs from
the mean fitness of the population; and if α > α̂, it will either:

2. decrease in frequency at a geometric rate; or

3. not increase in the case where it occurs in a haplotype whose block in the Frobe-
nius normal form of M(α, r) is an isolated block with all marginal fitnesses
equal.

Proof. For α = 0, the theorem reduces to Result 2 in Altenberg and Feldman (1987).
Henceforth only α > 0 is considered. Lemma 2 shows that M? is an ML-matrix for
all α, α̂ ∈ (0, 1), and r ∈ [0, 1]. We substitute C(β) = (1−β)I+βM? and β = α/α̂,
thus C(α/α̂) = M(α, r).

Case 1: Irreducible M(α, r)D.
If M(α, r) is irreducible and D positive on the diagonal, M(α, r)D is irreducible,

and Theorem 2 applies. Hence for β > 0, d
dβπ(C(β)D) < 0. Therefore,

π(C(α/α̂)D) > π(C(1)D) = 1, for α < α̂,

and
π(C(α/α̂)D) < π(C(1)D) = 1, for α > α̂.

Since M(α, r) is always non-negative, the Perron root is in fact the spectral radius:

π(C(α/α̂)D) = π(M(α, r)D) = ρ(M(α, r)D).

For α̂ = 1 > α, M? is unsolvable, but as a limit for α̂ < 1, ρ(M(α, r)D) ≥ 1 is
assured.

Case 2: Reducible M(α, r)D.
If M(α, r) is reducible or D is not strictly positive on the diagonal, M(α, r)D is

reducible, and Theorem 2 must be extended. To analyze the dependence of the spectral
abscissa on α in the case of reducible C(β) or where some Dii = 0, we utilize the
Frobenius normal form of C(β)D. The Frobenius normal form permutes the indices
of C(β)D so that along the diagonal are irreducible square block matrices Ch(β)Dh,
where h indexes the diagonal blocks.

The Frobenius normal form, A, of a reducible matrix has the structure (Gant-
macher, 1959, p. 75):

A =



A1 0 · · · 0

0 A2
. . .

... 0
...

. . . 0
0 · · · 0 At

At+1,1 At+1,2 · · · At+1,t At+1 0 · · · 0
...

... · · · · · · · · ·
. . . . . . 0

At+s,1 At+s,2 · · · At+s,t At+s,t+1 · · · · · · At+s


(24)
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Blocks A1, . . . ,At are referred to as isolated blocks, while At+1, . . . ,At+s are re-
ferred to as non-isolated blocks. Isolation is defined in terms of the rows, so in a
matrix of the form (

A1 0
A3 A2

)
the block A1 is defined as isolated, whereas A2 is non-isolated if A3 6= 0. Thus, by
definition, block A1 in Frobenius normal form is always isolated.

At this point we require the following lemma:

Lemma 5. The eigenvalues of A are the eigenvalues of the irreducible diagonal block
matrices in the Frobenius normal form of A.

Proof. Let h ∈ I refers to isolated blocks, and h ∈ N refers to non-isolated blocks.
The non-isolated blocks are contained in a principal submatrix, AN , of A. In (24) this
would be

AN =

 At+1 0 · · · 0

· · ·
. . . . . . 0

At+s,t+1 · · · · · · At+s

 . (25)

The eigenvalues of A must be eigenvalues either of an isolated block Ah, h ∈ I,
or of the submatrix of non-isolated blocks, AN . This is readily seen, because, letting x
be an eigenvector of A, if Ax = λ x, then for isolated block h, Ahxh = λ xh, where
xh refers to the subvector of x with indices in block h. Hence either

1. λ is an eigenvalue of Ah; or

2. xh = 0. If xh = 0 for all h ∈ I, then ANxN = λ xN , hence λ is an eigenvalue
of AN .

In submatrix AN , we see from (25) that At+1 is an isolated block. Hence, repeat-
ing the argument above, the eigenvalues of AN must be eigenvalues of either At+1 or
of the principal submatrix containing blocks At+2 through At+x. Continuing recur-
sively in this manner, the lemma is proved.

Thus the eigenvalues of C(β)D — including the spectral abscissa — must be
eigenvalues of the diagonal blocks Ch(β)Dh. Therefore, the spectral abscissa for
C(β)D is the maximum of the spectral abscissas:

π(C(β)D) = max
h

π(Ch(β)Dh).

The spectral abscissas of each block are either constant, or strictly decreasing:

1. Constant if Dh = dh Ih and e>hCh(β) = e>h ;

2. Strictly decreasing if either

(a) Dh 6= d Ih (by Theorem 2), or

(b) Ch(β) is substochastic-ML, i.e. e>hCh(β) ≤ e>h , 6= e>h (by Corollary 1).

