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Abstract

A model of mutation rate evolution for multiple loci under arbitrary
selection is analyzed. Results are obtained using techniques from Karlin
(1982) that overcome the weak selection constraints needed for tractability
in prior studies of multilocus event models.

A multivariate form of the reduction principle is found: reduction
results at individual loci combine topologically to produce a surface of
mutation rate alterations that are neutral for a new modifier allele. New
mutation rates survive if and only if they fall below this surface — a
generalization of the hyperplane found by Zhivotovsky et al. (1994) for a
multilocus recombination modifier. Increases in mutation rates at some
loci may evolve if compensated for by decreases at other loci. The strength
of selection on the modifier scales in proportion to the number of germline
cell divisions, and increases with the number of loci affected. Loci that do
not make a difference to marginal fitnesses at equilibrium are not subject
to the reduction principle, and under fine tuning of mutation rates would
be expected to have higher mutation rates than loci in mutation-selection
balance.

Other results include the nonexistence of ‘viability analogous, Hardy-
Weinberg’ modifier polymorphisms under multiplicative mutation, and
the sufficiency of average transmission rates to encapsulate the effect of
modifier polymorphisms on the transmission of loci under selection. A
conjecture is offered regarding situations, like recombination in the pres-
ence of mutation, that exhibit departures from the reduction principle.
Constraints for tractability are: tight linkage of all loci, initial fixation
at the modifier locus, and mutation distributions comprising transition
probabilities of reversible Markov chains. 1
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1 Introduction

Genetic systems have the same material basis as developmental and physio-
logical systems — proteins, nucleotides, regulatory sequences, gene interaction
networks, and self-organizing structures and activities in the cell and organism.
For the evolution of genetic systems, however, the Darwinian paradigm of herita-
ble variation for fitness runs into a complication: genetic variation for heredity
can change the content of an organism’s contribution to the next generation
without necessarily changing the quantity, i.e. the organism’s fitness. Genetic
variation for heredity can therefore be selectively neutral yet still enter into the
evolutionary dynamics or the population. Models of selectively neutral genes
that modify genetic transmission — modifier genes — have been posed and
analyzed in order to understand the evolutionary forces on the genetic system
itself.

The methodology of the neutral modifier model is to find out what effects a
modifier allele must have on transmission in order to survive, as a function of
the conditions of the population (such as the selection regime, existing genetic
system, current genes in the population, population size, etc.). Since the modi-
fier locus is assumed to have no intrinsic effect on fitness, its differential survival
requires it become associated with alleles at loci under selection that have above
average fitness. This is called induced selection (also referred to as ‘secondary
selection’ (Karlin and McGregor, 1972b; Kondrashov, 1995)). The task of mod-
ifier theory is to find out which effects on transmission cause a modifier allele
to become associated with fitter genotypes.

Any particular system can be simulated to find out the result, and a region
of systems evaluated, but one cannot be sure how such results interpolate or
extrapolate without analytical results. A ‘complete theory’ of modifier genes
would be a complete classification of population conditions and modifier effects
that would produce modifier allele survival. The current state of theory is
far from this complete classification due to the limitations of mathematical
techniques. Analytical results have been obtained only for models that are
great simplifications of reality. The relevance of their results to real systems
is justifiable only by the premise that the results extend beyond the simplified
models into the space of real systems. One may argue that this premise is
implicit in the use of all theoretical results from simplified models.

This premise is always uncertain. To lessen the uncertainty, one would like
to analyze models that are ever closer to reality. Modifier theory has a history
of being extended to ever more realistic and general models. One result that
has reappeared throughout this sequence of greater realism is the Reduction
Principle: that population near equilibrium under a balance of selection and
transformation processes will evolve in the direction of reduced rates of those
transformation processes.
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Modifier models exhibiting the reduction principle have mostly shared one
glaring departure from reality: that only a single transforming event during
reproduction occurs for the genes under selection — i.e. a single mutation, or
single crossover. In reality, multiple transformation events are the rule during
reproduction. This paper takes one step toward greater reality by modeling
modifiers of multiple events.

1.1 The Reduction Principle

In the first analyses of genetic modifiers of mutation, recombination, and mi-
gration in the 1970s, a common result kept appearing, which was that only
reduced levels of mutation, recombination, or migration could evolve when pop-
ulations were near equilibrium under a balance between the forces of selection
and transmission. Feldman (1972) discovered the first example of this analytical
reduction result for modifiers of recombination between two loci with two alle-
les under viability selection, for multiplicative and symmetric viability regimes.
Subsequent studies extended the reduction result to larger and larger spaces
of models, including modifiers of mutation and migration rates, large modified
rates, and arbitrary viability selection regimes (Karlin and McGregor, 1972b;
Feldman and Balkau, 1973; Balkau and Feldman, 1973; Karlin and McGregor,
1974; Feldman and Krakauer, 1976; Teague, 1977; Feldman et al., 1980).

It so happened that during this same time period, on a seemingly unrelated
topic — how population subdivision would affect the maintenance of genetic
variation — Karlin (1976, 1982) developed two general theorems on the spectral
radius of perturbations of migration-selection systems. These theorems show
how, for two different kinds of variation in migration, a greater level of ‘mixing’
lowers the spectral radius of the stability matrix for the system, and reduces
the number of alleles that exist as protected polymorphisms. The theorems
first appear, without proof, in Karlin (1976, pp. 642–647), and with proof as
Theorems 5.1 and 5.2 in Karlin (1982).

The ‘mixing’ that occurs in migration is dynamically analogous to the ‘mix-
ing’ of genetic information that occurs during reproduction. Altenberg (1984)
found that Karlin’s Theorem 5.2 applied to the form of variation modeled in the
literature that exhibited the reduction result, through use of a general represen-
tation of genetic transmission, which hides the details of the genetic system but
makes explicit the form that variation in transmission takes. Because of the gen-
erality of Theorem 5.2, its applicability meant that the reduction result could be
extended to arbitrary genetic systems and processes being modified (for which
recombination, mutation, and migration are special cases), arbitrary numbers
of alleles and loci, and arbitrary selection regimes — a level of generality not
often attainable in population genetics theory.

However, the tradeoff for this generality is the very specific way that the
modifier gene must vary genetic transmission in order for Theorem 5.2 to ap-
ply: the modifier gene must scale equally all transmission probabilities between
different genotypes. This is referred to as linear variation (Altenberg 1984;
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Altenberg and Feldman 1987). Linear variation has the form:

T (i←j, k) = α P (i←j, k) for j, k 6= i,

where T (i← j, k) is the probability that parental haplotypes j and k produce
a gamete haplotype i, and α is the parameter controlled by the modifier gene
that scales the transmission rates P (i←j, k).

Subsequent studies of the reduction principle for linear variation include
Feldman and Liberman (1986), Liberman and Feldman (1986b), Liberman and
Feldman (1986a), Altenberg and Feldman (1987), and Altenberg (2009).

What linear variation means, in biological terms, is that during reproduc-
tion, the genotype is ‘hit’ only once by the transformation processes, and the
probability that this hit occurs is what is controlled by the modifier gene. Be-
ing hit only once, however, is manifestly unrealistic because reproduction almost
universally exhibits multiple independent transformation events, including mul-
tiple mutations, crossovers, chromosomal reassortment, transpositions, and their
combinations.

The literature has explored the realm of multiple-hit genetic transformation
models to a very limited extent, but even here, important phenomena have been
discovered. These studies can be classified into two categories:

1. models of two mixed processes, where the modifier gene controls one trans-
formation process, but a second, different transformation process occurs
outside of its control; and

2. models of a single process that can occur multiple times among different
loci; in this case, the models are all of multi-locus recombination modifi-
cation (Zhivotovsky et al., 1994; Zhivotovsky and Feldman, 1995).

1.1.1 Mixed Processes

Mixed processes are notable in that they are where departures from the reduc-
tion principle are found in near-equilibrium populations. The mixed process of
greatest interest has been recombination in the presence of mutation (Feldman
et al., 1980; Charlesworth, 1990; Otto and Feldman, 1997; Pylkov et al., 1998),
and the departures from the reduction result are the basis of the ‘deterministic
mutation hypothesis’ for the evolution of sex (Kondrashov, 1982, 1984). Other
mixed processes studied include: the evolution of recombination in the pres-
ence of migration (Charlesworth and Charlesworth, 1979; Pylkov et al., 1998),
or segregation and syngamy (which self-fertilization exposes in the recursion)
(Charlesworth et al., 1979; Holsinger and Feldman, 1983a); or models of the
evolution of multiple mutation processes (Altenberg, 1984, pp. 137–151), or
mutation in the presence of segregation and syngamy (also exposed in the re-
cursion by self-fertilization (Holsinger and Feldman, 1983b) or fertility selection
(Holsinger et al., 1986)).

The departures from the reduction principle caused by mixed processes are
summarized by the ‘principle of partial control’: when the modifier gene has
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only partial control over the transformation occurring at loci under selection,
then it may be possible for the part it controls to evolve an increase in rates
(Altenberg, 1984, pp. 149, 225–228).

1.1.2 Multiple Hit Processes

In the majority of these models of mixed processes, the process controlled by
the modifier gene still occurs as a single event during reproduction. Multiple
events under modifier control are studied in a model of recombination between
multiple loci in Zhivotovsky et al. (1994), Zhivotovsky and Feldman (1995) and
Pylkov et al. (1998). By assuming fitness differences near zero (i.e. weak selec-
tion), two alleles per locus, and an unlinked modifier locus, these studies obtain
analytic results for a modifier gene that has arbitrary control over recombination
distributions that include multiple recombination events.

The main result in Zhivotovsky et al. (1994) is that they find a more so-
phisticated reduction principle at work: a new modifier allele will increase when
rare if and only if it reduces a certain weighted sum of recombination prob-
abilities. Notably, particular recombination events may evolve an increase in
rates, as long as the weighted sum is decreased. This more complex result is
distinguished by the term ‘generalized reduction principle’.

1.1.3 Multiple Hit Processes Under Strong Selection

Can the constraints of weak selection and two alleles per locus in these prior
studies be dropped? That is the aim of this paper. Techniques from the proof
of Theorem 5.1 in Karlin (1982) allow one to obtain analytic results for a more
general modifier model with:

1. multiple loci under selection,

2. multiple alleles at those loci,

3. arbitrary viability selection regimes of any strength,

4. arbitrary control over the rates of the multiple events, and

5. arbitrary numbers of cell divisions from zygote to gamete.

The latter generalization — to multiple cell divisions in the gamete line — is
novel to this study; multiple cell divisions fundamentally rule out models with
linear variation, and require multiple-hit theory.

To use these techniques, however, a different set of constraints is needed:

1. the population begins fixed at the modifier locus,

2. the only type of event is mutation,

3. mutation events occur at each locus independently,

4. the mutation rates at each locus are scaled equally by the modifier locus,
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5. mutation distributions must have the form of transition probabilities of
reversible Markov chains, and

6. no other genetic processes occur, including recombination.

This last constraint — an absence of recombination — produces the greatest
distance from realism in this model. The distance of a constraint from physical
reality, however, may not reflect its distance mathematically from techniques
that make it unnecessary. This was the case with the reduction results in Al-
tenberg (1984) and Altenberg and Feldman (1987), whose proofs depend on the
assumption that no recombination occurs between the modifier locus and the
loci under selection; addition of a single mathematical technique allowed this
constraint to be dropped in the proof of the reduction result (Altenberg, 2009).
The present results, which require an absence of recombination, are similarly
presented with the hope that future developments will allow this constraint to
be removed.

The modifier gene here is assumed to produce linear variation for single loci,
but multiple independent events occur over multiple loci. In other words, the
modifier gene scales equally the mutation probabilities between all alleles at
each single locus, but the probability of multiple mutations is the product of
the probabilities of the single mutations. Furthermore, the modifier is allowed
arbitrary control over the mutation rate parameter for each locus.

Under these assumptions, one loses the use of Karlin’s Theorem 5.2, since
it is impossible generically for the modifier gene to produce linear variation in
transmission. However, Karlin has another theorem — 5.1 — which applies to
a different form of variation that has many more degrees of freedom (see (14)).
And, as it turns out, the form of variation treated in Karlin’s Theorem 5.1 is
perfectly suited to multiple event models.

Karlin’s Theorem 5.1 — which does not appear to have been utilized in
the literature since its original publication (Karlin, 1982) — here comes into its
own. Theorem 5.1 considers stochastic matrices Karlin defines as symmetrizable,
which affords use of the Rayleigh-Ritz variational characterization of the spectral
radius. While Karlin does not mention it, symmetrizable stochastic matrices are
one and the same as transition matrices for time-reversible Markov chains (see
Lemma 2), which are assumed for most models of mutation in phylogenetic
reconstruction (Squartini and Arndt, 2008)). In an earlier version of this paper,
I used Theorem 5.1 directly, but with further consideration it turns out that the
critical tools needed are actually certain steps in Karlin’s proof (Karlin, 1982,
pp. 114–116, 197–198).

Application of these tools to this multiple-hit model yields —unsurprisingly—
the reduction result. Moreover, the result has the form of the ‘generalized
reduction principle’ delineated by Zhivotovsky et al. (1994), in that mutation
rates can increase at some loci provided that mutation rates decrease sufficiently
at other loci.

