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Abstract

Intuitive notions about the advantages of modularity fooleability run into the
problem of how we parse the organism into traits. In orderesolve the “question
of multiplicity”, there needs to be a way to get the human oleseout of the way,
and define modularity in terms of physical processes. | viilrawo candidate ideas
towards this resolution:

e the dimensionality of phenotypic variation, and
¢ the causal screening off of phenotypic variables by othenptypic variables.

With this framework, the evolutionary advantages that hasen attributed to mod-
ularity do not derive from modularitper se Rather, they require that there be an
“alignment” between the spaces of phenotypic variatio te selection gradients
that are available to the organism. Modularity may fad#itauch alignment, but it is
not sufficient; the appropriate phenotype-fithess map ijucmtion with the genotype-
phenotype map is also necessary for evolvability.

1 The Question of Multiplicity

A good deal of work in recent years has shown that the straciithe genotype-phenotype
map is of fundamental importance to the process of evolufidre variational properties

*Chapter 5 inModularity: Understanding the Development and EvolutidnGomplex Natural Systems
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of the genotype-phenotype map—how genetic variation mapsénotypic variation (Al-
tenberg, 1994a, 1995; Wagner & Altenberg, 1996)—largetgheine whether mutations
and recombination can generate the sequence of phenotyihemuereasing fitness that
produce adaptation.

A most important property of the genotype-phenotype mats imodularity. The con-
cepts of “modularity” and “module” are being employed nomavel contexts in the fields
of genetics, behavior, and evolution. Their precise megahias been fluid. “Modular”
will be used for the current discussion to describe a gersplenotype map that can be
decomposed (or nearly decomposed, Simon (1962, 1969)}het@roduct of indepen-
dent genotype-phenotype maps of smaller dimension. Thieragtexample of modularity
would be the idealized model of a genome in which each locyssiteone phenotypic trait.
For the converse, the extreme example of non-modularityicvioel a genotype-phenotype
map with uniform “universal pleiotropy” (Wright, 1968), imhich every gene has an effect
on every phenotypic variable. Real organisms, one couldeaigave genotype-phenotype
maps that range somewhere in between these extremes.

It may seem intuitively obvious why modularity in the genméyphenotype map should
benefit evolution: if genetic changes tend to map to changassmall number of pheno-
typic traits, then the genome can respond to selection eethraits alone, independently
of the rest of the phenotype, with a minimum of deleteriosqitopic side effects. Hence
modularity would enhance the ability of the genetic systergénerate adaptive variants,
which one can refer to as its “evolvability” (Altenberg, X&9 1995).

In a genotype-phenotype map with low modularity, where gdra/e high pleiotropy,
a genetic change that produces adaptation in one charaatebenconfounded by mal-
adaptive changes it causes in other characters. To prodaggive changes, a patchwork
of just the right mutations among modifier genes may be nacgde cancel out their
overlapping negative pleiotropic effects. Therefore,phgblem of pleiotropy points to a
solution through polygeny.

Two kinds of constraints may prevent such solutions fromm@pdound. First, such
patchwork may be be impossible to produce from any comhlinatf genetic changes,
so that only an approximation to the optimal phenotype cavev In other words, the
phenotypes that are possible may span a subspace that daeslude the optimum. |
refer to this as a “subspace constraint”.

Second, the kinetics of mutation, recombination, and seleenay make optimal com-
binations of genetic changes unreachable by evolutionarggsses. If coordinated muta-
tions at a number of loci are required in order to produce adgradvantage, and the single
or double mutations along the way are deleterious or neuttiadcomes very improbable
that such multiple mutations will ever appear (Riedl, 19/9%,7, 1978; Kauffman & Levin,
1987; Kauffman & Weinberger, 1991; Weinberger, 1991). Thsgeneric result, notwith-
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standing the complications of recombination and neutradoiks (van Nimwegert al.,
1999). So in cases where adaptation requires the coordinhéage of multiple loci, there
may be no selective pathway to reach those changes, andaghetghe can remain stuck at
a suboptimal genotype, resulting in a condition calledsfration” in statistical mechanics
(McKay et al,, 1982), or a “rugged fitness landscape” (Kauffman & Levin87p | refer
to this as a “kinetic constraint”.

These two mechanisms—subspace and kinetic constraintypmeent the simultane-
ous optimization of multiple phenotypic variables. A wayatimid these constraints would
appear to be modularity, where genetic variation maps tdl smabers of traits.

1.1 A Deconstruction of This Framework

While this explanation for the benefits of modularity mayreestraightforward, a number
of problems arise when we take a closer look. The advantagmdtilar genetic variation
is seen to come from the small number of traits that are aftecBy implication, this
advantage is thus premised on the idea that selection terds ®n small numbers of traits
alone.

What do we know about the nature of selection as it relatesitobers of traits? Here
we find ourselves in a swamp, because the process by whithdrai distinguished from
one another is a human measurement process, dependentinsitheents and cognitive
structures that we possess to parse the organism. How,dan@gr, should we deal with a
change in the size of an organism? Is this a change in all dfi@nism’s measurements
or, if allometric scaling relationships are maintainedjust one measurement? Is genetic
variation modular if it causes just one part of an organisechi@nge size, or if it causes the
entire organism to change size? Suppose there were seléatisharper teeth. Would a
genetic variant that made all teeth sharper be more or leslsilawothan a genetic variant
that made half of the teeth sharper, or just one pair of teetjust one tooth?

Consider another situation. Suppose that climate changedased a simultaneous
change in the optimal values of a number of organismal tr&tsppose further—just as
a thought experiment—that genetic variation for some pitggical variable happens to
move many of these traits closer to their new optima. A gerb effects on these many
traits would, under the common usage, be called pleiotrapi non-modular. And yet
under this circumstance, such a gene, with the ability toemoany phenotypic traits closer
to their optima, would be an asset to the genome’s evoligbili

Does the gene in our example “know” that it has several traitter directional selec-
tion rather than just one trait? Does the environment knat itthas selected on several
traits rather than just one trait? Where does the fact tharaktraits have been affected
appear in the dynamics of this situation? The reality of Wizt occurred is that
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1. there has been a change in climate, and
2. thereis an allele that is now at a selective advantageriine@ew climate.

For “whom?”, then, are there multiple traits?

