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Abstract

Intuitive notions about the advantages of modularity for evolvability run into the
problem of how we parse the organism into traits. In order to resolve the “question
of multiplicity”, there needs to be a way to get the human observer out of the way,
and define modularity in terms of physical processes. I will offer two candidate ideas
towards this resolution:

• the dimensionality of phenotypic variation, and

• the causal screening off of phenotypic variables by other phenotypic variables.

With this framework, the evolutionary advantages that havebeen attributed to mod-
ularity do not derive from modularityper se. Rather, they require that there be an
“alignment” between the spaces of phenotypic variation, and the selection gradients
that are available to the organism. Modularity may facilitate such alignment, but it is
not sufficient; the appropriate phenotype-fitness map in conjunction with the genotype-
phenotype map is also necessary for evolvability.

1 The Question of Multiplicity

A good deal of work in recent years has shown that the structure of the genotype-phenotype
map is of fundamental importance to the process of evolution. The variational properties

∗Chapter 5 inModularity: Understanding the Development and Evolution of Complex Natural Systems,
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of the genotype-phenotype map—how genetic variation maps to phenotypic variation (Al-
tenberg, 1994a, 1995; Wagner & Altenberg, 1996)—largely determine whether mutations
and recombination can generate the sequence of phenotypes with increasing fitness that
produce adaptation.

A most important property of the genotype-phenotype map is its modularity. The con-
cepts of “modularity” and “module” are being employed now innovel contexts in the fields
of genetics, behavior, and evolution. Their precise meaning has been fluid. “Modular”
will be used for the current discussion to describe a genotype-phenotype map that can be
decomposed (or nearly decomposed, Simon (1962, 1969)) intothe product of indepen-
dent genotype-phenotype maps of smaller dimension. The extreme example of modularity
would be the idealized model of a genome in which each locus maps to one phenotypic trait.
For the converse, the extreme example of non-modularity would be a genotype-phenotype
map with uniform “universal pleiotropy” (Wright, 1968), inwhich every gene has an effect
on every phenotypic variable. Real organisms, one could argue, have genotype-phenotype
maps that range somewhere in between these extremes.

It may seem intuitively obvious why modularity in the genotype-phenotype map should
benefit evolution: if genetic changes tend to map to changes in a small number of pheno-
typic traits, then the genome can respond to selection on those traits alone, independently
of the rest of the phenotype, with a minimum of deleterious pleiotropic side effects. Hence
modularity would enhance the ability of the genetic system to generate adaptive variants,
which one can refer to as its “evolvability” (Altenberg, 1994a, 1995).

In a genotype-phenotype map with low modularity, where genes have high pleiotropy,
a genetic change that produces adaptation in one character may be confounded by mal-
adaptive changes it causes in other characters. To produce adaptive changes, a patchwork
of just the right mutations among modifier genes may be necessary to cancel out their
overlapping negative pleiotropic effects. Therefore, theproblem of pleiotropy points to a
solution through polygeny.

Two kinds of constraints may prevent such solutions from being found. First, such
patchwork may be be impossible to produce from any combination of genetic changes,
so that only an approximation to the optimal phenotype can evolve. In other words, the
phenotypes that are possible may span a subspace that does not include the optimum. I
refer to this as a “subspace constraint”.

Second, the kinetics of mutation, recombination, and selection may make optimal com-
binations of genetic changes unreachable by evolutionary processes. If coordinated muta-
tions at a number of loci are required in order to produce a fitness advantage, and the single
or double mutations along the way are deleterious or neutral, it becomes very improbable
that such multiple mutations will ever appear (Riedl, 1975,1977, 1978; Kauffman & Levin,
1987; Kauffman & Weinberger, 1991; Weinberger, 1991). Thisis a generic result, notwith-
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standing the complications of recombination and neutral networks (van Nimwegenet al.,
1999). So in cases where adaptation requires the coordinated change of multiple loci, there
may be no selective pathway to reach those changes, and the phenotype can remain stuck at
a suboptimal genotype, resulting in a condition called “frustration” in statistical mechanics
(McKay et al., 1982), or a “rugged fitness landscape” (Kauffman & Levin, 1987). I refer
to this as a “kinetic constraint”.

These two mechanisms—subspace and kinetic constraints—may prevent the simultane-
ous optimization of multiple phenotypic variables. A way toavoid these constraints would
appear to be modularity, where genetic variation maps to small numbers of traits.

1.1 A Deconstruction of This Framework

While this explanation for the benefits of modularity may seem straightforward, a number
of problems arise when we take a closer look. The advantage ofmodular genetic variation
is seen to come from the small number of traits that are affected. By implication, this
advantage is thus premised on the idea that selection tends to act on small numbers of traits
alone.

What do we know about the nature of selection as it relates to numbers of traits? Here
we find ourselves in a swamp, because the process by which traits are distinguished from
one another is a human measurement process, dependent on theinstruments and cognitive
structures that we possess to parse the organism. How, for example, should we deal with a
change in the size of an organism? Is this a change in all of theorganism’s measurements
or, if allometric scaling relationships are maintained, injust one measurement? Is genetic
variation modular if it causes just one part of an organism tochange size, or if it causes the
entire organism to change size? Suppose there were selection for sharper teeth. Would a
genetic variant that made all teeth sharper be more or less modular than a genetic variant
that made half of the teeth sharper, or just one pair of teeth,or just one tooth?

Consider another situation. Suppose that climate change has caused a simultaneous
change in the optimal values of a number of organismal traits. Suppose further—just as
a thought experiment—that genetic variation for some physiological variable happens to
move many of these traits closer to their new optima. A gene with effects on these many
traits would, under the common usage, be called pleiotropicand non-modular. And yet
under this circumstance, such a gene, with the ability to move many phenotypic traits closer
to their optima, would be an asset to the genome’s evolvability.