The weighted average of the mutation rates found by Zhivotovsky et al.
(1994) to be the criterion for the initial increase of the modifier is shown here
to actually be the linear limit of a larger object: namely, a smooth manifold of
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mutation rates that divides the space of mutation rates into those that will cause
a modifier to invade, and those that will cause it to go extinct. The existence
of this manifold is found to be a topological necessity from the single-locus
reduction result, shown using the Intermediate Value Theorem and Implicit
Function Theorem.

For clarity, the main results of the paper from Section 4.2 are previewed
here:

Main Result (Multivariate Reduction Principle for Symmetrizable Mutation
Rates at Multiple Loci). Consider a genetic system in which a modifier locus
controls the mutation rates of a group of loci under viability selection. Muta-
tions occur independently among the loci under selection. In a population near
equilibrium under a stable mutation-selection balance, fixed at the modifier lo-
cus, let a new allele of the modifier locus be introduced. The new modifier allele
can change the mutation rate parameter separately for each locus, and each pa-
rameter scales equally the probability of mutations at that locus.

Under the following constraints:

1. mutation rates at each locus range between 0 and 1/2,

2. no recombination or other transformation process acts on the genes,

3. the mutation matrix for each locus is irreducible, and

4. is the transition matrix for some reversible Markov chain,

then the new modifier allele will increase (decrease) in frequency at a geometric
rate if, among the loci that affect the marginal fitnesses:

1. it reduces (increases) the mutation rate at any locus, and does not increase
(decrease) the mutation rates at any locus;

2. it increases the mutation rates for at least one locus, and decreases the
mutation rates for at least one locus, and falls below (above) the neutral
manifold of mutation rates that includes the mutation rates at the equilib-
rium. Should the mutation rates produced by the new modifier allele fall
on this neutral manifold, then it will not change frequency at a geometric
rate.

Moreover, the further that the new set of mutation rates is from the neutral
manifold, the stronger is the eventual induced selection for (against) the new
modifier allele, up to a maximum fitness of maxi ŵi/ŵ for a modifier allele that
eliminates all mutation.

These results hold, in the case of multicellular organisms, for arbitrary num-
bers of cell divisions between gamete generations. The strength of selection on
the modifier locus scales in proportion to the number of cell divisions in the
germline, and increases with the number of loci controlled by the modifier.
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The paper proceeds with an introduction to the general modifier gene model,
followed by development of mathematical tools that will be used, key theorems,
and finally their application to the modifier model. It concludes with a discus-
sion of the particular implications of the main results, a discussion on the nature
of models that depart from the reduction principle, and a conjecture about de-
partures from the reduction principle that embodies the proposed explanation
and can readily be tested.

2 The General Evolutionary Model

I give a condensed exposition of the general modifier model developed in Al-
tenberg (1984) and Altenberg and Feldman (1987), used in Zhivotovsky et al.
(1994), Zhivotovsky and Feldman (1995), and Pylkov et al. (1998), and de-
scribed recently in detail in Altenberg (2009).

The genome is structured in two parts: a group of loci experiencing natural
selection, and, external to the group, a neutral locus that modifies their genetic
transmission probabilities. The model assumes an infinite population, random
mating, non-overlapping generations, frequency-independent viability selection,
sex symmetry, and no sex-linkage. Although selection acts on diploid genotypes,
the haplotype frequencies become dynamically sufficient state variables under
random mating. Haplotypes have two indices: one for the haplotype of the loci
under selection (i, j, k), and one for the allele at the modifier locus (a, b, c). The
modifier allele is assumed to be transmitted without alteration and in Mendelian
proportions (no mutation nor segregation distortion), so that the only force
acting upon it is from associations it forms with the loci under selection.

The recursion on the frequency of haplotypes from one generation to the
next is:

w z′ai =
∑
bjk

T(r)(ai←aj|bk) wjk zaj zbk (1)

where

zai is the frequency of the haplotype with allele a at the modifier locus, and
haplotype i at the loci under selection; z′ai is the next generation;

wjk = wkj is the fitness of diploid genotype jk for the loci under selection;

w :=
∑
abjk

wjk zaj zbk is the mean fitness of the population.

rab is the probability of recombination between the modifier locus and the near-
est locus under selection,

T(r)(ai←aj|bk) is the probability that parental haplotypes aj and bk produce
an offspring haplotype ai, conditioned on the modifier allele of the offspring
being a:

T(r)(ai←aj|bk) := (1− rab)T (ai←aj|bk) + rabT
on(ai←ak|bj),
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where the probability that parental genotype aj, bk produces gamete hap-
lotype ai is:

T (ai←aj|bk), when no recombination occurs between the modifier and nearest
locus under selection, and

Ton(ai←ak|bj), when recombination occurs between the modifier and nearest
locus under selection (hence aj|bk becomes ak|bj). If there is no position
effect from the modifier locus, then T (ai←aj|bk) = Ton(ai←aj|bk).

So, 1 =
∑
i T (ai←aj|bk) =

∑
i T

on(ai←ak|bj), ∀a, b, j, k.
At this point it becomes appropriate to point out a fundamental property

of genetic transmission:

Result 1 (Sufficiency of the Mean Transmission Probabilities). The transmis-
sion probabilities enter into the dynamics of the haplotype frequencies of the loci
under selection solely through their population averages, regardless of any form
of underlying genetic variation for the transmission probabilities.

Proof. Let

vi :=
∑
a

zai

represent the frequency of haplotype i comprising the loci under selection. The
population average of the transmission probabilities experienced by the loci
under selection is:

T̄(r)(i←j|k) :=

∑
ab T(r)(ai←aj|bk) zaj zbk∑

ab zaj zbk

=
1

vj vk

∑
ab

T(r)(ai←aj|bk) zaj zbk. (2)

The recursion on vi is thus:

w v′i =
∑
a

z′ai =
∑
abjk

T(r)(ai←aj|bk) wjk zaj zbk

=
∑
jk

T̄(r)(i←j|k) wjk vj vk. (3)

Hence, any modifier polymorphism enters the dynamics of vi solely through the
population mean T̄(r)(i←j|k).

The mean transmission probabilities T̄(r)(i←j|k) thus behave like a sufficient
statistic, in that no additional details about zai or T(r)(ai←aj|bk) matter to the
value of v′i. Hence T̄(r)(i←j|k) screens off (Salmon, 1971, 1984; Brandon, 1982)
any details of polymorphisms of the modifier locus, such as allele frequencies or
linkage disequilibrium.

It should be noted that (3) cannot be used to define the dynamics, because
T̄(r)(i← j|k) is itself subject to change that is not definable in terms of {vi}.
Hence the {zai} are dynamically sufficient state variables (Lewontin, 1974, pp.
6–8), while {vi} are not.
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2.1 Equilibrium Relations

A population at equilibrium under (1) must satisfy the constraint for each b:

ŵ ẑbi =
∑
cjk

T(r)(bi←bj|ck) wjk ẑbj ẑck, (4)

where ˆ indicates the marked variable is at an equilibrium value. In vector form:

ẑb = M(b) D ẑb, (5)

where

ẑb := (ẑb1 ẑb2 · · · ẑbn)> (> is the transpose),

n is the number of different haplotypes for the group of loci under selection,

D := diag
[
ŵi/ŵ

]n
i,j=1

,

ŵj :=
∑
ck

ẑckwjk, and

M(b) :=

[∑
ck

T(r)(bi←bj|ck)
wjk
ŵj

ẑck

]n
i,j=1

.

Note that D a non-negative diagonal matrix, and M is a (column) stochastic
matrix, since

∑
i T(r)(bi←bj|ck) = 1 for all b, c, j, k, hence∑

i

[M(b)]ij =
∑
i

∑
ck

T(r)(bi←bj|ck)
wjk
ŵj

ẑck =
∑
ck

wjk ẑck
ŵj

=
ŵj
ŵj

= 1.

A perturbation of the equilibrium to zbi = ẑbi + εbi produces:ŵ + 2
∑
bjck

εbjwjkẑck +
∑
bjck

εbjεck

 (ẑbi + ε′bi) (6)

=
∑
cjk

T(r)(bi←bj|ck) wjk (ẑbj + εbj) (ẑck + εck).

The system (6) is assumed to be stable to internal perturbations, i.e. for per-
turbations where εbi 6= 0 only for b, i : ẑbi > 0.

2.2 Initial Increase of a New Modifier Allele

The long-term evolution of genetic transmission depends on the properties that
allow a new modifier allele to invade a population and be protected from ex-
tinction. Hence the analysis focuses on perturbations of the equilibrium by rare
modifier alleles, entailing ẑai = 0 for all i for new modifier allele a. Making this
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substitution, and ignoring all second and higher order terms in the perturba-
tion, the linear recursion on a new modifier allele, a, that perturbs (4) can be
represented in vector form as:

ε′a = M(a) D εa , (7)

where

εa := (εa1 εa2 · · · εan)>, (8)

and

M(a) :=

[∑
bk

T(r)(ai←aj|bk)
wjk
ŵj

ẑbk

]n
i,j=1

(9)

= (1−r)

[∑
bk

T (ai←aj|bk)
wjk
ŵj

ẑbk

]n
i,j=1

+ r

[∑
bk

Ton(ai←ak|bj)wjk
ŵj

ẑbk

]n
i,j=1

.

Modifier allele a will increase at a geometric rate when rare if and only if the
spectral radius ρ(M(a)D) exceeds 1, and will decrease at a geometric rate when
rare if and only if the spectral radius ρ(M(a)D) is less than 1. Clearly, if D = I,
then ρ(M(a)D) = ρ(M(a)) = 1, so geometric rates of change in modifier allele
frequencies require D 6= I, a situation described by saying there is a positive
selection potential (Altenberg 1984, “fitness load” p. 63; Altenberg and Feldman
1987):

V =
maxi ŵi

ŵ
− 1 > 0. (10)

We know from (5) that ρ(M(b)D) = 1, since ẑb = M(b)D ẑb, provided ẑb ≥6= 0
is the only nonnegative eigenvector of M(b)D.

The analysis consists of evaluating how the relationship between M(a) and
the matrices {M(b)}maps to the relationship between ρ(M(a)D) and ρ(M(b)D) =
1.

2.3 Constraints for Tractability

Evaluating how the relationship between M(a) and the matrices {M(b)} affects
ρ(M(a)D) is, in general, difficult. The addition of three constraints makes it
tractable:

1. Mutation is the only transformation process acting on the loci under se-
lection;

2. the modifier locus is fixed on a single allele in the initial population; and

3. the modifier locus is tightly linked to the loci under selection.
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Mutation. In mutation, the products from transformation of a haplotype
depend on that haplotype alone, not on the haplotype from the other parent,
so T(r)(ai←aj|bk) can be simplified to T(r)(ai←aj|b), and (9) becomes:

M(a) =

[∑
bk

T(r)(ai←aj|b)wjk
ŵj

ẑbk

]n
i,j=1

= (1− r)

[∑
bk

T (ai←aj|b)wjk
ŵj

ẑbk

]n
i,j=1

+ r

[∑
bk

Ton(ai←ak|b)wjk
ŵj

ẑbk

]n
i,j=1

Fixation of the Modifier Locus. The sum over k involves only the terms
wjkẑbk, and can be made to cancel out the ŵj term if the initial population is
fixed on a single modifier allele b, since in that case∑

k

wjkẑbk =
∑
bk

wjkẑbk = ŵj ,

and therefore

M(a) = (1− r)

[
T (ai←aj|b) ŵj

ŵj

]n
i,j=1

+ r

[∑
k

Ton(ai←ak|b)wjk
ŵj

ẑbk

]n
i,j=1

= (1− r) Tab + rTon
ab DẑbW D−1/ ŵ, (11)

where

W := [wij ]
L
i,j=1 is the matrix of fitness coefficients;

Dẑb represents a diagonal matrix whose diagonal entries are the entries of the
vector ẑb;

Tab :=
[
T (ai←aj|b)

]n
i,j=1

, and

Ton
ab :=

[
Ton(ai←aj|b)

]n
i,j=1

.

The matrices Tab and Ton
ab do not depend on either the selection coefficients or

the haplotype frequencies, which is a great simplification of M(a). Additional,
more compelling, reasons to fix the initial population on a single modifier al-
lele arise from the structure of the transmission matrix, described in Section
2.4.1. Hence, fixation of the initial population on modifier allele b is assumed
throughout the remainder of the paper.

No Recombination with the Modifier Locus. The analysis here follows
Karlin’s (1982, p. 198) application of the Rayleigh-Ritz variational characteri-
zation of the spectral radius (Wilkinson 1965, pp. 172–173, Horn and Johnson
1985, pp. 176–180), which requires that M(a) be symmetrizable — i.e. of the
form LSR, where L and R are positive diagonal matrices, and S is a real sym-
metric matrix.
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For tight linkage of the modifier gene to the loci under selection, r = 0, so
(11) becomes simply M(a) = Tab, and symmetrizable Tab are readily defined.
This is treated in Section 3.

However, for looser linkage, r > 0, a key step in the analysis is blocked (see
footnote 3 in the proof of Theorem 2). When r > 0, the term

1

ŵ
DẑbW D−1

precludes finding families of M(a) that are generically symmetrizable. For, sup-
pose that

M(a) = (1− r) Tab + rTon
ab DẑbW D−1/ ŵ = LSR.