We see that when we try to apply our intuitive notion aboutateantages of modu-
larity, we run into the problem of how we parse the organisto treits. This is not a new
problem—indeed, the problem of how to “carve nature at itst§ has been with us since
Plato (c 370 BC, 262b30). Until this problem is resolved, warot say whether variation
is modular or not.

In order to resolve the “question of multiplicity”, thereeus to be a way to get the
human observer out of the way, and define modularity in tefrpbgsical processes. | will
offer two candidate ideas towards this resolution:

1. the dimensionality of phenotypic variation, and

2. the causal screening off of phenotypic variables by gthenotypic variables.

2 Description and Degrees of Freedom

When we say that a gene affects multiple traits, we meantichinges multiple features
of the organism that are measured independently of one anoffach trait constitutes
a variable that can take on a variety of values, distinct ftbenvalues other traits may
take. To represent all the traits simultaneously theratgeires a multidimensional space,
which will be the Cartesian product of the space of value$ @aciable can take on. So,
references to multiple traits are equivalent to referetnz@sultidimensional spaces of de-
scriptive variables.

Thus, if S7 is the space of possible values for trajt and so forth fors, et al., then
an organism with trait valugs, x2, . . ., ,,) corresponds to a poiat in the multidimen-
sional space& = S; x Sg X --- x Sj,.

While our multidimensional representation of the organ@lots one degree of free-
dom for each trait, the critical question is whether theggeles of freedom have any phys-
ical reality as dimensions of variation in the organism, ionehsions of variation for selec-
tion. We can apply similar reasoning to the environment: scdption of the environment
can contain many variables, but we must also ask whethee tra$ables correspond to
physical dimensions of variability in the environment.

Let us return to our thought experiment about climate charfgppose the genetic
underpinnings are the sort that Waddington (1942) consitléar the evolution of canal-
ization, where a physiological adaptive response, inmgivhany phenotypic variables, is
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Figure 1:A one-dimensional space of variation embedded in threegiipit dimensions.

cued both by environmental signals—day length, tempezaaic.—as well as internal sig-
nals under genetic control. Genetic changes in how theggtatétans are invoked may be
capable of moving the whole complex response toward a mdm@almatch to a changed
environment (such as time of flowering, moulting, hybematdormancy, budding, quan-
tities of stored metabolites, etc.). While many traits vebbé observed to change under
such genetic variation, there may be in fact only one degiréeedom if there is a single
cueing mechanism that is being altered. In contrast to thargmt high dimensionality of
the space of traits affected by the gene, the space of \ariatithis example may be a
one-dimensional space merely embedded in the higher diorensThis is illustrated in
Figure 1.

2.1 Embeddings and Dimension Reduction

To further illustrate the idea that low-dimensional vddatmay underlie what appears to
be high-dimensional variation, | will draw attention to semrecent work on dimension
reduction. Dimension reduction has long been a part of nmrg@trics through the use
of principal component analysis (PCA), but this technigasuanes a linear form for the
lower-dimensional subspaces. When the spaces of var@teoomonlinear, other techniques
are required to identify these spaces.
Two recent works provide algorithms that can take complektidimmensional data and

discover when the variation is restricted to lower-dimenal manifolds, and can charac-
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Figure 2:An example of dimension reduction. While the hand can berdest by many variables,
in this ensemble of states there are really only two dimerssad variability: wrist rotation and finger
extension. The two dimensions of variation are recoverenh fihe 4096-dimensional image data by
Tenenbaunet al. (2000) using their Isomap algorithm. Reprinted with pesiua from Tenenbaum
et al. (2000). Copyright 2000 American Association for the Advament of Science.



Modularity in Evolution: Some Low-Level Questions 7

Figure 3: The nonlinear two-dimensional “Swiss Roll” manifold is osered from its three-
dimensional embedding by the Isomap algorithm of Tenenbaual. (2000). Points that appear
close together in the three-dimensional embedding may bagdart in the underlying manifold.
Reprinted with permission from Tenenbawetral. (2000). Copyright 2000 American Association for
the Advancement of Science.

terize these manifolds (Roweis & Saul, 2000; Tenenbatiad,, 2000).

Two illustrations from Tenenbauset al. (2000) are reproduced here. Figure 2 shows
a hand rotating at the wrist or opening its fingers. The haral gemplex object, here
described by 64-by-64 pixel photographs, giving 4096 imaelent variables. All 4096
variables vary as a result of the wrist rotation and fingeeesibn. Yet, if each photograph
is mapped to a single point in a 4096-dimensional space, dhiation traced out by the
set of photographs can be mapped to a two-dimensional néueifobedded in the 4096-
dimensional space. This manifold is represented in thesglafigure 2.

The two-dimensional manifold of variation depicted herprigsduced by movement of
the hand. Instead of a hand moving, we could just as well aealyset of photographs of
hands that represent the morphological variation in extamtan populations. The struc-
ture and dimensionality of this space of phenotypic vasiatinay very well be revealed
by use of the “isomap” (Tenenbaughal, 2000) or “locally linear embedding” (Roweis &
Saul, 2000) methods of nonlinear dimension reduction.

Figure 3 shows data from a two-dimensional manifold thatuidet! up in a 3-D em-
bedding. Points that appear close in the 3-D embedding manalcbe far apart in the
manifold, as shown by the geodesic lines. Thus, naive indéafions of the dimensionality
and “distances” represented by phenotypic variation mayreftect the real structure of
the variation.

The wide application of the isomap, locally linear embedgdiand related nonlinear
dimension-reduction methods (Verbeekal, 2002; Agrafiotis & Xu, 2002) to morpho-
metrics might prove fruitful at exposing unknown structivégthin phenotypic variation.
If low-dimensional manifolds are discovered amid the motpbical variation found in
different organisms, a new window may be opened on the qresfi“developmental con-
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straints”. The widespread characterizations of such roltsfacross different taxa could
provide the basis for a study of “morphomics”, as it weseld “genomics” and “pro-
teomics”). To my knowledge, the application of these newhods to morphometrics has
not yet been tried.

2.2 Evolvability and Alignment with Selection

I have argued that phenotypic variation which may appeamtolve many variables may
in fact represent the variation of very few parameters. Gatdoal transformations of
variables can change what appears to be high pleiotropyantpleiotropy. We must ask,
then, when does the geometry of variation make a differemegdlution? At this point we
must consider how selection is involved.