16



In the case where all blocks are isolated, it is not possible for all blocks to be
constant, as this would entail that D = I, which is contrary to hypothesis (7). In
the case where there is at least one non-isolated block, then (referring to the indices
in (24)) there is at least one non-zero matrix Ct+k,j , for some t ∈ {1, . . . , s}, and
j ∈ {1, . . . , t}. This entails that

e>t+kCt+k,j(β) + e>j Cj(β) ≤ e>j , 6= e>j

hence e>j Cj(β) ≤ e>j , 6= e>j , thus Cj(β) is a substochastic-ML matrix. Hence ifN is
nonempty, at least one isolated block will be an irreducible substochastic-ML matrix,
which by Corollary 1 is a decreasing block. Therefore, in all cases, there will be at
least one isolated block h for which Ch(β)Dh is strictly decreasing in β.

We have as a reference point (16), where for β = 1, C(1)Dẑb = ẑb > 0. Hence,
by Lemma 1 (3), π(C(1)D) = 1. We know by Theorem 6 in (Gantmacher, 1959,
pp. 77–78), extended to ML-matrices by Lemma 1 (3), that π(Ch(1)Dh) = 1 for all
h ∈ I, and π(Ch(1)Dh) < 1 for all h ∈ N .

For the parameter range 0 < β = α/α̂ < 1, i.e. α < α̂, at least one isolated
block has spectral abscissa strictly decreasing in β, thus π(Ch(β)Dh) > 1 for β < 1.
Hence,

π(C(α/α̂)D) = ρ(M(α, r)D) = max
h

π(Ch(α/α̂)Dh) > 1, for α < α̂. (26)

As long as the new modifier allele a is introduced into haplotypes that are part of the
isolated block for which π(Ch(α/α̂)Dh) > 1, i.e εah

6= 0, then εa will grow at a
geometric rate. This proves conclusion (1) in the theorem.

For the parameter range β = α/α̂ > 1, i.e. α > α̂, if there are no isolated blocks
for which Dh = dh Ih, then π(Ch(β)Dh) < 1, for all h ∈ I when β < 1. And
recalling that π(Ch(1)Dh) < 1 for all h ∈ N , then π(Ch(β)Dh) < 1 for all h ∈ N
when β > 1 since all blocks are either constant or decreasing. Therefore,

π(C(α/α̂)D) = ρ(M(α, r)D) = max
h

π(Ch(β)Dh) < 1, for β > 1,

yielding conclusion (2) in the theorem. If there is a constant isolated block, which
requires Dh = dh Ih, then π(C(β)D) = ρ(M(α, r)D) = 1 for β > 1. If the new
modifier allele is introduced associated with haplotypes within the constant block, then
conclusion (3) in the theorem holds.

Conditions for M(α, r) to be reducible are limited but important. For r = 0, S
must be reducible. This is the case in general when recombination is the only transfor-
mation acting on the selected haplotypes, and the Frobenius normal form of S consists
of isolated irreducible blocks. If no block has all marginal fitnesses the same, then con-
clusion (2) applies. For M(α, r) to be reducible when r > 0 and α < 1, Q + S + Son

must be reducible. This is precluded if all fitnesses wij are positive, making Q > 0.
For Q + S + Son to be reducible requires either that some haplotypes be lethal, or that
S+Son be reducible and that specific zeros in S+Son be matched by wij = 0, a highly
non-generic selection regime.
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6 Discussion

6.1 Mathematical Issues
Theorem 3 establishes the full generality of the reduction principle for modifier genes
that produce linear variation in genetic transmission, assuring that no exceptions to the
evolutionary reduction of genetic transformation rates can come about due to selection
regime, allele or locus multiplicity, different genetic processes, or recombination with
the modifier locus, for modifiers that produce linear variation in transmission.

In previous studies, analytical tractability required tradeoffs between various sim-
plifying assumptions: Liberman and Feldman (1986a,b); Feldman and Liberman (1986);
Liberman and Feldman (1989) allowed no more than two alleles at each selected locus,
or two demes in the case of migration modification, in order to obtain results for all
r > 0. Altenberg (1984); Altenberg and Feldman (1987) required r = 0 or α = 0
in order to obtain results for arbitrary allele and locus number, genetic processes, and
selection regimes. These tradeoff are now removed.