Then
S = (1− r) L−1TabR

−1 + rL−1Ton
ab DẑbW D−1R−1/ ŵ.

But if this expression is to be symmetric for any r, then both L−1TabR
−1 and

L−1Ton
ab DẑbW D−1R−1 must be symmetric. The first term requires Tab be

symmetrizable, as before. But the second term, to be symmetric, forces muta-
tion rate matrix Ton

ab to depend on the equilibrium haplotype frequencies ẑbi,
and the marginal fitnesses ŵi, which is contrary to the biological basis of muta-
tion rates, non-generic, and not useful for understanding the selective forces on
mutation rates.

Hence, for the remainder of the analysis, it is assumed that there is tight
linkage between the modifier and the loci under selection, that mutation is the
sole transformation process, and the initial population begins fixed on modifier
allele b. Relaxation of each of these constraints would be a goal for future
analytical methods.

2.4 Multilocus Mutation Structure

The biology of mutation provides a natural structure for multiple events. Each
nucleotide is a locus for a possible mutation event. And in multicellular organ-
isms, each cell division in the gamete lineage provides opportunities for mutation
events (ranging from approximately 9 cell divisions in nematodes, 36 in flies, to
200 in humans (Lynch et al., 2008)).

Assuming that mutations occur independently at each nucleotide, and in-
dependently from one cell division to the next, the the probability of multiple
events is just the product of the probabilities of each event individually. This
is a standard assumption in many phylogenetic inference models (e.g. see Yang
and Nielsen 2002, Whelan and Goldman 2004). The modifier gene is posited to
rescale equally the probabilities of all single events at each locus. So the modifier
gene could be said to produce linear variation at each single locus, but not over
the entire haplotype. Multiple cell divisions between gamete generations are
represented in the dynamics simply as multiple powers of the mutation matrix.

Multiple non-independent mutation events do happen in nature, however. A
mutational event may involve multiple nucleotides. To decompose the probabil-
ities in this case would require nested sums and products of transition matrices
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(an example with dinucleotide dependencies is modeled by Squartini and Arndt
(2008) in the context of phylogenetic processes), and will not be pursued here.

The implementation of these assumptions is as follows. Let:

L be the number of loci under selection, and ξ, κ ∈ {1, . . . , L} index the loci;

µ be an L-long vector of mutation rates, one rate µξ for each locus ξ, whose
values are controlled by the modifier gene;

µξP
(ξ)
ij be the probability of mutation from allele j to allele i at locus ξ;

P(ξ) :=

[
P

(ξ)
ij

]νξ
i,j=1

be the νξ × νξ transition matrix representing the mutation

distribution at locus ξ;

νξ be the number of possible alleles at locus ξ; and together,

M
(ξ)
µξ := (1−µξ)I(ξ) +µξP

(ξ) = I(ξ) +µξ(P
(ξ)− I(ξ)) is the νξ×νξ transmission

matrix for alleles at locus ξ.

Under the assumption that each locus mutates independently of the other
loci, the transmission matrix for the entire space of haplotypes of loci under
selection is represented by the Kronecker (tensor) product (⊗):

Mµ =

L⊗
ξ=1

M(ξ)
µξ

=

L⊗
ξ=1

[(1− µξ)I(ξ) + µξP
(ξ)]. (12)

I will use the terms multivariate, multiplicative variation to refer to the way
that (12) maps variation in µ to variation in Mµ.

2.4.1 Consequences for Modifier Polymorphisms

Multivariate, multiplicative variation does not allow for the elegant “viability
analogous, Hardy-Weinberg” (VAHW) equilibria, ẑ = ŷ⊗ v̂, that arise in mod-
ifier models with linear variation (ŷ is the frequency vector of the modifier al-
leles)(Feldman and Krakauer 1976, Altenberg 1984, pp. 130–169, Feldman and
Liberman 1986, Liberman and Feldman 1986b, Liberman and Feldman 1986a).

In VAHW equilibria, the parameter controlled by the modifier allele behaves
as if it were a viability fitness coefficient (one minus that parameter, actually).
The transmission probabilities have the parameterized form:

T (ai←aj|bk) = Tαab(i←j|k),

where the modifier locus genotype (a, b) enters solely through the parameter
αab. The VAHW structure requires that population averages of the transmission
rates, as in (2), be expressible as Tα(i←j|k) for some α. This is possible if and
only if the space of variation in transmission is convex.
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But convexity no longer holds for multiplicative variation. For one-locus
mutation with linear variation, the convexity of the space is seen by its form:

M := {(1− µ)I + µP : µ ∈ (0, 1/2)},

where, for a set {pi : pi ≥ 0,
∑
i pi = 1}, one has∑

i

piMµi = Mµ, where µ :=
∑
i

piµi.

For multivariate, multiplicative variation, the space of variation is,

M := {
L⊗
ξ=1

[(1− µξ)I(ξ) + µξP
(ξ)] : µξ ∈ (0, 1/2)}

If µξ varies for more than one ξ, M is no longer a convex set, so population
averages of Mµ over different µ are not of the form Mη, for any η.

This can be seen in the simplest case where L = 2. Let there be two set of
different mutation rates for each locus, and take their weighted average using
p, 1− p, 0 < p < 1. Now, suppose there is µ such that:

Mµ = pMµ1
+ (1− p)Mµ2

= p[(1− µ(1)
1 )I(1) + µ

(1)
1 P(1)]⊗ [(1− µ(2)

1 )I(2) + µ
(2)
1 P(2)]

+ (1− p)[(1− µ(1)
2 )I(1) + µ

(1)
2 P(1)]⊗ [(1− µ(2)

2 )I(2) + µ
(2)
2 P(2)]

(here µ
(1)
1 and µ

(1)
2 refers to the two mutation rates at locus 1). Equating

coefficients on each matrix term,

(1− µ(1))(1− µ(2)) = p(1− µ(1)
1 )(1− µ(2)

1 ) + (1− p)(1− µ(1)
2 )(1− µ(2)

2 ),

µ(1)(1− µ(2)) = pµ
(1)
1 (1− µ(2)

1 ) + (1− p)µ(1)
2 (1− µ(2)

2 ),

(1− µ(1))µ(2) = p(1− µ(1)
1 )µ

(2)
1 + (1− p)(1− µ(1)

2 )µ
(2)
2 , and

µ(1)µ(2) = pµ
(1)
1 µ

(2)
1 + (1− p)µ(1)

2 µ
(2)
2 .

The result of adding the last two equations, and adding the second and last
equations:

µ(2) = pµ
(2)
1 + (1− p)µ(2)

2 , µ(1) = pµ
(1)
1 + (1− p)µ(1)

2

gives:

µ(1)µ(2) = pµ
(1)
1 µ

(2)
1 + (1− p)µ(1)

2 µ
(2)
2

= [pµ
(1)
1 + (1− p)µ(1)

2 ] [pµ
(2)
1 + (1− p)µ(2)

2 ]

which requires either µ
(1)
1 = µ

(1)
2 , or µ

(2)
1 = µ

(2)
2 , which leaves only one locus with

mutation rate variation, or p = 0, or p = 1, which is fixation of the modifier.
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Thus, when the modifier locus is polymorphic and varies the mutation rates
at more than one locus, averages over the modifier alleles can no longer be
summarized by the averages of the mutation rate parameters, but instead yield
mean transmission matrices (2) that fall outside of M. Hence, the relation
between M(a) and the matrices {M(b)} in (5) is not simple.

The analysis of modifier polymorphisms for multivariate, multiplicative vari-
ation in transmission will require techniques that can handle more general spaces
of variation in transmission, a topic left for another study.

3 Mathematical Tools

The analysis here is made possible with the techniques used in Theorem 5.1 of
Karlin (1982, pp. 114–116, 197–198). The theorem is restated as follows:

Definition 1 (Symmetrizable Matrices). A square, real matrix A is called sym-
metrizable to a symmetric real matrix S if it can be represented as a product
A = LSR, where L and R are positive diagonal matrices.

Theorem 1. (Karlin, 1982, Theorem 5.1, pp. 114–116, 197–198). Consider
a family of stochastic matrices that commute and are symmetrizable to positive
definite matrices:

F := {Mh = LShR : MhMk = MkMh}, (13)

where L and R are positive diagonal matrices, and each Sh is a positive definite
symmetric real matrix. Let D be a positive diagonal matrix. Then2 for each
Mh,Mk ∈ F :

ρ(MhMkD) ≤ ρ(MkD). (14)

Karlin’s proof uses a specially crafted inner product, but here I utilize a
canonical form for symmetrizable matrices:

Lemma 1 (Canonical Form for Symmetrizable Matrices). A symmetrizable
matrix A = LSR can always be represented by a single positive diagonal matrix,
B, and a symmetric matrix, Ŝ, that has the same spectrum as A:

A = LSR = BŜB−1, (15)

where
B = L1/2 R−1/2c (16)

with c > 0 any scalar, and

Ŝ = L1/2 R1/2 S L1/2 R1/2. (17)

2The version in Karlin (1976, pp. 642–647) is (14), but Karlin (1982, Theorem 5.1, p. 116)
states strict inequality, although the proof, pp. 197–198, does not exclude equality. Strict
inequality holds provided all Mh are irreducible.
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Furthermore, the Jordan canonical form, Ŝ = KΛK>, with orthogonal ma-
trix K, and real diagonal matrix Λ of the eigenvalues of Ŝ and A, provides a
canonical form for symmetrizable A:

A = LSR = BKΛK>B−1. (18)

BK is the matrix of right eigenvectors of A (columns), and K>B−1 is the
matrix of left eigenvectors of A (rows). B can be made unique by setting c to a
normalizer c = mini[L

−1/2R1/2]ii which yields ρ(B) = 1.

Proof. Verifying by substitution:

BŜB−1 = (L1/2R−1/2) L1/2R1/2SL1/2R1/2 (L−1/2R1/2) = LSR.

L1/2 and R1/2 exist because L and R are positive diagonal matrices, and R
and L (and their powers) commute because they are diagonal matrices. Ŝ is
symmetric by the symmetric form of L1/2 R1/2 S L1/2 R1/2, so its Jordan
canonical form, Ŝ = KΛK−1, has orthogonal K, and real diagonal Λ (Horn
and Johnson, 1985, Theorem 4.1.5, p. 171).

Since A(BK) = BKΛK>B−1BK = (BK)Λ, it can be seen that the jth
column of BK is a right eigenvector associated with eigenvalue [Λ]jj . Similarly,
(K>B−1)A = K>B−1BKΛK>B−1 = Λ(K>B−1), so the ith row of K>B−1

is a left eigenvector with eigenvalue [Λ]ii.
Setting

B = min
i

[L−1/2R1/2]ii L1/2R−1/2 =
1

max
i

[L1/2R−1/2]ii
L1/2R−1/2 (19)

gives a unique B normalized so that maxi[B]ii = 1.

The symmetrizable stochastic matrices considered here have the same canon-
ical form as the transition matrices of reversible Markov chains (Keilson 1979,
p. 33, Ababneh et al. 2006, p. 296). One may ask whether they are one and the
same. Indeed they are. An ergodic Markov chain is reversible if its transition
matrix M is irreducible and obeys:

M Dπ = (M Dπ)> = Dπ M> (20)

where Mπ = π, stationary distribution of the chain, and the Perron vector
of M, which refers to the eigenvector associated with the eigenvalue of largest
modulus, the Perron root 1. Dπ is the diagonal matrix of the entries of π (Feller
1971, pp. 414–415; Iosifescu 1980, pp. 143–145). Hence this follows:

Lemma 2 (Reversible Markov Chains). An irreducible stochastic matrix is of
the form M = LSR, with L and R positive diagonal matrices and S a symmetric
matrix, if and only if it is the transition matrix of a reversible ergodic Markov
chain.
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Proof. For the ‘if’ part, since M is the transition matrix of an ergodic Markov
chain, M must be an irreducible stochastic matrix (column stochastic by con-
vention in this paper). It therefore has a strictly positive Perron vector, π > 0
for Perron root 1.

Let B := Dπ
1/2, and Ŝ := B−1MB. First Ŝ will be shown to be symmetric.

Since M satisfies (20) by hypothesis:

M Dπ = MB2 = (MB2)> = B2 M>

Using M = BŜB−1,

M Dπ = MB2 = BŜB−1B2 = BŜB,

B2 M> = B2 (BŜB−1)> = B2 B−1Ŝ>B = BŜ>B.

So BŜB = BŜ>B, hence Ŝ = Ŝ>.
Let R = B−2L for any positive diagonal matrix L, and let symmetric matrix

S = L−1/2 R−1/2 Ŝ L−1/2 R−1/2.

This produces the desired M = LSR.
For the ‘only if’ part, given that M = LSR, use M = BŜB−1 from Lemma

1, where B = L1/2 R−1/2 and Ŝ = L1/2 R1/2 S L1/2 R1/2. Substituting:

e>M = e>BŜB−1 = e> ⇐⇒ e>BŜ = e>B ⇐⇒ Ŝ>Be = ŜBe = Be,

hence Be is a Perron vector of Ŝ.
Let π be the right eigenvector of each M, normalized so that e>π = 1.