In order for a subspace of phenotypic variation to allow poese to selection, it must
pass through a selection gradient. Or, to be more precisesghce of variations must
provide, with some reasonable probability, a sequence étippoperations that produce
monotonically increasing fitnesses. If the probability ols a sequence is too low, there
is no evolvability. Two causes of such low probabilities H#re phenotype being near its
constrained optimum, and the situation where “frustrdtmevails. Here we find ourselves
back at the analysis of Riedl (1977).

Riedl proposes that the solution to the problem of adaptivstfation is the “system-
ization of the genome”. By this he means the creation of neacesp of genetic variation
that move the phenotype in directions that are under pediirectional selection. Rather
than modularity, it is the alignment of the space of variatiath selective gradients that is
the solution Riedl describes. What | am doing here is desayih geometric interpretation
of Riedl's argument.

So, despite the fact that genetic variation may alter a nurabphenotypic traits, if
there is a selection gradient for that particular dimensiospace of variation, then the
genotype-phenotype map exhibits high evolvability. In theught experiment about cli-
mate change and a gene that generates change that is adapteldave tried to show that
the involvement of multiple traits, per se, in genetic vénia does not create the problem
that modularity is postulated to solve. Rather, it is thatiehship ofselective gradient®
thespace of variatiorthat is the critical issue.

How does the earlier idea, that a non-modular genotypeqikipa map produces frus-
tration, hold up after this deconstruction? Frustratioouss because none of the spaces of
phenotypic variability are able to provide, with sufficigmbbability, a sequence of geno-
types that traverse the selective gradients that may hapgespresent—i.e. they are not
aligned with selection gradients. Hence, the genome islartalaccess regions of the phe-
notype that may be adaptive. Modularity, if it is to be a metnattain evolvability, must
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somehow imply an alignment between the spaces of phenotggation and the selection
gradients. One can conclude either that:

1. Modularity is one means to such an alignment; or that

2. Modularity should belefinedn terms of such alignments.

3 The Underlying Degrees of Freedom

| have talked about geometrical aspects of variation, anteiation to selection, without
delving into the possible causes behind such propertiese Heill explore this issue a
little further. 1 will propose that the notion of causal “sening off” (Salmon, 1971, 1984;
Brandon, 1984, 1990) can be used to describe the sort of mdiguh the genotype-pheno-
type map that matters to evolvability.

The fundamental dimensions of variation in the genotypedatermined by the spec-
trum of genetic changes that can occur. These include:

e point mutation, in which one nucleotide is replaced by aaothucleotide;
e deletions and insertions;

e gene duplication, in which a sequence of nucleotides cofp@d an existing se-
guence is inserted in a chromosome;

e gene conversion;

e polyploidy, in which an entire genome is duplicated one orenanes;
e translocation;

e transposition;

e recombination;

e segregation and syngamy;

e methylation change;

e horizontal genetic transmission (e.g. plasmid excharaye);

e a variety of taxon-specific genetic mechanisms.
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Each of these variation processes produces its own spacaenetig variation (Stadlest
al., 2002), distinguished not so much by the nature of the plypimthanges that they
produce, as by the evolutionary paths they make possiblegiegt genotypes.

Let me be more concrete in describing the spaces of genetatioa. A genome of.,
nucleotides can be represented as a point in the genotypeSpa { A, T, C, G}* (ignor-
ing for the sake of discussion the meta-sequence propsttarsas methylation, chromo-
some structure, etc.). Under the action of point mutatioerd existl degrees of freedom
for the genotype. The magnitude bfvaries from being on the order @b® for prokary-
otes to10'! for lungfish and trumpet lilies. A million to a hundred biltids clearly a vast
number of degrees of freedom for point mutations, but eaghedeof freedom constitutes
only a miniscule space—comprising only four points in falog four nucleotide bases,
T, C, andG. It really makes no sense to even speak of directional sefect a selection
“gradient” on a space of four discrete points; directionnslefined.

However, the process of gene expression groups thesedodivilegrees of freedom
into new spaces of variation with fewer degrees of freedom,nlany more elements.
To begin with, DNA triplets in transcribed sequences maph gpace of amino acids,
{A,T,C,G}3 — P (whereP includes the twenty amino acids and the stop codons).

The dynamics of protein folding and molecular interactiomsurn group the amino
acids in a protein into a new set of variables that charamtdhe protein and its inter-
actions. This is the first point in this chain of “decoding” evk real-valued variables
enter, such as the geometry of the protein fold, the kineties for interaction with other
molecules, binding energies, catalytic rates, thermdlilgia hydrophobicity, etc. Non-
transcribed DNA has different mechanisms of expressiot raal-valued variables can be
seen to emerge immediately in characterizing its phenotyfiécts, such as its affinities
for binding with regulatory molecules, methylation enzneplication and transcription
complexes, etc.

3.1 Screening Off

While a great many real-valued variables are needed toibeséor example, a protein, it

is typically the case that only a small subset of variablesisded to describe the causal
effects of a gene on the organism—a catalytic rate, bindimgtants, levels of expression,
the timing of expression, half-life, and so forth. Variatim a gene will not cause pheno-
typic variation except in how it varies these variables. theo words, there is some set
of variables thascreen off(Salmon, 1971, 1984; Brandon, 1982, 1984, 1990, 2002) the
causal impact of genetic variation: if one knows the valdfdhese variables, there is noth-
ing more one needs to know about the gene in order to deteftnieffect on the organism.

By “small number” | mean small relative to the typical numibémucleotides in a gene,
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which ranges from 02 to 10° in eukaryotes.

The processes of gene expression, ontogeny, and physiobogert the large number
of essentially “digital” degrees of freedom in the genomi® idegrees of freedom of a
smaller set of real-valued variables (similar, really, teatvhappens in electronic digital-to-
analog conversion). The variables that screen off the ptiggeof a gene may themselves
be screened off by other variables that summarize theictsffen other functions in the
organism. For example, many factors contribute to levelsoofisol in vertebrates. But
to the extent that they affect the organism through the adaifacortisol, the cortisol level
contains all the information about their effect.

In common usage, when people refer to the “function” of pharoorganism, they may
mean one of two things: “What does the pdoP”, or “What is the partor?” In both cases,
nevertheless, the positing of a “what” implicitly uses tlmncept of screening off. The
“what” refers to a function that screens off the detailedrabteristics of this organismal
part, a variable that summarizes one of its causal consegador the organism, or one of
its purposes, respectively.

