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Norm Statement Considered Harmful: Comment on “Evolution of
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The mathematical symbol for the norm, which is heavily overloaded with multiple definitions
that have both universal and specific properties, lends itself to confusion. This is manifest
in the proof of an important theorem for population dynamics by Schreiber and Li on how
dispersal increases population growth in a periodic environment. Here the theorem is placed
in context, the proof is clarified, and the confusing but inconsequential errors corrected.
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In a classic paper in computer science, “Go To Statement Considered Harmful”, Di-
jkstra [7] points out that while there is nothing incorrect in using goto in computer
programs, “The go to statement as it stands is just too primitive; it is too much an
invitation to make a mess of one’s program.” Ponder and Bush’s homage to Dijkstra,
“Polymorphism considered harmful” [24] considers the problem of operator overloading
— using a single symbol to represent multiple different operations — which creates a
situation of polymorphism: “Polymorphism is a powerful and flexible programming mech-
anism, but like many others it presents opportunities for abuses. These abuses can ruin
program understandability.”

Understandability in mathematics is similarly at risk from operator overloading. The
norm symbol, ‖ · ‖, is heavily overloaded due to the large family of functions used as
norms, and has the added complication that some mathematical results hold for all
norms while others hold only for specific norms. The hazards of norm notation prompted
Mathias to write, in The Handbook of Linear Algebra [22, p. 24.6]:

Warning: There is potential for considerable confusion. For example, ‖A‖2 = ‖A‖K,1 =
‖A‖S,∞, while ‖ · ‖∞ 6= ‖ · ‖S,∞ (unless m = 1), and generally ‖A‖2, ‖A‖S,2 and ‖A‖K,2 are
all different, as are ‖A‖1, ‖A‖S,1 and ‖A‖K,1.

This brings us to the paper by Schreiber and Li, “Evolution of unconditional dispersal
in periodic environments” [26]. Schreiber and Li prove a theorem of broad interest to
population biology, and their method of proof thus merits study. Norm notation in their
proof, however, causes some confusion.

First, let us have some context for their theorem. Karlin [17] proved a deep theorem
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on the asymptotic growth rate of populations that combine (1) a Markov chain with (2)
heterogeneous growth rates:

Theorem 1.1 (Theorem 5.2 in [17]) Let P be an irreducible stochastic matrix and D
be a nonnegative nonscalar matrix. Let M(α) := (1 − α)I + αP represent a family of
stochastic matrices parameterized by a mixing value α ∈ [0, 1]. Then the spectral radius
of M(α)D strictly decreases in α.

Karlin’s motivation for the theorem was to analyze the effect of dispersal in structured
populations upon the protection of genetic diversity. In the theorem, α is the dispersal
rate, and P is the matrix of probabilities Pij of moving from deme j to deme i given
that an organism disperses. D is the diagonal matrix of growth rates of the rare allele in
each deme. The spectral radius r(M(α)D is the asymptotic growth rate of a rare allele
in the metapopulation, and the increase in r(M(α)D as α decreases means that reducing
dispersal gives rare alleles greater protection against extinction.

The generality of Karlin’s theorem allows it to be employed towards a seemingly un-
related problem — the evolution of information transmission in organisms — to prove
that evolution would favor reductions in migration rates, mutation rates, recombination
rates, and even rates of cultural change [1, 4], producing a unification of the “Reduction
Principle” found for specific models by Feldman and coworkers (cf. [10, 11]). Karlin’s
theorem and its application to the evolution of dispersal rates were independently redis-
covered by Kirkland, Li, and Schreiber [18]. The theorem’s extension to linear operators
on Banach spaces is provided in [3], which unifies the result that “the slower diffuser
wins” found in a number of reaction diffusion models for the evolution of dispersal ([12];
[14, Lemma 5.2]; [8, Lemma 2.1]; [15]; [5]).

Empirically, it is clear that dispersal, mutation, and recombination rates have not
evolved to zero in organisms, so one is directed to look for mathematical sources of
departure from the reduction principle. The characterization of these conditions remains
largely an open question. Just as the reduction principle appears in many context, we are
seeing new situations in which departures from reduction hold, for example, for linear
stochastic differential equations [9] (S. Schreiber, personal communication).