Then:
Mπ = BŜB−1π = π ⇐⇒ ŜB−1π = B−1π,

hence B−1π is also a Perron vector of Ŝ. Since Ŝ is irreducible, the Perron
vector of Ŝ is unique (up to scaling, c), therefore

c Be = B−1π ⇐⇒ π = c B2e =
1

e>B2e
B2e =

1

e>LR−1e
LR−1e.

Note that Dπ = B2 (e>LR−1e)−1. Substituting:

M Dπ = (BŜB−1) B2 (e>LR−1e)−1 = BŜB (e>LR−1e)−1,

which is symmetric. Therefore, irreducible M = LSR satisfies the condition for
the transition matrix of a reversible Markov chain.

4 Results

With these mathematical tools in place, we are ready to analyze the modifier
models. The core result is the following theorem that the derivative of the
spectral radius of the stability matrix MµD with respect to each mutation rate
parameter is negative.
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Theorem 2 (Multivariate, Multiplicative Variation). Consider the stochastic
matrix

Mµ =

L⊗
ξ=1

[(1− µξ)I(ξ) + µξP
(ξ)], (21)

where each P(ξ) is a νξ × νξ transition matrix for a reversible ergodic Markov
chain.

Let D be a positive diagonal matrix. Then for every point µ ∈ (0, 1/2)L, the
spectral radius of

MµD = {
L⊗
ξ=1

[(1− µξ)I(ξ) + µξP
(ξ)]}D

is non-increasing in each µξ.
If diagonal entries

Di1 · · · iξ · · · iL 6= Di1 · · · i′ξ · · · iL

differ for at least one pair iξ, i
′
ξ ∈ {1, . . . , νξ}, for some i1 ∈ {1, . . . , ν1}, . . .,

iξ−1 ∈ {1, . . . , νξ−1}, iξ+1 ∈ {1, . . . , νξ+1}, . . ., iL ∈ {1, . . . , νL}, then

∂ρ(MµD)

∂µξ
< 0.

Proof. The proof is presented in three sections: applying the canonical form,
evaluating the derivative, and evaluating the equality case.

Applying the Canonical Form:

The first step is to utilize the canonical form (18). Since each P(ξ) is the
transition matrix of an ergodic Markov chain, it is irreducible and thus has
Perron vector π(ξ) > 0, hence Lemma 2 and Lemma 1 apply. Therefore P(ξ)

has the canonical form

P(ξ) = B(ξ)K(ξ)Λ(ξ)K(ξ)>B(ξ)−1, (22)

where

B(ξ) is a positive diagonal matrix,

K(ξ) is orthogonal, i.e. K(ξ)K(ξ)> = K(ξ)>K(ξ) = I(ξ), and

Λ(ξ) is a diagonal matrix of the eigenvalues of P(ξ) with largest simple eigen-
value 1.
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Define

Υ(ξ)
µξ

:= (1− µξ)I(ξ) + µξΛ
(ξ). (23)

For µξ ∈ (0, 1/2), the diagonal entries of Υ(ξ)
µξ

are all positive. This is

seen as follows: Λ(ξ) is the diagonal matrix of the eigenvalues of P(ξ), which
are all real due to symmetrizability. Because P(ξ) is an irreducible stochastic
matrix, by Perron-Frobenius theory it has simple largest eigenvalue 1, and all
other eigenvalues of modulus at most 1. Without loss of generality, arrange the
indices so that spectral radius corresponds to index 1. Hence:

[Λ(ξ)]11 = 1, and [Λ(ξ)]ii ∈ [−1, 1) for all i 6= 1. (24)

Therefore,
1− µξ + µξ[Λ

(ξ)]11 = 1− µξ + µξ = 1,

and for i 6= 1:
0 < 1− 2µξ ≤ 1− µξ + µξ[Λ

(ξ)]ii < 1. (25)

Substituting (22) and (23) into (21), one gets:

Mµ =

L⊗
ξ=1

(
(1− µξ)I(ξ) + µξB

(ξ)K(ξ)Λ(ξ)K(ξ)>B(ξ)−1
)

=

L⊗
ξ=1

(
B(ξ)K(ξ)[(1− µξ)I(ξ) + µξΛ

(ξ)]K(ξ)>B(ξ)−1
)

=

L⊗
ξ=1

(
B(ξ)K(ξ)Υ(ξ)

µξ
K(ξ)>B(ξ)−1

)

= (

L⊗
ξ=1

B(ξ))(

L⊗
ξ=1

K(ξ))(

L⊗
ξ=1

Υ(ξ)
µξ

)(

L⊗
ξ=1

K(ξ))
>

(

L⊗
ξ=1

B(ξ)−1)

= B KΥµK> B−1, (26)

where

B :=

L⊗
ξ=1

B(ξ),

K :=

L⊗
ξ=1

K(ξ),

and

Υµ :=

L⊗
ξ=1

Υ(ξ)
µξ

=

L⊗
ξ=1

[(1− µξ)I(ξ) + µξΛ
(ξ)]. (27)
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Since B, K, and Υµ are all invertible, they can be rotated in sequence without
altering the spectrum (i.e. ρ(A1A2A3) = ρ(A−11 A1A2A3A1) = ρ(A2A3A1)).
The key step from Karlin (1982, Proof of Theorem 5.1, pp. 197–198) is to rotate
the terms into a symmetric form:

ρ(MµD) = ρ(B KΥµK> B−1D) = ρ( KΥµK> B−1DB)

= ρ(ΥµK> B−1DBK) = ρ(Υ1/2
µ K>DKΥ1/2

µ ), (28)

since3 B−1DB = D.
To this symmetric form one can apply the Rayleigh-Ritz variational char-

acterization of the spectral radius (Karlin 1982, p. 198, Wilkinson 1965, pp.
172–173, Horn and Johnson 1985, pp. 176–180). The Rayleigh-Ritz formula is,
for any symmetric real matrix A:

ρ(A) = sup
x6=0

x>Ax

x>x
(29)

Let x̂(µ) be a vector, constrained to the unit sphere, x̂(µ)>x̂(µ) = 1, that
maximizes

φ(x) := x>(Υ1/2
µ K>DKΥ1/2

µ )x.

Then x̂(µ) is an eigenvector satisfying:

(Υ1/2
µ K>DKΥ1/2

µ ) x̂(µ) = ρ(MµD) x̂(µ). (30)

Pre-multiplying each side of (30) by BKΥ1/2
µ :

ρ(MµD) BKΥ1/2
µ x̂(µ) = BKΥµK>B−1D(BKΥ1/2

µ x̂(µ))

= MµD (BKΥ1/2
µ x̂(µ)),

therefore BKΥ1/2
µ x̂(µ) is the eigenvector of MµD associated with the spectral

radius, unique since MµD is irreducible, so call it

v̂(µ) := BKΥ1/2
µ x̂(µ). (31)

Since B, K, and Υ1/2
µ are all invertible,

x̂(µ) = Υ−1/2µ K>B−1 v̂(µ). (32)

Evaluating the Derivative:

3The cancellation of the diagonal matrix B is the step that is blocked when the modifier
recombines with the loci under selection, giving r > 0 in (11), in which case, D is replaced

by [(1 − r)D + rDẑbW/ŵ] (assuming Tab = Ton
ab), and so instead of the symmetric term

B−1 D B = D, one has B−1[(1 − r)D + r/ŵ DẑbW]B = (1 − r)D + r B−1DẑbWB /ŵ,
which is generically not symmetric, thus precluding use of the Rayleigh quotient at this step.
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Differentiating (28) with respect to the mutation rate µκ at the κth locus under
selection:

∂

∂µκ
ρ(MµD) = 2 x̂(µ)>(Υ1/2

µ K>DKΥ1/2
µ )

∂x̂(µ)

∂µκ

+ 2 x̂(µ)>(Υ1/2
µ K>DK

∂Υ1/2
µ

∂µκ
)x̂(µ).

As in Karlin’s proof of Theorem 5.2 (1982, p. 195), since x̂(µ) maximizes the
quadratic function φ(x), it is a critical point of φ(x) (Duistermaat and Kolk,
2004, p. 72), therefore ∂φ(x)/∂x|x̂(µ) = 0, so

∂φ(x)

∂x

∣∣∣∣
x̂(µ)

∂x̂(µ)

∂µκ

∣∣∣∣
µ

= 2 x̂(µ)>(Υ1/2
µ K>DKΥ1/2

µ )
∂x̂(µ)

∂µκ
= 0.

Using

∂Υ1/2
µ

∂µκ
=

1

2
Υ−1/2µ

∂Υµ

∂µκ

this leaves:

∂

∂µκ
ρ(MµD) = x̂(µ)>(Υ1/2

µ K>DKΥ−1/2µ

∂Υµ

∂µκ
)x̂(µ) (33)

where ∂Υµ/∂µκ evaluates to:

∂

∂µκ
Υµ =

∂

∂µκ

 L⊗
ξ=1

[(1− µξ)I(ξ) + µξΛ
(ξ)]


=

κ−1⊗
ξ=1

[(1− µξ)I(ξ) + µξΛ
(ξ)]

⊗ [Λ(κ) − I(κ)]⊗ (34)
L⊗

ξ=κ+1

[(1− µξ)I(ξ) + µξΛ
(ξ)],

and

Υ−1µ

∂Υµ

∂µκ

= [

κ−1⊗
ξ=1

I(ξ)]⊗ [Λ(κ) − I(κ)][(1− µκ)I(κ) + µκΛ
(κ)]−1⊗[⊗Lξ=κ+1I

(ξ)]

= [

κ−1⊗
ξ=1

I(ξ)]⊗ diag

 [Λ(κ)]ii − 1

(1− µκ) + µκ[Λ(κ)]ii

νκ
i=1

⊗[⊗Lξ=κ+1I
(ξ)]. (35)
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Using (30) one can substitute x̂(µ)>(Υ1/2
µ K>DK) = ρ(MµD) x̂(µ)>Υ−1/2µ

into (33) and obtain:

∂

∂µκ
ρ(MµD) = ρ(MµD) x̂(µ)>Υ−1/2µ Υ−1/2µ

∂Υµ

∂µκ
x̂(µ)

= ρ(MµD) x̂(µ)>Υ−1µ

∂Υµ

∂µκ
x̂(µ). (36)

From (24), one sees that all the terms in (34) are positive except for the term

Λ(κ) − I(κ). The term Λ(κ) − I(κ) is a diagonal matrix with [Λ(κ)]11 − 1 = 0,

and for i 6= 1, negative diagonal entries, [Λ(κ)]ii − 1 < 0 .
Thus for µ ∈ (0, 1/2)L, ∂Υµ/∂µκ and Υ−1µ ∂Υµ/∂µκ are negative semi-

definite:
∂Υµ

∂µκ
≤6= 0 and Υ−1µ

∂Υµ

∂µκ
≤6= 0. (37)

Therefore (36) evaluates to:

∂

∂µκ
ρ(MµD) ≤ 0. (38)

The restriction of the mutation rates to the interval (0, 1/2) is justified empir-
ically, but their motivation here is analytic. The open interval on the 0 side
is done to avoid the technical details of derivatives on a boundary. The open
interval on the 1/2 side is more than technical: if a mutation rate is allowed to

be 1/2 or greater, then the terms (1 − µξ) + µξ[Λ
(ξ)]ii may be 0 or negative,

invalidating (37).

Evaluating the Equality Case:

The conditions that allow equality in (38) are elucidated, and the work consists
mostly of tracking the zeros through the equations. Representing (36) in terms
of individual entries:

∂ρ(MµD)

∂µκ
= ρ(MµD)

νκ∑
iκ=1

[Λ(κ)]iκiκ − 1

(1− µκ) + µκ[Λ(κ)]iκiκ

×
ν1∑
i1=1

· · ·
νκ−1∑
iκ−1=1

νκ+1∑
iκ+1=1

· · ·
νL∑
iL=1

x̂2i1i2···iL ≤ 0. (39)

In order for ∂ρ(MµD)/∂µκ = 0, every index i where [Υ−1µ ∂Υµ/∂κ]ii is non-

zero must have x̂i(µ) = 0. So, either [Λ(κ)]iκiκ − 1 = 0 or x̂i1i2···iκ···iL = 0. But

[Λ(κ)]iκiκ = 1 only for iκ = 1, hence ∂ρ(MµD)/∂µκ = 0 if and only if

x̂i1i2···iκ···iL = 0 for all iκ 6= 1 and all i1, . . . , iκ−1, iκ+1, . . . , iL. (40)

This condition on x̂(µ) can be translated into a condition on D. Using (30):

ρ(MµD) x̂(µ) = Υ1/2
µ K>DKΥ1/2

µ x̂(µ) = Υ1/2
µ K>B−1DBKΥ1/2

µ x̂(µ).
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Pre-multiplying each side by [Υ1/2
µ K>B−1]−1 = BKΥ−1/2µ :

ρ(MµD) BKΥ−1/2µ x̂(µ) = D(BKΥ1/2
µ x̂(µ)). (41)

Here, it becomes notationally helpful to let κ be either the first or last index.
Since there is no actual spatial structure or consequence to the ordering of the
loci in the absence of recombination, the following derivation applies to any
locus κ. Using κ = L, the x̂(µ) satisfying (40) can be written as:

x̂(µ) = ŷ ⊗


1
0
...
0


νL

i=1

, (42)

for some vector ŷ (were κ in the middle, trying to write x̂ = ŷ⊗ [100 · · · 0]>⊗ ŷ′

forces a Kronecker factoring of x̂ into ŷ and ŷ′, which is not implied by (40)).
Substitution of (42) into (31) gives:

v̂(µ) = BKΥ1/2
µ x̂(µ)

=

(

L−1⊗
ξ=1

B(ξ)K(ξ)Υ(ξ)
µξ

1/2
) ŷ

⊗B(L)K(L)Υ(L)
µL

1/2
[10 · · · 0]>

=

(

L−1⊗
ξ=1

B(ξ)K(ξ)Υ(ξ)
µξ

1/2
) ŷ

⊗B(L)[K(L)]1, (43)

where [K(L)]1 is the first column of K(L), since

B(L)K(L)Υ(L)
µL

1/2
[10 · · · 0]> = B(L)K(L)

[
[Υ(L)

µL ]
1/2
11 0 · · · 0

]>
= B(L)K(L) [10 · · · 0]> = B(L)[K(L)]1. (44)

By construction, B(L)[K(L)]1 is the Perron vector of irreducible P(L), hence
B(L)[K(L)]1 > 0.