Regarding the latter notion—purpose—I will invoke the plapuejoinder: “Let’s not
go there.” Much has been written—indeed books—on the natfofunction as “what
something is for”. In particular | note the line of thoughtoaib “proper functions” devel-
oped by Ruth G. Millikan (1984). Throughout this chaptemnvitl be “what something
does” that | mean when | refer to “function”.

The idea of phenotypic variables that screen off other ttggacan be expressed math-
ematically by saying that there is a set of functiofg;(g,)}, that forms a complete de-
scription of the causal consequences for the organism duariation in the geng,. To
be complete, and account for gene-environment interaxaon epistasis, these functions
will need to have other arguments that include genes, andoemuental variablesp;, and
therefore be of the forn#; ({g,.}, {¢#,}). These functions in turn may be screened off for
their organismal effects by other sets of functiof&, (F;,, F;,,...)}. Organisms have
many chains of such dependence, which could be said to forfuretion network”. A
simplistic illustration of the “function network” can beesein Figure 4.

Ultimately, one arrives at the variables that describe #ttesrof mortality and fertility
of an organism as functions of its interactions with the jitalsand biotic environment.
These variables screen off all other phenotypic propedigke organism in determining
natural selection on the organism. Examples of such vasalbuld be efficiency of nu-
trient absorption, mating success, offspring number tdesdés due to predation, infection,
injury, etc. When we know the value of such variables, thenma additional information
that can tell us anything further about an organism'’s fitness

If we consider what is meant by “directional selection”,riligls clear that this last tier
of variables defines the “directions” under selection. Btienal selection, as conceived,
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Figure 4: The “function network”, showing the relationship betweemgs, variables that screen
off the gene’s causal effects, and variables that screethede variables, etc., all the way to fithess
components.
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means that there is some phenotypic property which aloneaafer a fithess advantage
if it changes in the right direction. Stabilizing selecti@s conceived, means that there is
some phenotypic property which alone can impose a fitnessidistage if it changes in
any direction away from its current value. This is precidedy | have defined the highest
level of variables that screen off all other phenotypicahlés with respect to selection.

Attempts to describe these function networks can be foutithititerature. Dullemeijer
(1974), for example, presents a graph of the top layer ofuhetfon network in a study of
the cranial feeding system of a crotalid snake (cited by ®ct(2001) in the collection
Wagner (2001)) .

The top level of screening off functions defines what matieesach component of an
organism’s fithess, and thus defines what needs to be optiizselection. The degree to
which each of these top-level screening-off functions ismjed, in any particular organ-
ism in a particular environment, can be expected to fallglmspectrum: the functions that
are nearly optimal will be sources of stabilizing selectiahile those that are suboptimal
will be the sources of directional selection.

Let us examine whether it is useful to define modularity imof the relation between
spaces of phenotypic variation and these top-level sangeuwifif functions. The genotype-
phenotype map is defined as modular if very few of these fanstare affected throughout
a space of phenotypic variation. When would such modularityance evolvability? First,
it is of no use to evolvability for there to be a modular gempayphenotype map when all
the modules are under stabilizing selection, since thare &laptive opportunity no matter
how it is sliced (Wagner, 1996). Modularity among functiamgler stabilizing selection
may nevertheless have other kinetic population genetisamqumences, as found in the study
by Waxman & Peck (1998).

Suppose, on the other hand, that the space of variation rméypsodfunctions undedi-
rectional selectionThe interactions of these functions in determining fitnesald define
the selection gradient on the space of variation.

In order for modularity to enhance evolvability, it must paltate the functions under
stabilizing selection from those under directional sétect The importance of this cleav-
age between stabilizing and directional selection has bssagnized for some time as an
important element of evolvability, and motivated the depehent of the “corridor model”
(Wagner, 1984, 1988; Biirger, 1986). Mechanisms that tfatyze the evolution of such
a cleavage are discussed by Altenberg (1995). Evolvahdignhanced when there are
spaces of phenotypic variation that fall narrowly withi ttunctions under directional se-
lection, and remain orthogonal to the functions under Biaig selection. This is the kind
of modularity that is implicit in the naive framework that ¢scribed at the beginning of
this chapter. Genes with that sort of modularity would lok lthe ones in Figure 4 with
direct connections to variables on the top level that areeudutectional selection, and few
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connections—direct or indirect—to top level of variableslar stabilizing selection.

Hence, these top-level variables provide a way of desdjiltle sort of modularity
that is important to evolvability. There is nothing to pravene from defining pleiotropy
and modularity in terms of the map between a gene and theblesiat any level in the
function network—or for that matter, between a gene and &sgver-defined phenotypic
characters. But pleiotropy or modularity so defined will say anything about whether
the spaces of variation are aligned with selection gradjertd so will not be relevant to
evolvability. The pleiotropy that is relevant to evolvatyilis that which applies to the map
between the gene and the top-level screening-off variables

Let us now return to my earlier hypothetical question abelgction for sharper teeth.
Would a genetic variant that made all teeth sharper be mdessmodular than a genetic
variant that made half of the teeth sharper, or just one gaeath, or just one tooth? We
now have some machinery to answer this question.

What are the organismal functions that screen off the caifgadts of tooth morphology
with respect to selection? Such functions would includer#ite of catching and killing of
prey, the size of food particles sent to the stomach, the atafuflesh removed from a
carcass, the success rate for defenses against attackidityosind mortality due to tooth
and gum infections, mating success, and so on. We must asthwlfithese functions
would be altered by the different spaces of tooth variation.

Suppose that there was directional selection for a stromgerth grip on prey. A ge-
netic variant that sharpened just the front half of the teathld improve that quantity, and
would leave alone the grinding function of the back teeth.efigtic variant that sharpened
all the teeth might also improve the prey-grabbing functiom make it harder to grind
food, and thus increase the particle size of food in the stbyn@ecrease nutrient absorp-
tion, and adversely affect fithess. It would affect two tepdl functions instead of just one,
involving both directional and stabilizing selection ieatl of just directional selection, and
would thus be more pleiotropic and less modular than the tioataf just the front teeth,
even though fewer characters (teeth) were altered.

Any number of variants of this example can be posed and asdlyzthe same way.
Whether genetic variation has a modular effect depends @nithaffects the top-level
screening-off functions.

3.2 Spaces of Environmental Variation

Can this conceptual framework for modularity give us anyglines as to what we should
expect from nature regarding modularity in the genotypergaltype map? We have three
principal features to consider: the top-level screenifigwunctions, the partitioning of

these functions into those under stabilizing selectiontnde under directional selection,
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and the modularity of the genotype-phenotype map with r&dpehis partition.