For linear systems, departure from reduction means that the spectral radius increases
with the mixing rate α. One such departure occurs when the variation in the stochastic
matrix has the general form M(α) = B[(1 − α)I + αP], where B and P are specially
related stochastic matrices representing multiple transformation processes [2].

Schreiber and Li [26] prove a general result for another source of departure: temporally
changing environments, where the growth rate matrix D alternates every time step with
its inverse D−1. They generalize, to arbitrary n × n transition matrices of reversible
Markov chains, the behavior found for 2× 2 matrices in [16] [19] [25] [20, Result 2], and
4× 4 matrices in [6].

Theorem 1.2 ([26, Appendix 1])

Let D = diag
[
d1, . . . , dn

]
with d1, . . . , dn ∈ (0,∞), and let S be an n × n column

stochastic matrix such that RSR−1 is symmetric for some diagonal matrix R. For t ∈
[0, 1], denote by r(F(t)) the Perron (largest) eigenvalue of

F(t) = D[(1− t)I + tS]D−1[(1− t)I + tS],

where I is the order-n identity matrix. Then r(F(t)) is either an increasing function on
[0, 1] or a constant function on [0, 1].
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To prove this theorem, they provide another theorem in which norm notation enters:

Theorem 1.3 ([26, Appendix 2]) Denote by ‖A‖ the operator norm of the matrix A.
Suppose A ∈Mn is nonzero and satisfies ‖I + A‖ ≥ 1. Then ‖I + tA‖ ≥ ‖I + A‖ for all
t ≥ 1.

The term “operator norm” is polymorphic in the literature. In some uses (e.g. [23])
“operator norm” is synonymous with the spectral norm, ‖A‖2 := r(A∗A)1/2, where A∗

is the conjugate transpose of A, and r(·) is the spectral radius.
Others use “operator norm” more generally as the norm of a matrix induced by a

chosen vector norm ‖ · ‖ on Cn (e.g. [21], [13]):

‖A‖ := max
x 6=0

‖Ax‖
‖x‖

. (1)

Throughout the main text of Schreiber and Li [26] and in Theorem 1.2, the vector norm
used is ‖x‖ =

∑m
i=1 xi for xi ≥ 0. However, in Theorem 1.3, used to prove Theorem 1.2,

we find this inequality:

‖(I + A)u‖ = ‖(1 + α)u + βv‖ = |1 + α|2 + |β|2 ≥ 1, (2)

where u and v are vectors such that ‖u‖ = ‖v‖ = 1, ‖I + A‖ = ‖(I + A)u‖, Au =
αu + βv, and {u,v} is an orthonormal family.

Two things are clear from (2):

(1) The vector norm is no longer ‖x‖ =
∑m

i=1 xi but is now ‖x‖ := ‖x‖2 =
√∑n

i=1 xixi
∗,

so that ‖A‖ = maxx 6=0
‖Ax‖

2

‖x‖
2

.

(2) Squares are missing, and (2) should read:

‖(I + A)u‖2 = ‖(1 + α)u + βv‖2 = |1 + α|2 + |β|2 ≥ 1. (3)

The squares were also dropped from the next sequence of calculations, which should read

‖I + tA‖2 ≥ ‖(I + tA)u‖2 = |1 + tα|2 + |tβ|2 = · · · ≥ ‖I + A‖2.

Fortunately, the final inequality ‖I + tA‖2 ≥ ‖I + A‖2 remains true when the squares
are dropped, so the errors are inconsequential to the proof.

Norm notation allows Theorem 1.3 to be stated quite simply, but non-transparently,
and the polymorphism in the literature for the usage of “operator norm” makes us unsure
of exactly which vector norm is being used (It is, however, hard to imagine a vector norm
that would provide a counterexample to Theorem 1.3). The theorem could have been
expressed by unpacking the spectral norm explicitly as r((I + tA)(I + tA)∗) ≥ r((I +
A)(I+A)∗) for all t ≥ 1, which leaves no room for ambiguity or error, and segues directly
into Schreiber and Li’s sagacious decomposition (p. 134), r(F(t)) = r(D−1/2F(t)D1/2) =
r(B(t)B(t)>).

Norms are of course fundamental to mathematical analysis. The “information hiding”
achieved by ‖ · ‖ makes norm notation concise, but both the reader — and the writer —
may benefit from always explicitly stating its content.
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