Substituting (43) and (44) into (41) gives:

D

{L−1⊗
ξ=1

B(ξ)K(ξ)Υ(ξ)
µξ

1/2
} ŷ

⊗B(L)[K(L)]1


= ρ(MµD)

(

L−1⊗
ξ=1

B(ξ)K(ξ)Υ(ξ)
µξ

−1/2
) ŷ

⊗B(L)[K(L)]1. (45)

Equation (45) becomes clearer if the terms are represented by single symbols.
Let
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f := (

L−1⊗
ξ=1

B(ξ)K(ξ)Υ(ξ)
µξ

1/2
) ŷ,

g := (

L−1⊗
ξ=1

B(ξ)K(ξ)Υ(ξ)
µξ

−1/2
) ŷ,

k := B(L)[K(L)]1, and

ρ := ρ(MµD).

Then
v̂ = f ⊗ k,

and (45) becomes:
D(f ⊗ k) = ρ g ⊗ k. (46)

Now (45) may be expressed in terms of the entries: Let i1 index the haplotypes
of all loci except L, and i2 index the alleles of locus L. Then (46) is represented
as:

Di1i2 fi1ki2 = ρ gi1 ki2 (47)

for each i1, i2. Since ki2 > 0, this implies Di1i2 fi1 = ρ gi1 for all i2. Because
MµD is irreducible,

v̂ > 0, (48)

therefore fi1 > 0. Then Di1i2 = ρ gi1/ fi1 for all i2. Thus the chain of impli-
cations that starts with ∂ρ(MµD)/∂µL = 0 concludes with the finding that D
must be of the form

D = D⊗ I(L)

where D = diag
[
Di1

]
.

To summarize the equality case, recall that the above derivation applies with
respect to any locus κ. Thus, if and only if

Di1 · · · iκ · · · iL 6= Di1 · · · i′κ · · · iL
(49)

for at least one pair iκ, i
′
κ ∈ {1, . . . , νκ}, for some i1 ∈ {1, . . . , ν1}, . . ., iξ−1 ∈

{1, . . . , νξ−1}, iξ+1 ∈ {1, . . . , νξ+1}, . . ., iL ∈ {1, . . . , νL}, then

∂ρ(MµD)

∂µκ
< 0.

Remarks. In the case where [D]ii = 0 for some i, MµD is no longer
irreducible, and so a unique positive Perron vector v̂ for MµD is no longer
guaranteed. If the set of [D]ii = 0 entries dissects the haplotype space into mul-
tiple non-communicating sub-spaces, each of these is represented by an isolated
block in the Frobenius normal form of MµD, thus MµD will have multiple non-
negative eigenvectors. This situation is more complicated than merits pursuit
here. However, when the [D]ii = 0 entries do not destroy the uniqueness of v̂,
it yields a ready result:
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Corollary 1 (Lethality Case). Let all the conditions of Theorem 2 apply ex-
cept that [D]ii = 0 for at least one i. If MµD has a unique eigenvector v̂(µ)
associated with eigenvalue ρ(MµD), then

∂ρ(MµD)

∂µκ
= 0

if and only if
Di1 · · · iκ · · · iL = Di1 · · · i′κ · · · iL

for all iκ, i
′
κ ∈ {1, . . . , νκ}, whenever

v̂i1···iκ···iL > 0, and v̂i1···i′κ···iL > 0.

Otherwise,
∂ρ(MµD)

∂µκ
< 0.

Proof. The positivity of D enters the proof of Theorem 2 only at step (31).
Assuming the uniqueness of v̂ allows one to preserve (31). The first consequence
of relaxing the positivity condition does not occur until after (48) when it can
no longer be assumed that fi1 > 0. Continuing with the notation introduced
at (46), Di1i2 fi1ki2 = ρ gi1 ki2 is satisfied as long as Di1i2 = ρ gi1/ fi1 for all
i2 whenever fi1 > 0, that is, whenever v̂i1i2 > 0, which is what is stated in the
corollary using the multilocus notation.

There are further implications for D (these do not alter the statement of
the corollary): Di1i2 fi1 = ρ gi1 , so if some Di1i2 = 0, then gi1 = 0. But
then Di1i′2

fi1 = 0 for every i′2. Consequently, either fi1 = 0, which means
v̂i1i2 > 0 for every i2, or Di1i′2

= 0 for all i′2. Thus, under the condition that
∂ρ(MµD)/∂µL = 0, the existence of one lethal haplotype i1i2 implies either
that all haplotypes with i1 are lethal, or that all haplotypes with i1 are absent
from the population.

In the latter case, fi1 = 0, there are further implications. Recall that

D(f⊗k) = ρ g⊗k, and ρ v̂ = ρ f⊗k = MµDv̂ = MµD(f⊗k) = ρ Mµ(g⊗k).

So fi1 = 0 if and only if v̂i1i2 = fi1ki2 = 0, since ki2 > 0. Thus

ρ v̂i1i2 = ρ fi1ki2 = ρ
∑
j1j2

Mi1i2,j1j2 gj1kj2 = 0.

The zero sum mandates that gj1 = 0 for every j1 in which Mi1i2,j1j2 > 0 for
some i2, j2. By (46), gj1 = 0 implies Dj1i2 fj1 = 0 for all i2, requiring that
either fj1 = 0, or Dj1i2 = 0 for all i2.

In the case where fj1 = 0, then the above argument applies in turn to it. So
consider the entire set Z = {i′1 : f ′i1 = 0}.

If Mi1i2,j1j2 > 0 only when both i1, j1 ∈ Z, that means Mi1i2,j′1j2
= 0 for all

j′1 /∈ Z. But that means there is no mutation to Z from outside of Z, which
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makes Mµ reducible, contrary to hypothesis. Therefore there must be some
Mi1i2,j1j2 > 0 that has i1 ∈ Z and j1 /∈ Z. And j1 /∈ Z implies Dj1i2 = 0 for all
i2.

Therefore, if ∂ρ(MµD)/∂µL = 0, the existence of one lethal haplotype i1i2
implies either that all haplotypes with i1 are lethal, or that all haplotypes with
i1 are absent from the population, which implies further that all j1 in the pop-
ulation that can mutate to i1 are lethal for all haplotypes j1j2.

Corollary 2 (Multiple Cell Divisions). One may substitute Mt
µ for Mµ in

Theorem 2, where t is a positive integer, and the theorem applies otherwise
unchanged. The partial derivatives, however, are all scaled by t.

Proof. The proof is identical to that of Theorem 2 except that one is seeking

∂

∂µκ
ρ(Mt

µD) =
∂

∂µκ
ρ(


L⊗
ξ=1

[(1− µξ)I(ξ) + µξP
(ξ)]


t

D).

Following the same sequence of steps as for Theorem 2, let x̂(µ) confined to the
unit sphere produce the maximum of

φ(x) := x>(Υt/2
µ K>DKΥt/2

µ )x.

Then x̂(µ) is an eigenvector satisfying:

(Υt/2
µ K>DKΥt/2

µ ) x̂(µ) = ρ(Mt
µD) x̂(µ). (50)

Following the same steps of differentiation:

∂

∂µκ
ρ(Mt

µD) = 2x̂(µ)>(Υt/2
µ K>DKΥt/2

µ )
∂x̂(µ)

∂µκ

+ 2x̂(µ)>(Υt/2
µ K>DK

∂Υt/2
µ

∂µκ
)x̂(µ)

= t x̂(µ)>(Υt/2
µ K>DKΥt/2−1

µ

∂Υµ

∂µκ
)x̂(µ).

Utilizing
x̂(µ)>Υt/2

µ K>DK = ρ(Mt
µD) x̂(µ)>Υ−t/2µ , (51)

one obtains

∂

∂µκ
ρ(Mt

µD) = t ρ(Mt
µD) x̂(µ)>Υ−t/2µ Υt/2−1

µ

∂Υµ

∂µκ
x̂(µ)

= t ρ(Mt
µD) x̂(µ)>(Υ−1µ

∂Υµ

∂µκ
) x̂(µ)

which is identical to (36) except for the presence of t. Since Υ−1µ ∂Υµ/∂µκ is

negative semi-definite for µ ∈ (0, 1/2)L:

∂

∂µκ
ρ(Mt

µD) ≤ 0. (52)
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The steps in the equality case are unchanged except for the scaling factor t,
and the substitution of t/2 for 1/2 in the powers of Υ.

Corollary 3 (Global Mutation Rate Control). Let all the conditions be identical
to those in Theorem 2 except that the modifier locus controls a single, global
mutation rate γ, scaling all the µξ = γβξ parameters equally:

Mµ =

L⊗
ξ=1

[(1− γ βξ)I(ξ) + γ βξP
(ξ)]. (53)

Then the spectral radius of MµD is non-increasing in γ for γ ∈ (0, 1/2), and
strictly decreasing if D 6= cI for every c > 0.

Proof. This follows directly from the fact that ∂
∂µξ

ρ(MµD) ≤ 0 for any µ ∈
(0, 1/2)L. If D 6= c I for any c > 0, then for at least one ξ, ∂

∂µξ
ρ(MµD) < 0,

hence d
dγ ρ(MµD) < 0. This can be shown explicitly.

Letting µξ = γ βξ, we wish to evaluate d
dγ ρ(MµD). The derivation is

identical to the steps in the proof of Theorem 2 except that d/dγ replaces
∂/∂µξ, until step (34), which becomes:

dΥµ

dγ
=

d

dγ

 L⊗
ξ=1

[(1− γ βξ)I(ξ) + γ βξΛ
(ξ)]


=

L∑
κ=1


κ−1⊗
ξ=1

[(1− γ βξ)I(ξ) + γ βξΛ
(ξ)]

⊗ βκ[Λ(κ) − I(κ)] ⊗
L⊗

ξ=κ+1

[(1− γ βξ)I(ξ) + γ βξΛ
(ξ)]

 ,

=
L∑
ξ=1

βξ
γ

∂

∂βξ
Υµ,

Applying this expression yields a positive weighted sum of partial derivatives
(33):

d

dγ
ρ(MµD) = x̂(µ)>(Υ1/2

µ K>DKΥ−1/2µ

dΥµ

dγ
)x̂(µ)

=

L∑
ξ=1

βξ
γ

x̂(µ)>(Υ1/2
µ K>DKΥ−1/2µ

∂Υµ

∂βξ
) x̂(µ)

=

L∑
ξ=1

βξ
γ

∂

∂βξ
ρ(MµD). (54)
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By (37), each of these partial derivative terms in (54) is non-positive, so
d
dγ ρ(MµD) < 0 if at least one term is non-zero. To have all partial deriva-

tives be 0 requires D = c I for some c > 0, hence d
dγ ρ(MµD) < 0 if D 6= c I for

every c > 0. Note that if the modifier scales the mutation rates of only a subset
of loci, then the sum in (54) is replaced with a sum over that subset of loci.
Hence the magnitude of d

dγ ρ(MµD) increases with the number of loci affected
by the modifier, given fixed βξ values.

4.1 Neutral Surfaces of Mutation Rates

Theorem 2 shows that if the marginal fitnesses at equilibrium do not depend on
the allelic state of a particular locus (i.e. no instance of (49) occurs), then the
mutation rate for that locus can be varied without changing the spectral radius
of the stability matrix. This trivially defines a surface of points η ∈ (0, 1/2)L on
which ρ(MηD) is invariant. Let us exclude this degenerate case for this section,
and assume that the marginal fitnesses at equilibrium depend on every locus.

Under this assumption, ρ(MµD) strictly decreases in each variable µκ. This
raises the question of how ρ(MµD) and ρ(MηD) compare for two vectors µ
and η when µκ < ηκ for some κ, but µξ > ηξ for some other ξ, i.e. µ and η are
not ordered componentwise, and neither µ ≤ η, nor µ ≥ η.