The amount of modularity with respect to directional setetactually exhibited by an
organism will depend on the particular set of functions #iratunder directional selection.
If it happens to be a set for which the organism has a modulaotgpe-phenotype map,
then it will show a modular relation to selection.

What determines which functions are under directionalcsiele? Clearly, environ-
mental change—nbiotic and abiotic—would be the principalseaof directional selection
by dislodging the phenotypic optima. So the possession addutar genotype-phenotype
map—in the way that matters to evolvability—would appeadépend on the vagaries of
environmental change. The study of modularity in the gepetyhenotype map of organ-
isms as it pertains to evolvability would thus be somewhat béphazard subject.

However, there may be processes that give modularity a nystersatic existence than
the vagaries of environmental change would lead one to éxplater describe population
genetic mechanisms that can lead to the evolution of moitjutaat enhances evolvability.
From the foregoing discussion, we would expect that suchutaoitly would evolve for
functions that were under recurrent directional selectidhis brings us to the spaces of
variation in the environment.

The environment is analogous to the phenotype in that itstast numbers of vari-
ables to describe it, yet its degrees of freedom for vanagie few in comparison. If we
go forward with the idea that low-dimensional manifolds rettéerize the variation of the
environment, then each of these spaces will be charaatdrizdifferent fluctuation statis-
tics. The ones that are highly variable will induce recugritirectional selection on those
screening off functions of the organism that are sensitvbése environmental variables.
Modularity for these variables will enhance the organisafygity to respond evolutionar-
ily to this recurring directional selection. Thereforegifolvability-enhancing modularity
can evolve as a response to directional selection, it willnost well developed for those
functions that are under recurring directional selectidlitehberg, 1995; Wagner, 1996).

The upshot is that the spaces of variation in the organism coaye to mirror the
spaces of variation in the environment. This idea is reafily @ technical revision of
the idea originally proposed by Riedl, that “the epigenstistem copies the functional
interdependencies of the phene system.” (Riedl 1978, p. 93)

How great a degree of mirroring we can expect depends on thetitative details of
the processes that would produce the evolution of modylaBuch details are left for
another day, and here are merely proposed as a possibdityntbrits investigation.
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4 Mutational Kinetics, Modularity, and Evolvability

To pursue the foregoing discussion with a specific examplglize the “B-matrix” model
of Wagner (1989). This model contains all the ingredienésased thus far:

e Genes control multiple phenotypic variables, creatingdineensions of variation for
the phenotype.

e Phenotypic variables are controlled by multiple genes.
¢ A fitness function is defined on the phenotypic variables.

In this model, the “function-network” has only this one, ttgvel of phenotypic variables;
there are no other phenotypic variables that are screefégl tfese fitness-defining vari-
ables.

Because the B-matrix model is simple and well-defined, weareswer the question
of how the alignment between the dimensions of variation seldction gradients affect
evolvability, and derive a means to define modularity as @@y intrinsic to the model,
notimposed by subjective parsing of the phenotype. We dislbver that a critical feature
for defining modularity turns out to be the magnitude of motaeffects.

4.1 Wagner’'s B-Matrix Model

In the B-matrix model of Wagner (1989), selection is optiimig acting on multiple traits

controlled additively by multiple loci. There are three sps in this model: genotype,
phenotype, and fithess. Genetic variables are mapped topipdnvariables, and these in
turn are mapped to fitness. Each phenotypic variable has tmalpalue, and fitness is
defined as a Gaussian function of the departure of the traits the optimum. | describe
each of these mappings.

The phenotype-fithess Map.The optimal value of each phenotypic variable is set for
simplicity. Lettingx represent the vector of phenotypic variables, the fitness
defined to be:

w= exp(—%wTMm),

where M is a positive definite matrix (positive definiteness assthasfitness de-
creases as one departs from the optimum). Here, the funbtieV/) = x " Mx
is the sole top-level screening-off function in this systesimce if we knows, the
fitness isw = exp(—4J/2), and there is no additional information thagives about
fitness.
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The Genotype-Phenotype Map.The vector of phenotypic variables is itself a linear
function of the underlying genetic variablgs

x = By

The scalar valug; can be interpreted as the lowest-level screening-off fandor
genei, which summarizes the entire causal effect that gerees on the organism.

The fitness function, expressed in termgyofs:
1
w(y) = exp(—5y ' B' MBy), (1)

In this model, the spaces of phenotypic variation are sirspkEght lines defined by
the columns ofB,

Bog
by = .
Brk
where L is the number of genetic variables (loci). So the space ohptypic variation
produced by variation at locusis the line,S, = {yxbx : yr € R}.

4.2 Finite and Infinitesimal Models for Mutational Kinetics

In order for a genotype with these dimensions of variatiomegspond to selection, the
earlier discussion claims that there must be selectionigmélalong the spaces of varia-
tion. When we wish to analyze the evolutionary dynamics, ae immediately that we

must know something more about the magnitude of variatiodypeed by mutation of the

genotypic variables. In the quantitative genetic literafwe find two main kinetic models

(Burger, 2000) for the production of variation:

e the “random-walk” mutation model (Crow & Kimura, 1964) and
¢ the “house-of-cards” mutation model (Kingman, 1977, 1978)

The random-walk model embodies the assumption that matagoturbs the genetic
variable away from its current value by a random variablgving

XT; — T; + €.

Typically, € is distributed symmetrically arour@l having a Gaussian, exponential,Ior
distribution. The transition probability (or density) is

T(x;—x;) = u(z; — x;).
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The house-of-cards model assumes that mutation “toppkedidiuse of cards” that
adaptation has built up, producing a new phenotype thatdegandent of the old, with
a value that is sampled from the same distribution regasdiethe original value, giving

Xr; — €.
The transition probability (or density) is
T(x;—x;) = ulx;).

A key difference between the models becomes apparent wiegratle adapted to the
multivariate context. In the random-walk model, the pdsation caused by each individual
mutation is taken to be small, and thus nearly neutral. €ipérturbations are taken to be
the result of multiple small mutations. Under this processiltiple infinitesimal mutations
can accumulate before selection can differentiate thevmgfor the random-walk model:

T —x+ E €Ly,
i

wherer; € {1,2,3,..., L} are independent random variables designating the inddeof t
locus to be mutated, arig,, is a vector for théth mutation that has a single non-zero entry:

0
0

1

1 | < kthentry,

0
so1y has all 0 entries except for theh entry, which isl.