In the process of proving Theorem 3, I have had to extend Karlin’s Theorem 5.2 to
ML-matrices, substochastic matrices, and reducible matrices, which may have appli-
cation outside the current context of modifier gene theory. Moreover, the treatment of
reducible matrices here produces much stronger and more detailed results than in Al-
tenberg (1984); Altenberg and Feldman (1987), where the spectral radius ρ(M(α, 0)D
was only proven to be non-increasing in β for reducible M(α, 0). Here, it is proven that
ρ(M(α, r)D is strictly decreasing on α ∈ (0, α̂), and strictly decreasing on α ∈ (α̂, 1)
except when the marginal fitnesses are all equal within an isolated block in the Frobe-
nius normal form of M(α, r)D, in which case ρ(M(α, r)D = 1.

It should be noted that the method of proof utilized here does not allow us to say
that d

dαρ(M(α, r)D) < 0 for r > 0. That would be a much more direct means of
proof of Theorem 3 and would obviate the need to extend Karlin’s theorem to ML-
matrices. A proof, however, runs up against impediments at step (23) that have not
been surmounted.

Such a result would be necessary to say, as was done in Result 2 in Altenberg
and Feldman (1987), that the asymptotic strength of selection either for or against
a new modifier allele increases with |α − α̂|. Theorem 3 alone cannot not rule out
the possibility that the function ρ(M(α, r) meanders non-monotonically over (0, α̂)
or (α̂, 1), only that it never crosses the ρ = 1 line on those intervals. This perverse
possibility is not consistent, however, with the general finding that spectral functions
are convex (Friedland, 1981), and out of parsimony considerations, I would conjecture
that for any r > 0, d

dαρ(M(α, r)D) < 0.

6.2 Linear Variation
Linear variation is in a sense ‘impartial’ in that all transitions — from advantageous to
deleterious haplotypes, and vice versa — are scaled exactly the same. So the produc-
tion of both advantageous as well as deleterious haplotypes is reduced by a modifier
that reduces transformation rates. But Theorem 3 shows that a reducing modifier al-
lele always generates its own linkage disequilibrium with advantageous haplotypes and
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thus invades the population, while a modifier allele that increases transformation rates
generates linkage disequilibrium with disadvantageous haplotypes and thus goes ex-
tinct. This is the essence of the reduction principle.

Given this generality of the reduction principle for linear variation in transmission,
we must ask why natural genetic systems in fact depart from the reduction principle
and do not evolve to perfect transmission. The reduction principle guides us to the list
of assumptions that must be violated in order for departures from reduction to occur.

Removal of the near-equilibrium assumption of the model allows several classes
of departure from reduction. Systems may be kept far from equilibrium by fluc-
tuating selection, finite population size that produces drift, and de novo mutations.
Recombination has been found to evolve under a special form of cyclic selection
(Charlesworth, 1976; Hamilton, 1980), and under newly changed directional selection
(Maynard Smith, 1988; Charlesworth, 1993; Barton, 1995), and in finite populations
(Felsenstein, 1974; Felsenstein and Yokoyama, 1976). Removal of the assumption of
Mendelian segregation of the modifier locus, e.g. meiotic drive, allows the evolution
of recombination (Feldman and Otto, 1991).

Removal of the assumption of linear variation has produced many examples of
departure from reduction. Mechanistically, linear variation requires that the modifier
controls the ‘hit’ rate of a transforming process acting on the selected haplotypes, and
that this process be the only transforming process, otherwise transmission probabilities
between different genotypes will not be scaled equally. Furthermore, for α to enter
linearly in the recursion, the transformation process cannot allow multiple hits.

When spelled out thus, we see that the mechanistic requirements for linear variation
are not realized biologically. Multiple hits are the norm in chiasma formation and in
point mutation. Multiple transformation processes are also the norm, as recombination,
mutation, gene conversion, deletions, duplications, transpositions, etc. all happen in
gamete formation.

The case of multiple hits has been explored in a model of recombination modifi-
cation for a multi-locus system (Zhivotovsky et al., 1994). There, a refined reduction
principle again holds.

The case of multiple simultaneous transformation processes acting during trans-
mission has received a good deal of theoretical attention, and it is here that numerous
departures from the reduction principle have been found. A detailed review can be
found in Feldman et al. (1997). The cases exemplify the “principal of partial control”
(Altenberg, 1984, p. 149): when a modifier gene has only partial control over the
transformations occurring at selected loci, then it may be possible for this part of the
transformations to evolve an increase.

The problem of characterizing exactly the conditions on variation in transmission
that will evolve under modifier gene control remains an open question. Its solution
will require a deeper understanding of the differential properties of the spectra of non-
negative matrices.
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