The Intermediate Value Theorem (Munkres, 1975, p. 154) tells us that there
must be a set, N (µ) ⊂ Rn, surrounding µ, on which ρ(MηD) = ρ(MµD) for
all η ∈ N (µ); this is because ρ(MµD) is a continuous function from the matrix
entries of MµD to R (Horn and Johnson, 1985, pp. 539–540), and the entries
of Mµ are continuous functions of each µκ. The following properties will be
shown for this set N (µ):

1. N (µ) passes through every orthant surrounding µ except the strictly pos-
itive and strictly negative orthants;

2. N (µ) disconnects the mutation parameter space (0, 1/2)L into two con-
nected parts; and

3. N (µ) is an L− 1 dimensional smooth manifold.

In a series of lemmas, the first two properties are established for arbitrary con-
tinuous, strictly decreasing functions, and the third is established for arbitrary
differentiable functions with negative partial derivatives. These lemmas are then
applied to the mutation rate model, in Theorem 4.

Lemma 3 (Orthants). Let F : RL → R be continuous and strictly decreasing
in each variable mi of m ∈ RL.

Let the orthants of RL be represented as follows: (I+, I=, I−) represents a
three-way partition of the indices i = 1 . . . L. The orthant Q(I+, I=, I−) ⊂ RL
is defined as:

Q(I+, I=, I−) = {m ∈ RL :

 mi > 0 ∀ i ∈ I+
mi = 0 ∀ i ∈ I=
mi < 0 ∀ i ∈ I−

}. (55)
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Then, for any non-empty choices of subsets I+ and I−, there is some
q ∈ Q(I+, I=, I−) such that F (m + q) = F (m).

Proof. Choose an arbitrary q ∈ Q(I+, I=, I−). If F (m + q) = F (m), then one
has found the sought-after q.

If F (m + q) > F (m), then one can construct a q′ such that F (m + q′) <
F (m) < F (m + q), and then find the desired value between m + q and m + q′:
increase all the negative elements of q to 0 to define q′ : q′i = 0 for all i ∈ I−,
q′i = qi for i ∈ I+, I=. Thus q′ ∈ Q(I+, I= ∪ I−, ∅). By the monotonicity of F
one knows F (m+q′) < F (m+q). And q′ ∈ Q(I+, I=∪I−, ∅) means q′ ≥6= 0,
so F (m + q′) < F (m) < F (m + q).

Now consider the convex combination q(α) := (1− α)q + αq′. Since F is a
continuous function, with F (m + q(0)) = F (m + q) > F (m) > F (m + q′) =
F (m+q(1)), then by the Intermediate Value Theorem (Munkres, 1975, p. 154),
there is some α̂ ∈ (0, 1) such that F (m + q(α̂)) = F (m). We must verify that
q(α̂) ∈ Q(I+, I=, I−) as required: for i ∈ I−, q(α̂)i = (1 − α̂)qi + α̂q′i =
(1− α̂)qi < 0. So q(α̂) is the desired point.

If F (m + q) < F (m), the mirror argument applies, and we decrease the
qi : i ∈ I+ to make a new point with q′i = 0 giving F (m + q′) > F (m) where
q′ ∈ Q(∅, I+ ∪ I=, I−). Analogously, we know there is α̂ that yields F (m +
(1− α̂)q + α̂q′)) = F (m).

Lemma 4 (Connected Regions). Let F : (0, c)L → R be continuous and strictly
decreasing in each variable mi of m ∈ (0, c)L ⊂ RL, where c > 0 is a con-
stant. Then the set N (m) = {m′ : F (m′) = F (m)} disconnects (0, c)L into two
connected sets.

Proof. To show that the set N (m) disconnects (0, c)L, it is sufficient to find
two points in (0, c)L such that every continuous curve between them intersects
N (m). For the given m ∈ (0, c)L, let qi := min(mi, c −mi)/2 > 0. The two
requisite points will be m − q, and m + q. Clearly 0 < mi − qi < mi <
mi + qi < c, so m−q,m + q ∈ (0, c)L. Since F decreases in each variable, then
F (m−q) > F (m) > F (m + q). Define the continuous curve C : [0, 1] 7→ (0, c)L

to have C(0) = m − q, and C(1) = m + q. Since F is continuous and C is
continuous, then F ◦ C : [0, 1]→ R is continuous. Since

F (C(0)) = F (m− q) > F (m) > F (C(1)) = F (m + q),

by the Intermediate Value Theorem there must be some α ∈ [0, 1] such that
F (C(α)) = F (m), which means C(α) ∈ N (m). Thus every continuous curve
between m−q and m+q intersects N (m). Therefore N (m) disconnects (0, c)L.

To show that (0, c)L − N (m) consists of two connected sets, it is sufficient
to show that between any pair of points in the same set, there is a continuous
curve ⊂ (0, c)L, that does not intersect N (m). The two sets are

S−(m) := {p ∈ (0, c)L : F (p) < F (m)}

and
S+(m) := {p ∈ (0, c)L : F (p) > F (m)}.
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Clearly S−(m), N (m), and S+(m) are disjoint, and S−(m)∪N (m)∪S+(m) =
(0, c)L. Now we shall see that S−(m) is connected, and S+(m) is connected.

For any two distinct points p,p′ ∈ S−(m), construct a new point, p′′, that
combines the maxima from the two points: p′′i = max(pi, p

′
i). Let one curve be

the line from p to p′′, {(1− α)p + αp′′ : α ∈ [0, 1]}, and the other curve be the
line from p′ to p′′, {(1−α)p′+αp′′ : α ∈ [0, 1]}. Both curves are clearly within
(0, c)L. The union of the two curves forms a continuous curve between p and
p′.

Now it must be verified that the curves do not intersect N (m). For the line
between p and p′′: p′′i ≥ pi for each i, so (1− α)pi + αp′′i ≥ pi for all α ∈ [0, 1].
Therefore F ((1−α)p+αp′′) ≤ F (p) < F (m) for all α ∈ [0, 1]. So all the points
on the line remain within S−. The same applies to the other line between p′

and p′′. Thus there is a continuous curve connecting p and p′ ∈ S−(m) that
does not intersect N (m). Therefore S−(m) is connected. The mirror argument
applies to S+(m).

Lemma 5 (Smooth Manifold). Let F : (0, c)L → R be a smooth map, and
strictly decreasing in each variable mi of m ∈ (0, c)L ⊂ RL, where c > 0 is a
constant, and L ≥ 2. Further, let ∂F (m)/∂mi < 0 for each i. Then the set
N (m) = {m′ : F (m′) = F (m)} is a smooth, L− 1 dimensional submanifold of
(0, c)L.

Proof. The proof is immediate using a general form of the Implicit Function
Theorem (Singer and Thorpe, 1967, p. 135)), referred to as the Preimage The-
orem in Guillemin and Pollack (1974, p. 21), or the Regular Value Theorem
(Hirsch, 1976, Theorem 3.3 p. 22), which I restate:

Theorem 3 (Implicit Function). (Singer and Thorpe, 1967, p. 135). Let X
and Y be smooth manifolds, with dimX > dimY . Let ψ : X → Y be a smooth
map. Let y0 ∈ ψ(X) and let

X0 = ψ−1(y0) = [x ∈ X : ψ(x) = y0].

Assume that for each x ∈ X0, dψ(x) : T (X,x) → T (Y, ψ(x)) is surjective, i.e.
the dimX × dimY matrix [

(∂/∂xj)(yi ◦ ψ)|x0

]
is full rank, dimY . Then X0 has a manifold structure, whose underlying topol-
ogy is the relative topology of X0 in X, and in which the inclusion map X0 → X
is smooth. Furthermore, dimX0 = dimX − dimY .

Here, let X = (0, c)L, Y = R, ψ = F , x0 = m, dimX = L, dimY = 1,
X0 = N (m), and

dψ(x) =
[
(∂/∂xj)(yi ◦ ψ)|x0

]
=
[
∂F (m)/∂mi|m

]
.

Here, dψ(x) is surjective if ∂F (m)/∂mi 6= 0 for at least one i. In fact, by
hypothesis ∂F (m)/∂mi < 0 for every m and i (so every value F (m) is a regular
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point, making F a submersion). Thus, N (m) is a smooth submanifold of (0, c)L

with dimN (m) = dim(0, c)L − dimR = L− 1.

These lemmas are now applied to the modifier model:

Theorem 4 (Manifold of Neutral Mutation Rates). Assume the conditions
of Theorem 2. For any given mutation rate vector µ ∈ (0, 1/2)L, the set of
mutation rate vectors that produce the same spectral radius as µ, N (µ) = {η ∈
(0, 1/2)L : ρ(MηD) = ρ(MµD)}, has the following properties:

1. There is some η ∈ N (µ) in every orthant around µ except the orthants
η ≤6= µ, and η ≥6= µ;

2. N (µ) disconnects the mutation parameter space (0, 1/2)L into two con-
nected parts, S−(µ) and S+(µ), such that ρ(MηD) < ρ(MµD) for all
η ∈ S−(µ), and ρ(MηD) > ρ(MµD) for all η ∈ S+(µ).

3. N (µ) is a smooth manifold of dimension L − 1, which is a subset of an
affine algebraic variety.

Proof. Let F (µ) := ρ(MµD). From Theorem 2, ρ(MµD) is continuous and
strictly decreasing in each mutation rate µκ. This satisfies the conditions of
Lemma 3, and establishes 1. Further, with c = 1/2 the conditions of Lemma
4 are satisfied and 2. established. As Lemma 5 requires, (0, 1/2)L and R are
smooth manifolds, and ρ(MµD) is a smooth map with respect to µ when MµD
is irreducible as it is in Theorem 2 (since for simple eigenvalues, all orders
of partial derivatives with respect to the matrix entries exist (Deutsch and
Neumann, 1984, p. 2)) . The last requirement of Lemma 5 is met since Theorem
2 shows ∂ρ(MµD)/∂µκ < 0 for each i = 1 to L, therefore 3. is established.

It can be seen that N (µ) is a subset of an affine algebraic variety, because
N (µ) ⊂ (0, 1/2)L ∩ V, where V is the affine variety

V = {η : det[

L⊗
ξ=1

[(1− ηξ)I(ξ) + ηξP
(ξ)]D− ρ(MµD) I] = 0}.

4.2 Main Results

Theorem 2, Corollary 2, and Theorem 4 may now be applied to the dynamics
of the modifier gene model:

Theorem 5 (Multivariate Reduction Principle for Symmetrizable Mutation
Rates at Multiple Loci). Consider a genetic system in which a modifier locus
controls the mutation rates of a group of loci under viability selection. Muta-
tions occur independently among the loci under selection. In a population near
equilibrium under a stable mutation-selection balance, fixed at the modifier lo-
cus, let a new allele of the modifier locus be introduced. The new modifier allele
can change the mutation rate parameter separately for each locus, and each pa-
rameter scales equally the probability of mutations at that locus.

Under the following constraints:
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1. mutation rates at each locus range between 0 and 1/2,

2. no recombination or other transformation process acts on the genes,

3. the mutation matrix for each locus is irreducible, and also irreducible when
restricted to nonlethal alleles,

4. is the transition matrix for some reversible Markov chain,

then the new modifier allele will increase (decrease) in frequency at a geometric
rate if, among the loci that affect the marginal fitnesses of the haplotypes present
in the population:

1. it reduces (increases) the mutation rate at any locus, and does not increase
(decrease) the mutation rates at any locus;

2. it increases the mutation rates for at least one locus, and decreases the
mutation rates for at least one locus, and falls below (above) the neutral
manifold of mutation rates that includes the mutation rates at the equilib-
rium. Should the mutation rates produced by the new modifier allele fall
on this neutral manifold, then it will not change frequency at a geometric
rate.

Moreover, the further that the new set of mutation rates is from the neutral
manifold, the stronger is the eventual induced selection for (against) the new
modifier allele, up to a maximum fitness of maxi ŵi/ŵ for a modifier allele that
eliminates all mutation.

These results hold, in the case of multicellular organisms, for arbitrary num-
bers of cell divisions between gamete generations. The strength of selection on
the modifier locus scales in proportion to the number of cell divisions in the
germline, and increases with the number of loci controlled by the modifier.

Proof. In the single cell-division model, the population begins at equilibrium
fixed on modifier allele b which yields mutation rate vector µ, and (5) becomes:

ẑb = Mµ D ẑb,

Therefore, in (31), v̂(µ) = ẑb, and ρ(MµD) = 1.4 Let η be the vector of
mutation rates produced by the new modifier allele a. If η ≤ µ and ηκ < µκ for
some locus κ for which the equilibrium marginal fitnesses depend on the alleles
at locus κ, then by Theorem 2, ρ(MηD) > ρ(MµD) = 1, so new modifier allele
a increases at a geometric rate. The mirror argument applies when η ≥ µ and
ηκ > µκ for some locus κ for which the equilibrium marginal fitnesses depend
on the alleles at locus κ, in which case the new modifier allele will decrease at
a geometric rate.

In the case where ηκ > µκ and ηj < µj for some κ 6= j, Theorem 4 establishes
that there is a smooth L−1 dimensional surface N (µ) that dissects this orthant

4The use of this equilibrium relation, without having to explicitly solve for the equilibrium,
was first introduced into modifier gene theory by Teague (1977, p. 89).
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surrounding µ into a set below N (µ) in which ρ(MηD) > 1, and a set above
N (µ) in which ρ(MηD) < 1, the new modifier allele increasing in frequency in
the former case, and decreasing in the latter case.