By the law of large number$,_, ¢,,1,., approaches a multivariate Gaussian random
variablee, so the mutation process gives:

T — T+ E €x;1i, R T+ €.

2

The mutation process will diffuse away from any “wild-typgénotypes and produce a
cloud of genotypes surrounding it.

In the house-of-cards model, on the other hand, mutatiene@rinfinitesimal in size,
since the mutant genotype value is sampled from a fixed loigion independent of its
currentvalue. In the mutant genotype, a random lecigsnutated, which replaces element
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Figure 5: A. Distribution of mutational effects under the “houseeafrds” assumptions. B. Distri-
bution of mutational effects under the “random-walk” asgtions. 5000 points are sampled.

Y. by €, in the vectory’, leaving the other positions alone. A way to express the niuta
genotypey’, is:

/

Yy :yo(l_ln)+€n1n:y+(€n_yn)1m (2)

wheree, is the random variable for the new genotype value, samptad the distribution
u(xy).

As selection moves the population toward fitter genetic eslin the house-of-cards
model, a smaller and smaller fraction of the fixed distribogiu(z;) is closer to the opti-
mum, hence the probability of generating fitter mutant$siaff with increasing adaptation.
Contrary to the random-walk model, since mutations arenfotitesimal, they will not be
nearly-neutral, so selection will start to fix or purge migias as soon as they occur. Thus
it will not be possible to build up small mutations at mulédbci before selection acts.
This has a significant impact, because the mutation proc#issoNdonger produce a mul-
tivariate Gaussian perturbation. Instead, the frequenafiesingle-, double-, triple-locus
mutants, etc., will decrease exponentially (at a rate wisiehfunction of the mutation rate
and selection magnitude).

The house-of-cards and random-walk models are illustiat€igure 5. The points in
Figure 5A show the spectrum of phenotypes that are accessitiler the house-of-cards
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assumptions. This graph is produced with the assumptidridbiamutate independently,
so single, double, triple, mutations occur with frequesgeoportional to powers of the
mutation rate. What matters, however, is how the frequepegtsum of multiple mutations
affects the accessibility of the space. Most variants arglsimutants, which fall along the
axes of variation produced by each gene. Rarer double nsifhdlong the planes defined
by each pair of single-mutant axes. Even rarer triple mstéaitin the interior. The “wild
type” is at the intersection of the single-mutant axes. Toiats in Figure 5B show the
spectrum of phenotypes that are accessible under the randdkmodel, where multiple
infinitesimal mutations allow access to the entire spacaratdhe wild-type phenotype.

| have presented the house-of-cards model as a paradignmfatadional kinetics that
generates variation along low-dimensional spaces asteepitFigure 5A. However, what
is critical to this result is not the “house-of-cards” asgtion itself. Rather, it is that
mutation is finite rather than infinitesimal in effect. Any tational distribution that is
dominated by finite effects will result in a population distition similar to Figure 5A in
which variation falls along the single-mutant axes. Theref| will refer to the two distinct
paradigms for mutational kinetics as “finite” versus “infesimal” models.

These two different models for mutational distributionsénaery different implica-
tions for the issue of modularity. In the finite-effects mhdiere must be selection gra-
dients along the single-mutant axes in order for adaptatiarccur. In the infinitesimal-
effects model, on the other hand, multiple single-mutameisacombine to span a higher-
dimensional linear subspace, and evolution can follow ahgcsion gradient within this
subspace.

It should be noted that in the infinitesimal-effects modw, tultiple-mutant subspaces
may impose their own constraints upon adaptation if theyatsspan the entire space of
phenotypes. Translated, this means that no genotype éxatsan produce an optimal
phenotype. In an infinite-dimensional trait such as a grautire, this is a generic situation
(Kirkpatrick & Lofsvold, 1992). It is the expectation wherez there are fewer dimensions
to the genotype space than there are to the phenotype spat¢he columns of the B-
matrix are linearly dependent. In either case, the restitsisthe B-matrix will not be not
full-rank, and the genetic variance-covariance matBxB ", will be singular.

When the B-matrix is not full rank, the generic outcome ofletion under an infinitesimal-
effects model is that the phenotype will reach a constram@inum within the space
spanned by the B-matrix, at some distance from the globahoit (Kirkpatrick & Lofsvold,
1992; Altenberg, 1995). At this constrained optimum, dddigenetic variation may ex-
ist for each phenotypic variable individually, but the redd dimensionality of their joint
variation will prevent any response to selection. Theré reilnain a “latent” directional
selection orthogonal to the space of variation (Altenb28$5).
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The finite-effects model makes possible a form of constrairfrustration — above
and beyond the constraint caused by a non-full-rank B-maffrustration may prevent
even the constrained optimum from being reached.

Frustration is &inetic constraintin that genotypes with the optimal phenotype may
be possible, but the probability of generating them is nérhgcause it requires multiple
simultaneous mutations away from the wild type.

Riedl (1977) delves into the issue of finite versus infinitedi effects in his discus-
sion of alternative theories for the evolution of complexpbtypes. One which he calls
the “storage theory” proposes that in cases where multipleations are needed to pro-
duce a particular adaptation, these mutations can be stotbd gene pool until they are
brought together by recombination or hybridization. Bus trequires that the mutations,
not valuable individually, be nearly neutral so as not to xpueged by selection. In order
to be nearly neutral, they must be of extremely small eff€be storage theory, then, is an
infinitesimal-effects model for mutational kinetics.

4.3 Alignment with Selection Gradients

With this distinction between these two models for mutadidkinetics now spelled out,

let us return to the thesis described at the beginning ofdhépter about the advantage

of modularity for evolvability. As should now be obviouseie conventional ideas about

modularity have as a core assumption that mutation follofirsite-effects kinetics.
Recalling that the fitness function in the B-matrix model is:

1
w(y) = exp(—§yTBTMBy),

then in the house-of-cards model, with loeumutated, the fitness of the mutant genotype
Yy =y + (ex — yx)1, (from equation 2) is:

1
w(y') = exp(~5y" BTMByY)

1
exp <_§ [yTBTMBy + 2(6N - yﬁ) yTBTMbH + (EN - yH)QbNTMbH])

1
w(y) exp |:(yf€ - GN) yTBTMbN - 5(3//1 - GK)QbHTMbK,:| .

So we see that whether the mutation is adaptive or not deenttee relationship of the
column vector®,, with the matrixM and the current genotypge

One could exactly quantify the magnitude of evolvability fiois model by specifying
the sampling distribution of, and deriving the probability that(y’) > w(y). This,
however, would go beyond the purpose of this chapter, whianérely to delineate the
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relationship between the different factors described:he@dularity, spaces of variation,
selection gradients, and evolvability.

I have claimed that the natural notion of modularity—a ggpetphenotype map that
is decomposable into the product of lower-dimensional ggyephenotype maps—is no
more than a means (nor the only means) to enhance evolydlyjlihaking it easier to align
the spaces of variation with selection gradients. In the &rix model, a modular geno-
type-phenotype map corresponds, in the extreme degreB, lteing a diagonal matrix.
Under this condition, we have:

y B Mb. = y;Bj; M B,

J

and
b. Mb, = B> _M,,,

hence

1
w(y') =w(y)exp | (yx — €x) Zijijj,gBm{ - 5(yN —€.)?B%_M,,

J

We notice that, despite the modularity of the genotype-phgre map, there are interaction
termsy; B;; M, B, that signify epistasis between loci—i.e. whether mutagiblocusx
can generate adaptation depends on the state of the otliegJodn fact, the situation
with a modular genotype-phenotype map is really no diffefeam the situation with a
non-modular genotype-phenotype map, because we can write:

1
w(y) = exp(—QyTM’y),

whereM’ = B" M B is a positive definite matrix, which is the same form a®ifvere
the identity matrix.

Therefore, a modular genotype-phenotype map is not suffit@eensure any special
evolutionary capabilities of the variation generatingsys What is further required is that
the M matrix itself be a diagonal. In that case, we obtain:

wly) = ww)ep (o — ex) B Menlye — 3 0n — )]

Il

<
|

™

1
wly)exp | 502 — ) B M.

Here, we see that the ability of a new mutation to produce ad#tincrease depends solely
on whether the new genotypic valug, is closer to the optimum than the old genotypic



Modularity in Evolution: Some Low-Level Questions 23

value,y,.. No other loci are involved. But we see that “modularity” @@annot be de-
fined solely in terms of the genotype-phenotype map; it nusilve also the matrix\1,
which describes how phenotypes map to selection. So agaiat, i more fundamental
to evolvability than modularity in the genotype-phenotymap is the relationship between
the spaces of genetic variation and the selection gradient.

5 Discussion

In this chapter | have tried to focus on some of the low-lesslies that arise when trying
to approach the issue of modularity in evolution. | have redved at all into the question
of how evolutionary dynamics may affect modularity and thigrament of spaces of vari-
ation with selective gradients. | will offer some commentstbe evolutionary dynamics
affecting modularity.

5.1 Constructional Selection

The role of gene origin in sculpting the modularity of the gme-phenotype map is ex-
plored in Riedl's work (Riedl, 1975, 1977, 1978), and in sav®ef my own papers (Al-
tenberg & Brutlag, 1986; Altenberg, 1994b, 1995).

The central idea of this work is that we expect the dimensiérariation in the genome
to be enriched with spaces that are in alignment with setegiiadients. This enrichment
process is a systematic outcome of the dynamics of genometgrdlew genes that hap-
pen to change the phenotype along a positive selectionegradie much more likely to
be preserved by selection than genes which produce varittad randomly perturbs the
phenotype and is thus likely to be detrimental. Thus, theekegof freedom in the genome
should grow in the direction of greater evolvability. My stiand term for this process is
“constructional selection” because it pertains to the trotion of the genome.

Modularity is one means, though not the only means, to aeltte® correct alignment
of the space of variation with respect to selection. So maritylis one feature that we
expect to be enriched by the process of genome growth. Cleanmes of this sort of
modularity are the separation of regulatory function froodiag function in eukaryotic
genomes. Such separation is not a functional necessityeesia non-modular genes
where sequences carry both coding and regulatory funcBahseparation of these func-
tions permits one of the dimensions of genetic variationgus@ce duplication—to explore
combinatorial spaces which preserve the regulatory anshgddnctions of the gene frag-
ments. By maintaining these functions, but bringing thegetber in a new combination,
such modular genetic elements have a greater likelihoodouze a selective advantage,
and thus be kept by the genome. Therefore, the genome shecddiz more enriched for
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such elements as it grows. This same process would also applgments within regu-
latory regions, or within coding regions. And we find that mamoteins are mosaics of
function recombined from other genes (Hegyi & Bork, 1997).

What is important to remember is that the modularity that sult from selective
genome growth is defingd terms of the genetic operatgosoducing the genetic variation,
in this case the processes of sequence duplication. Sodar@e, if sequence duplication
happened to be restricted to a certain range of sequendbseitgvould be on that length
scale that genome growth would select for modularity. Anddaolarity is selected only
with respect to its ability to increase the likelihood thia¢ sequence duplication event is
beneficial. All structural features that we would call “mdatti are defined in terms of this
probability rather than ang priori structural definitions that we might impose.

Failure to appreciate this essential point is a source ofusion when discussing the
issue of modularity of exons (Logsdon, 1998; De Soatal., 1998). Modularity with
respect to exon shuffling can be achieved when protein dobwmindaries correspond to
exon boundaries. But a lack of correspondence is not irf gs@ence against modularity.
If functional properties of an exon are maintained afterresiouffling, then this exon ex-
hibits modularity. It may not be necessary for domain ancéaundaries to correspond in
order for the functional properties to withstand exon simdfl-other properties of the se-
guence can stabilize the functional elements. This distinds subject to empirical testing
because modifications of splice sites in exons with evolvedutarity would be expected
to decrease their modularity, whether or not the splices $&t between protein domains.

5.2 Other Sources of Modularity in the Genotype-Phenotype Mp

In addition to genome growth processes, there may be othece®that produce modular-
ity in the genotype-phenotype map. These deserve someandrdre.

5.2.1 Modularity “For Free”

There may be generic features of biology, chemistry, or gythat provide modularity
in the genotype-phenotype map “for free"—to borrow the ghr&fom Kauffman (1995,
Chapter 4). Kauffman speaks of “order for free”, that is,esrth living organisms that
arises not from Darwinian selection (order at a cost), bt generic outcome of physical
self-organizing processes. Similarly, there may be exampf “modularity for free” in
the genotype-phenotype map that have a similar origin. herotwords, there may be
circumstances when we expect modularity to be a genericeptyppf organisms that does
not require natural selection to establish or maintain.