If η ∈ N (µ), then by definition ρ(MηD) = 1, so the new allele will not
change frequency at a geometric rate.

By ‘further from’ the neutral manifold, I mean a partial ordering of mutation
rate vectors in which µ1 ≺ µ2 if µ1 − µ2 ≤6= 0 (not equal for at least one
locus that the equilibrium fitnesses ŵi depend on). Since the derivative of
ρ(MηD) is negative with respect to each variable ηξ when locus ξ affects ŵi, if
µ1 ≺ µ2 ≺ µ3, then ρ(Mµ1

D) > ρ(Mµ2
D) > ρ(Mµ3

D). For a modifier allele

that eliminates mutation, µ = 0, so ρ(M0D) = ρ(D) = 1 + V = maxi ŵi/ŵ.
In the multiple cell-division model, the initial equilibrium satisfies:

ẑb = Mt
µ D ẑb,

so ρ(Mt
µD) = 1. From Corollary 2, we see that letting t ≥ 1 does not alter the

inequalities on the spectral radius, so the same conclusions apply for all t.

5 Discussion

The motivation for the paper was to extend the general theory of modifier genes
beyond single event models and the constraint of linear variation. Here, multiple
independent mutations among multiple loci are modeled, with a modifier gene
that has arbitrary control of the mutation rates at each locus. Under this
multivariate, multiplicative form of variation, the reduction principle is again
found to hold. In particular:

1. The result applies for arbitrary selection coefficients on the diploid geno-
types (with some technical constraints on the global pattern of any lethal
genotypes), arbitrary mutation rates and mutation distributions and as
long as they are symmetrizable, arbitrary numbers of (tightly linked) loci
and alleles, arbitrary control over each single-locus mutation rate, and any
number of cell divisions in the germline.

2. Changes in the mutation rate at a locus will be neutral if the alleles at
that locus do not make any difference in the marginal fitnesses of the
haplotypes under selection.

3. There is a surface of mutation rates that a new modifier allele can produce
that leave it neutral, i.e. it will not change frequency at any geometric
rate when introduced into the population.

4. Mutation rates that fall below this surface will cause the new modifier
allele to increase when rare, and rates above this surface will cause it to
go extinct. The surface is such that the modifier allele can increase the
mutation rate at some loci and decrease at others — for any arbitrary
choice of loci that affect the marginal fitnesses at equilibrium — and there
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will always be some values for the magnitude of these changes that fall
below the neutral surface of mutation rates, and other values that fall
above.

5. The strength of selection on a new modifier allele increases with the dis-
tance of its rates from the neutral surface of mutation rates, which in-
creases with each locus affected, and it increases with the number of cell
divisions in the germline.

Two properties of modifier polymorphisms are also shown:

1. The “viability analogous, Hardy-Weinberg” modifier polymorphisms that
emerge in single-event models cannot exist under multivariate, multiplica-
tive variation in transmission due to the loss of convexity in of the space
of transmission values.

2. When the modifier locus is polymorphic, the only values that matter to the
change in frequencies of the loci under selection are the mean transmission
probabilities for those loci; the frequencies and associations of the modifier
alleles are otherwise irrelevant.

5.1 Q & A

Since the implications of the main results may not be immediately apparent,
an attempt to elucidate them is provided through the following ‘Question and
Answer’ format.

Q.1. What new phenomena are found in these results?

A. While the general result that mutation rates evolve to decrease is not
novel, several phenomena are:

1. Increases in mutation rates may evolve if they are compensated for
by decreases at other loci (see Section 5.3 below).

2. The strength of selection for (against) a new modifier grows with
the number of loci whose mutation rates it decreases (increases) (see
Corollary 3).

3. Mutation rates of loci that do not affect the marginal fitnesses at
equilibrium may be changed ‘with impunity’ by the new modifier
allele, including when they are changed as a side effect of changes in
the mutation rates at other loci. This implies — other things being
equal — that if there is local tuning of mutation rates, then neutral
loci should have greater mutation rates that loci held in mutation-
selection balance (see Section 5.3.1).

4. The reduction principle applies when there are multiple cell divisions
in the lineage from zygote to gamete, and the strength of selection on
the modifier locus scales in proportion to the number of cell divisions
from zygote to gamete (Corollary 2).
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Q.2. Why is this called ‘evolutionary reduction’ if it is possible for some muta-
tion rates to evolve an increase?

A. It is a ‘reduction result’ because mutation rates must be below the
neutral manifold in order for the new modifier allele to invade — making
the neutral manifold like a wall (see Section 5.3.2). Also, the further below
this wall that the mutation rates are, the stronger the induced selection
for the modifier allele carrying them.

Q.3. Could there be some sort of complex epistatic multi-locus selection regime
that would allow mutation rates to get around this wall?

A. No, the neutral manifold emerges for all possible selection regimes,
the only ‘holes’ in the wall being the mutation rates of loci that do not
affect the marginal fitnesses at equilibrium, which are free to evolve in any
direction.

Q.4. Doesn’t the reduction result depend on the assumption that most muta-
tions are deleterious? Why isn’t this assumption stated anywhere in the
model?

A. The reduction result does not depend on any assumption that most
mutations are deleterious — and that is why it takes some mathematical
machinery to show it. What it does depend on is a net flux of mutations
at equilibrium from more fit to less fit haplotypes, which is a necessary
and emergent property of mutation-selection balances. By net flux I mean
an absence of the ‘detailed balance’ condition that characterizes the sta-
tionary state of reversible Markov chains, (20), in which the fraction of
the population mutating from type j to k equals the fraction mutation
from k to j. At a mutation-selection balance, a net flux is necessary to
keep the haplotypes with above average fitness from continuing to grow
in frequency, and to keep the haplotypes with below average fitness from
continuing to decline in frequency. This outcome will occur regardless of
how the distribution of fitness effects (DFE) (Eyre-Walker and Keightley,
2007) is set for each diploid genotype by nature.

By altering the flux, the new modifier allele unbalances the mutation-
selection balance within the subpopulation that contains it. It is not
immediately obvious why a reduction in the flux equally across all haplo-
types (linear variation) would create a subpopulation with increased mean
fitness, because the flow is reduced in both directions: from less fit to more
fit, and from more fit to less fit. But the net effect is always to increase
the subpopulation’s mean fitness, as shown by Theorem 5.2 Karlin (1982).
Here, fluxes are scaled equally between all single locus alleles, multiplied
across loci, and Theorem 2 gives the multivariate reduction result.

Q.5. In nature, are not the rates of mutations that affect the phenotype so low
that multiple mutations in a gamete are very rare? — in which case, don’t
the results here reduce to the classical results for single events?

A. No, for several reasons:
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1. Phenomena 1. and 3. in Q.1. above, are novel to the multivari-
ate control of mutation rates, and are not eliminated in the limit of
small mutation rates. In this limit, when multiple mutations are rare
enough to be ignored,

Mµ =

L⊗
ξ=1

[(1− µξ)I(ξ) + µξP
(ξ)] (56)

= I +

L∑
κ=1

µκ


κ−1⊗
ξ=1

I(ξ) ⊗ [P(κ) − I(κ)]⊗
L⊗

ξ=κ+1

I(ξ)

+O(µ2
ξ)

Ignoring theO(µ2
ξ) terms, the space of variationM = {Mµ} becomes

convex, and the “viability analogous, Hardy-Weinberg” equilibria be-
come feasible. A modifier allele that scales all µξ equally will produce
linear variation, as is covered by earlier treatments (Altenberg, 1984;
Altenberg and Feldman, 1987; Altenberg, 2009). But modifiers that
change the ratios between the µξ do not produce linear variation, and
are subject to phenomena 1. and 3. in Q.1. above.

2. Mutation rates observed in organisms are actually not small enough
to ignore multiple mutations. For example, Roach et al. (2010) esti-
mate that humans have some 70 new nucleotide mutations per diploid
genome per generation. On a per-cell division basis, this puts the hu-
man germline mutation rate lower than that recorded for any other
species (Lynch, 2010). For the fraction of these mutations that have
phenotypic effect, Eyre-Walker and Keightley (2007) summarize sev-
eral studies that estimate the proportion of the genome subject to
natural selection at around 5% in mammals.

Letting λ be the number of non-neutral mutations per haplotype per
generation, this yields and estimate of λ = 0.05×70/2 = 1.75. Lynch
(2010) gives a concordant estimate of 0.9 to 4.5 deleterious mutations
per diploid genome per generation, or 0.45 ≤ λ ≤ 2.25 per haplotype.

With this magnitude for the expected number of mutations, a mod-
ifier allele that changes the global mutation rate will not be pro-
ducing linear or even convex variation. When λ = µ L << L, the
multiplicative model is approximated by a Poisson process, where
the probability of parent j producing gamete i with ν mutations is
λνe−λ/ν!. The ratio between gametes with multiple mutations and
gametes with single mutations is:

Pr[≥ 2]

Pr[1]
=

1− (1 + λ)e−λ

λe−λ
=

1

λ
(eλ − 1)− 1 = λ

∞∑
ν=0

λν

(ν + 2)!

At the small mutation rate limit,

lim
λ→0

Pr[≥ 2]

Pr[1]
= 0,
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but for λ = 1.75,

Pr[≥ 2]

Pr[1]
=

1

1.75
(e1.75 − 1)− 1 = 1.72 >> 0.

Here there are about twice as many multiple mutations as single mu-
tations. The range 0.45 ≤ λ ≤ 2.25 gives 0.26 ≤ Pr[≥ 2]/Pr[1] ≤ 2.8.
So multiple mutations cannot be ignored in (56). Other eukaryotic
species whose mutation rates have been measured give rates of dele-
terious mutations of λ > 0.5 (Kondrashov and Kondrashov, 2010,
p. 1171). Therefore, when the expected number of mutations is on
the order of 1, the multiplicative model is not approximated by the
classical model of linear variation and requires an approach such as
taken here.

3. Lastly, a full picture of the evolution of mutation rates must take
into account not only the ‘wild type’ mutation rates — which are
the endpoint of the evolutionary process — but also the full range
of mutation rates that organisms are capable of generating, because
they are the values that test the evolutionary stability of the wild-
type values. In humans, somatic cells exhibit mutation rates that are
one to two orders of magnitude greater than germline cells (Lynch,
2010). This shows that human cells are capable of producing many
mutations per generations, and makes necessary a treatment that
can handle multiple mutations in order to analyze the evolutionary
stability of low mutation rates.

Q.6. This result holds for populations fixed at the modifier locus. What can
we expect if the initial population is polymorphic for the modifier?

A. Here the analytical techniques break down, because there is no clear
relationship between the variation in transmission produced by a new mod-
ifier allele and the mean transmission probabilities (2) in the population.
Based on the ubiquity of the reduction result, one can conjecture that a
form of reduction result will hold, but its exact form requires analysis that
can handle more general forms of variation in transmission.

Q.7. Once a new modifier allele successfully invades, what happens then?

A. The results here are for local perturbations of the equilibrium popu-
lation, and so do not reveal what happens once a modifier allele invades.
As the new modifier allele increases in frequency, it obviously changes the
mutation rates experienced by the loci under selection. If these changes
are small enough, then T̄(r)(i←j|k) in (2) will change only slightly, and by
the ‘theory of small parameters’ (Karlin and McGregor, 1972a), the hap-
lotype frequencies of loci under selection will converge to another stable
equilibrium near the starting stable equilibrium.

For modifiers with larger effects, however, the original equilibrium can
potentially become unstable or even disappear. Homotopy continuation
methods may be of use in elucidating the possibilities here.



An Evolutionary Reduction Principle for Mutation Rates at Multiple Loci 39

Whatever the population re-equilibrates to after invasion of the modifier
allele, it is again subject to invasion by additional modifier alleles that
reduce the mutation rates below the current neutral manifold of mutation
rates.

Q.8. What guess can be made as to how the inclusion of recombination would
change the results?

A. The inclusion of mutation makes the model into an example of a ‘mixed
process’, which is where departures from the reduction result have been
found. Holsinger and Feldman (1983b) find that maximal mutation rates
evolve in a model of pure selfing and overdominance — which is a mixed
process — because selfing drives down the frequency of the fittest geno-
type, the heterozygote, which high mutation helps to restore. So, could
mutation restore the frequencies of high fitness genotypes that recombi-
nation drives down? Such a situation is difficult to imagine, because the
genotypes that recombination would drive down are overdominant coad-
apted gene complexes, and it seems unlikely that mutation would help to
boost the frequency of such complexes.

As to recombination between the modifier gene and the loci under se-
lection, it in essence dilutes the subpopulation by mixing in some of the
equilibrium population. So recombination would expected be to moderate
the force of selection induced on a new modifier allele, but not to change
its direction.

Q.9. What do these results have to say about populations not at equilibrium?

A. Almost, but not quite, nothing. Populations that are far from equi-
librium — due to small populations, populations under varying selection,
populations in transient phases of evolution, and populations evolving with
novel genotypes — have modifier gene dynamics that are fundamentally
different from the equilibrium populations considered here. However, at
some point where the population becomes ‘close enough’ to equilibrium,
the near-equilibrium dynamics will again take hold. This appears to be
seen, for example, by Giraud et al. (2001) in enteric bacterial popula-
tions, which are far from equilibrium when first colonizing a new host,
and evolve higher mutation rates, but after some period of time evolved
reduced mutation rates. So at some point with large enough population
sizes, slow enough variation in selection, damped out transients, or rare
enough novel genotypes, the results for near-equilibrium models should
come to dominate the dynamics.

Next, details of additional aspects of the results will be discussed: The
constraint that mutation be symmetrizable, the multivariate reduction principle,
the strength of selection on the modifier locus, and models that depart from the
reduction principle.
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5.2 The Symmetrizable Mutation Constraint

The constraint that the mutation matrices be symmetrizable is necessary to use
the Rayleigh-Ritz variational characterization for the spectral radius. It causes
all the eigenvalues of Mµ and MµD to be real. Since symmetrizable M is the
transition matrix for a reversible Markov chain, its Perron vector produces ‘de-
tailed balance’ (20). The mathematical tractability of reversible Markov chains
has led to their widespread used in phylogenetic inference models, regardless of
whether empirical mutation rates actually are symmetrizable (Rodŕıguez et al.
1990; Yang 1995; Jayaswal et al. 2005; Squartini and Arndt 2008).

There is no reason to believe, however, that symmetrizability is fundamental
to the reduction result. It is not needed in the general reduction result for lin-
ear variation (Altenberg, 1984; Altenberg and Feldman, 1987; Altenberg, 2009).
In the absence of symmetrizability, the non-Perron eigenvalues may be com-
plex. Complex eigenvalues correspond to circulating non-zero net flows between
states. But as discussed in Q.4., net flows from fitter-than-average haplotypes
to less-fit-than-average haplotypes are already a part of any mutation-selection
balance.

I conjecture that the symmetrizability constraint can be removed, and the
multivariate reduction result will still pertain.

5.3 The Multivariate Reduction Principle

Details of the multivariate reduction principle are now discussed.

5.3.1 Negative Correlations between Selection and Mutation Rates

A new feature of this model is that it analyzes modifier loci that individually
tune the mutation rates different loci. When the marginal fitnesses at equilib-
rium do not depend on a particular locus, the modifier locus can ‘detect’ this,
even in the midst of large complex fitness interactions among the other loci,
by being able to change the mutation rates at this locus with no effect on the
modifier allele’s survival.

This means if genetic variation exists for local mutation rates, these rates
will evolve differently depending on whether the locus is neutral or not. Empir-
ical studies find substantial variation in mutation rates between sites within a
genome (Baer et al., 2007; King and Kashi, 2007; Fox et al., 2008). An implica-
tion of Theorem 2 is that these differences may be the result different histories
of selection among loci. In particular, neutral loci do not have the reduction
force operating on variation for their individual mutation rates, so they may
evolve higher mutation rates.

If there were any mechanism that decreased mutations at one location at the
expense of increasing it at another location, then neutral loci could become a
‘dumping ground’ for such negative pleiotropic relations, and would enable their
partner loci under selection to evolve lower mutation rates. A potential example
of such pleiotropic interactions is documented by Hoede et al. (2006), who find
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that single-stranded DNA secondary structure reduces mutation rates in E. coli,
and that such structures are found in excess within heavily transcribed sections
of DNA. If two sequences A and B were competing to form secondary structure
with a third site C, modifier dynamics would favor the evolution of secondary
structure to protect the sequence A or B incurring the greatest genetic load.

The possibility that there is a systemic negative correlation between under-
lying mutation rates and selection intensity presents a confounding possibility
for models of base substitution in phylogenetic models.

5.3.2 The Neutral Manifold of Mutation Rates

The manifold, N (µ), of mutation rates that are neutral for a new modifier allele
is a topological necessity whenever all the loci individually exhibit the reduction
result. The finding in Zhivotovsky et al. (1994) that a weighted average of the
recombination rates determines whether the new modifier allele increases or not
is, in fact, the finding of the neutral manifold in the linear limit. Their manifold
can be defined by setting to zero their expression:

L∑
s=1

L∑
t=1
t6=s

Ast
ρst
rst

= 0, (57)

which produces an L(L − 1) − 1 dimensional plane in the L(L − 1) dimen-
sional space of pairwise recombination rates between L loci. Their manifold is
a flat hyperplane, one may infer, as a consequence of the assumptions of weak
selection with pairwise additive-by-additive epistasis, which eliminates many
nonlinearities. In the current paper, an explicit formula like (57) for the neu-
tral manifold never appears; the existence and properties of this manifold are
inferred through topological arguments, purely from the monotonicity and neg-
ative partial derivatives of the spectral radius ∂ρ(MµD)/∂µκ.

However, an explicit equation for the manifold can be given for small per-
turbations of µ. Let

d := ∇ρ(µ) =

[
∂ρ(MµD)

∂µξ

]L
i=1

refer to the gradient vector. Its value can be computed explicitly (numerically

if not analytically) if Mµ and D are given, using (39) and (32), since Λ(κ), Υµ,
K, and B all derive from Mµ, and v̂ and ρ(MµD) derive from Mµ and D.

So for small δ ∈ RL, the manifold N (µ) is approximated near µ by

{µ + δ : d>δ = 0}. (58)

The entries of d are analogous to the weights Ast in (57), which can be
inferred to be proportional to the derivatives of the spectral radius with respect
to each recombination rate rst. Zhivotovsky et al. (1994) point out that (57) is
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not simply a total of all the changes in the recombination rates, but a weighted
sum whose weights Ast incorporate the intensity of epistasis between loci s
and t. A simple sum would entail that the derivatives of the spectral radius
be all equal, but clearly, the derivatives depend on selection and mutation or
recombinations distributions in an intricate way.

A little reflection will show that what is found here and in Zhivotovsky
et al. (1994) is, indeed, the only possible form that a multivariate reduction
principle could take. A multivariate reduction principle should have, as its
simplest requirement, that when a new modifier allele changes a single variable,
it should increase if and only if it reduces the value of that variable. Section 4.1
shows that this simple requirement leads, through topological necessity, to the
existence the neutral surface of mutation rates with its described properties.

5.4 The Strength of Selection on the Modifier Locus

It is something of the ‘lore’ about modifier genes that selection induced on
them is weak, since a number of particular cases studied found slow changes in
frequency of the modifier alleles (e.g. Karlin and McGregor 1972b, 1974). With
weak selection and pairwise additive-by-additive epistasis, Zhivotovsky et al.
(1994) find that selection induced on the modifier allele is quite small and the
asymptotic rate of change in the modifier allele on the order of the square of the
epistasis. Kondrashov (1995) finds that the modifier alleles change frequency
slowly in a model using various assumptions and approximations to estimate
the selection induced on a mutation modifier in populations under mutation-
selection balance.

But small rates of change are not, in general, a necessity of modifier gene
models. As was shown in Altenberg and Feldman (1987, Result 2b), in the
extreme case that η = 0, the asymptotic growth rate of the new modifier allele,
ρ(MηD) will equal maxi ŵi/ŵ > 1, which has an upper bound of 1/σ, where σ
is the fraction of haplotypes transmitted without change.

Here, σ =
∏L
ξ=1(1 − µξ) is the fraction of haplotypes that are transmit-

ted without any mutations. If the number of loci is large, and the values of
µξ moderate, σ can be quite small, and the upper bound 1/σ large. In the
Poisson approximation discussed in Q.5. above, part 2., the estimate of σ in
humans is σ = Pr[0] = λνe−λ/ν! = 1.750e−1.75/0! = 0.17, so 1/σ = 5.7. Thus,
the upper bound on the strength of induced selection coefficient of a mutation-
eliminating modifier allele is around 6, which allows very strong induced selec-
tion on the modifier locus. The actual value that maxi ŵi/ŵ takes on depends
on the specifics of the selection regime and mutation distributions and can be
substantially less than 1/σ.

The strength of selection on the new modifier can also be seen to increase
with several factors: the magnitude of its change on mutation rates (Theorem
5), the number of loci whose mutation rates it alters (Corollary 3), and the
number of cell divisions from zygote to gamete (Corollary 2).
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5.5 Relation to Models that Depart from the Reduction
Principle

Departures from the reduction result in near-equilibrium populations have been
found mainly in models that depart from linear variation. The models here
and in Zhivotovsky et al. (1994) have variation that is not linear, yet they
both produce the multivariate reduction result. What underlying properties
can explain this?

As a way to summarize the examples of departures from the reduction princi-
ple, Altenberg (1984, pp. 149, 225–228) proposed a ‘principle of partial control’:
when the modifier gene has only partial control over the transformation occur-
ring at loci under selection, then it may be possible for the part it controls to
evolve an increase in rates. I offered the following speculation:

If a modifier controls the transformation acting at only one or a
few loci, then the transformations acting at other loci will render
the variation at this modifier non-linear. It is conceivable, there-
fore, that a modifier affecting recombination at only a few loci could
evolve to increase that recombination when recombination is occur-
ring elsewhere. (Altenberg, 1984, p. 227)

The above possibility is ruled out by the results in Zhivotovsky et al. (1994),
at least for weak selection and pairwise epistasis: even when the modifier has
only partial control over the recombination events — because it varies only one
or a few pairwise recombination frequencies — it can only evolve to decrease
the recombination rates below the neutral manifold. And the same situation
applies here for mutation rates: any departures from the reduction result due
to partial control over mutation rates are ruled out.

One can speculate about what the underlying difference is between these
models and the models that provided the basis for the principle of partial control,
namely: recombination in the presence of mutation (Feldman et al., 1980), or
migration (Charlesworth and Charlesworth, 1979), or segregation and syngamy
(Charlesworth et al., 1979; Holsinger and Feldman, 1983a), or mutation in the
presence of segregation and syngamy (Holsinger and Feldman, 1983b). Each
of the latter models is a mixed process, in which the modifier locus controls
one among multiple transformation processes that differ in their mathematical
structure. In the current paper, there is only one type of process — mutation,
and in Zhivotovsky et al. (1994), there is only recombination. Multiple instances
of linear variation for only one kind of process are compounded together to
produce the variation in transmission of the entire genome, which is nonlinear.

One may wonder whether it is the independent occurrence of multiple events
that produces the reduction result. Here, multiple mutations occur indepen-
dently. But the model of Zhivotovsky et al. (1994) does not assume that mul-
tiple recombination events are independent, and can accommodate arbitrary
interference patterns. So, the independence of events is not essential to the
reduction results observed.
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These two models of non-linear variation that preserve the reduction result
do share the following: they use multiple instances of homogeneous genetic
processes to built up a multilocus, multivariate model. Is this the key to their
preservation of the reduction result? Lest one surmise that it is the homogeneity
of processes that is the underlying feature that produces the reduction result, the
following model from Altenberg (1984, pp. 149–151) provides a counterexample.

The model posits a single locus upon which two different mutation processes
act sequentially. Each process is ‘House of Cards’ mutation (Kingman, 1978,
1980), where the mutation distribution matrix, P(i), for each process i, is a rank
one matrix: P(i) = π(i)e>. The modifier gene has linear control over one of the
two processes, and varies either µ1 or µ2 in the expression,

Mµ1,µ2
= [(1− µ1)I + µ1π

(1)e>][(1− µ2)I + µ2π
(2)e>]. (59)

One can craft values for the variables that violate the reduction result: if π(2)

is weighted towards the least fit haplotypes, while π(1) is weighted toward the
most fit, and µ1 is small while µ2 is large, then a modifier which shifts its
subpopulation toward the fitter haplotypes by increasing mutation rate µ1 will
increase when rare, provided the variables are in the right ranges (e.g. for two

alleles, ŵ1 > ŵ2, µ1 = 0.1, µ2 = 0.4, π
(1)
1 = 0.9, and π

(2)
1 = 0.1).

When these two processes P(1) and P(2) act on two different loci, however,
they can no longer interact in the same way. The mutation matrix then becomes:

Mµ1,µ2
= [(1−µ1)I⊗ I +µ1(π(1)e>)⊗ I][(1−µ2)I⊗ I +µ2(I⊗π(2)e>)]. (60)

Indeed, since P(1) and P(2) are symmetrizable, (60) is simply an instance of
(21), the model analyzed here, so the reduction results of Theorem 2 apply. So,
we see that the reduction principle applies to nonlinear variation of the form
(60), but not of the form (59). The only difference between them is that the
two mutation process have a single target in (59), but separate targets in (60).

The picture that emerges is that when mixed processes are acting on the
same set of loci, the expansion of one process can sometimes systematically shift
the population toward the fitter genotypes, and cause modifiers that support
this expansion to survive. This is the essence of the deterministic mutation
hypothesis for the evolution of sex and recombination (Kondrashov, 1982). The
theoretical question then becomes, how do we identify which combinations of
processes and conditions on selection will produce this effect?

One can make a wild conjecture at this point: that in all of the cases of
modifier models where a mixing of forces produces departures from the reduction
principle, then a ‘separation of forces’ into linear variation on separate loci —
provided it is feasible to follow a form similar to going from (59) to (60) — will
restore the reduction result. Evaluation of this conjecture is deferred to future
work.
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