One obvious candidate source for modularity without natseection is the branch-
ing structure of the cellular genealogy in multicellulaganisms. Multicellular organisms
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arise from the repeated division of cells. The ancestrat $ta the cells of multicellular
organismsis the single-celled organism, which is the epétof a module. The tendency of
unicellular organisms to separate, disperse, and becaepé@mdent after replication is a
generic property that makes them modular. Many singleedadrganisms can nevertheless
have aggregate properties (e.g., production of biofilme)leamulticellular organisms have
adaptations that counteract independence after replicahd maintain proximity and in-
teraction to varying degrees. However, a certain amoungépéation and independence
is inescapable among the cells in multicellular organisirtsis would be a fundamental
source of “modularity for free” in multicellular organisms

Vascular plants maintain a close parallel between theisjgly structure and their ge-
nealogical structure, because their cells have less mpHiln cells in animals. So cells
which are genealogically distant also tend to be physidaifitant. This physical distance
makes modularity in the genotype-phenotype map more egsiljzed, because pheno-
typic alterations in the structure of, say, a flower, may himveer physical interactions
with, for example, a root.

In complex animals, there is less isolation between gegéaltly distant cells because
of cellular mobility and physiological integration. Muyte tissue lineages participate in
the construction of integrated organs. Hormonal and nelrm@mmunication integrates
genealogically distant cells in their function. Therefdareanimals one would expect to
find significantly less “modularity for free” from the celarigenealogy.

5.2.2 Modularity “Included”

Itis possible that modularity in the genotype-phenotypp t&n “hitchhike” (Maynard Smith,
1974) along with traits under natural selection. This istin@ean by “modularity included”—
it doesn’t come free, but is included as a side effect of @dtseelection for traits under
selection. A paradigmatic example of “modularity inclutieddthe work on selection for
robustness in RNA structures by Ancel & Fontana (2000), ahdpger 6 of this volume
(Callebaut & Rasskin-Gutman, 2004). They find that as gresitdility evolves in their
molecular structures, most of the molecular sites becometstally neutral, while struc-
tural sensitivity to mutation concentrates in a tightlyeijtated core of sites.

It is possible that there is a physical explanation for tHi€qmomenon, which may
make it a generic property of molecular interactions. Stnat stability depends on strong
molecular bonding, and strong bonding requires physiaatiprity of bonding sites. Such
physical proximity, however, can be shared by only a limiteotmber of sites. There-
fore, the strongest bonding interactions are expected lionited to a selected set of sites,
screening off other sites from these high-energy bondssBkiection for strong bonding
can have the side effect that these high bond energies besmmentrated among a small
number of sites.
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This correlation between the strength of interaction aredgpecificity of interaction
may be a generic feature of a wide class of molecules, eslyeai®s where the interac-
tion is specified by shape, such as proteins, nucleotidespters, and enzymatic reactions.
There are obvious exceptions, such as peroxides, thatvacstimng interaction with little
specificity. But many biological molecules, especiallytpins and nucleotides, may re-
ceive “modularity included” in selection for structuraability because of this correlation.

This mechanism for “modularity included” would also apptygpatial compartmen-
talization (Wenget al, 1999). Compartmentalization of reacting molecules iases the
strength of interaction simply by increasing concentraidut because of the conserva-
tion of matter, it decreases concentrations elsewherethendby increases the specificity
of interactions. Selection for high concentration of males may thereby bring along
modularity as a side effect.

5.2.3 Direct Selection for Modularity

Specificity of interaction may be a side effect of selection gtrong interaction, but it
may also be a target of selection in its own right. Coordoraf activities from the
scale of the chromosome to the entire organism, or even are grtpulation, requires
precise specificity between signals and receptors. SpéciBmneeded so that the control
of different processes in the organism has the degreeseatdra needed to optimize their
coordination. This specificity of interaction can transldirectly into specificity for the
phenotypic effects of genetic variation, a.k.a. modwarit

5.3 Subfunctionalization

Where are we to place the phenomenon of subfunctionalizé&orceet al., 1999; Lynch
& Force, 2000) within this categorization scheme? Subfionetization is a process in
which duplicate genes make themselves necessary to theiemghy losing, rather than
gaining, function. In the classical thinking about the fateyene duplications, the dupli-
cates had to gain new functions in order to avoid being redonand eventually silenced
by mutation (Ohno, 1970). However, if genes carry out mldtfpnctions, and these func-
tions can be silenced independently of one another, theffieaatit set of functions can be
silenced in each gene, and the remaining functions of eaoh ¢gn be preserved by selec-
tion. In essence, after subfunctionalization, there Ibatly one gene functioning, but it is
split up into two different loci, and involves two differetminscripts with complementary
function. The complementation must therefordia@ms-acting.

It should be immediately clear that subfunctionalizat®naét a means to produce mod-
ularity, but rather the reverse: it requires that functiohthe gene already be modular, in
that the gene has independent degrees of freedom for thefleash function. The process
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of gene duplication and subfunctionalization will exhaitself when the modules inher-
ent in the original gene have been completely parceled oongrthe duplicate genes. A
further gene duplication will not be able to simultaneousise part of its function and
complement the losses in other genes. It will either be rddnhor necessary as a whole.

Subfunctionalization thus faces a finite limit on the praceghich distinguishes it from
constructional selection. In constructional selectibe,amplification of modular elements
in the genome is limited only by the selective opportunityfew combinations of modules.
Subfunctionalization, on the other hand, is effectivelpservative for module number—
spreading out modules among multiple loci but not creatiment. Therefore it cannot
explain module origin, and thus is a consequence, ratharalsaurce, of module-creating
processes, such as constructional selection, genetidinaiitin, and selection for proper-
ties that have “modularity included”.

6 Conclusion

| have endeavored in this chapter to delve into some of thedoel conceptual issues as-
sociated with the idea of modularity in the genotype-phgp@etmap. My main proposal
is that the evolutionary advantages that have been atdbiot modularity do not derive
from modularityper se Rather, they require that there be an “alignment” betwéen t
spaces of phenotypic variation, and the selection graslibat are available to the organ-
ism. Modularity in the genotype-phenotype map may make anaiignment more readily
attained, but it is not sufficient; the appropriate phenetjimess map in conjunction with
the genotype-phenotype map is also necessary for evdtyabil
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