Does the gene in our example “know” that it has several traitsunder directional selec-
tion rather than just one trait? Does the environment know that it has selected on several
traits rather than just one trait? Where does the fact that several traits have been affected
appear in the dynamics of this situation? The reality of whathas occurred is that
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1. there has been a change in climate, and

2. there is an allele that is now at a selective advantage under the new climate.

For “whom”, then, are there multiple traits?
We see that when we try to apply our intuitive notion about theadvantages of modu-

larity, we run into the problem of how we parse the organism into traits. This is not a new
problem—indeed, the problem of how to “carve nature at its joints” has been with us since
Plato (c 370 BC, 262b30 ). Until this problem is resolved, we cannot say whether variation
is modular or not.

In order to resolve the “question of multiplicity”, there needs to be a way to get the
human observer out of the way, and define modularity in terms of physical processes. I will
offer two candidate ideas towards this resolution:

1. the dimensionality of phenotypic variation, and

2. the causal screening off of phenotypic variables by otherphenotypic variables.

2 Description and Degrees of Freedom

When we say that a gene affects multiple traits, we mean that it changes multiple features
of the organism that are measured independently of one another. Each trait constitutes
a variable that can take on a variety of values, distinct fromthe values other traits may
take. To represent all the traits simultaneously thereforerequires a multidimensional space,
which will be the Cartesian product of the space of values each variable can take on. So,
references to multiple traits are equivalent to referencesto multidimensional spaces of de-
scriptive variables.

Thus, if S1 is the space of possible values for traitx1, and so forth forx2, et al., then
an organism with trait values(x1, x2, . . . , xn) corresponds to a pointx in the multidimen-
sional spaceS = S1 × S2 × · · · × Sn.

While our multidimensional representation of the organismallots one degree of free-
dom for each trait, the critical question is whether these degrees of freedom have any phys-
ical reality as dimensions of variation in the organism, or dimensions of variation for selec-
tion. We can apply similar reasoning to the environment: a description of the environment
can contain many variables, but we must also ask whether these variables correspond to
physical dimensions of variability in the environment.

Let us return to our thought experiment about climate change. Suppose the genetic
underpinnings are the sort that Waddington (1942) considered for the evolution of canal-
ization, where a physiological adaptive response, involving many phenotypic variables, is
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Figure 1:A one-dimensional space of variation embedded in three phenotypic dimensions.

cued both by environmental signals—day length, temperature, etc.—as well as internal sig-
nals under genetic control. Genetic changes in how these adaptations are invoked may be
capable of moving the whole complex response toward a more optimal match to a changed
environment (such as time of flowering, moulting, hybernation, dormancy, budding, quan-
tities of stored metabolites, etc.). While many traits would be observed to change under
such genetic variation, there may be in fact only one degree of freedom if there is a single
cueing mechanism that is being altered. In contrast to the apparent high dimensionality of
the space of traits affected by the gene, the space of variation in this example may be a
one-dimensional space merely embedded in the higher dimensions. This is illustrated in
Figure 1.

2.1 Embeddings and Dimension Reduction

To further illustrate the idea that low-dimensional variation may underlie what appears to
be high-dimensional variation, I will draw attention to some recent work on dimension
reduction. Dimension reduction has long been a part of morphometrics through the use
of principal component analysis (PCA), but this technique assumes a linear form for the
lower-dimensional subspaces. When the spaces of variationare nonlinear, other techniques
are required to identify these spaces.

Two recent works provide algorithms that can take complex multidimensional data and
discover when the variation is restricted to lower-dimensional manifolds, and can charac-
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Figure 2:An example of dimension reduction. While the hand can be described by many variables,
in this ensemble of states there are really only two dimensions of variability: wrist rotation and finger
extension. The two dimensions of variation are recovered from the 4096-dimensional image data by
Tenenbaumet al. (2000) using their Isomap algorithm. Reprinted with permission from Tenenbaum
et al. (2000). Copyright 2000 American Association for the Advancement of Science.
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Figure 3: The nonlinear two-dimensional “Swiss Roll” manifold is recovered from its three-
dimensional embedding by the Isomap algorithm of Tenenbaumet al. (2000). Points that appear
close together in the three-dimensional embedding may be far apart in the underlying manifold.
Reprinted with permission from Tenenbaumet al.(2000). Copyright 2000 American Association for
the Advancement of Science.

terize these manifolds (Roweis & Saul, 2000; Tenenbaumet al., 2000).
Two illustrations from Tenenbaumet al. (2000) are reproduced here. Figure 2 shows

a hand rotating at the wrist or opening its fingers. The hand isa complex object, here
described by 64-by-64 pixel photographs, giving 4096 independent variables. All 4096
variables vary as a result of the wrist rotation and finger extension. Yet, if each photograph
is mapped to a single point in a 4096-dimensional space, the variation traced out by the
set of photographs can be mapped to a two-dimensional manifold embedded in the 4096-
dimensional space. This manifold is represented in the plane in Figure 2.

The two-dimensional manifold of variation depicted here isproduced by movement of
the hand. Instead of a hand moving, we could just as well analyze a set of photographs of
hands that represent the morphological variation in extanthuman populations. The struc-
ture and dimensionality of this space of phenotypic variation may very well be revealed
by use of the “isomap” (Tenenbaumet al., 2000) or “locally linear embedding” (Roweis &
Saul, 2000) methods of nonlinear dimension reduction.

Figure 3 shows data from a two-dimensional manifold that is curled up in a 3-D em-
bedding. Points that appear close in the 3-D embedding may actually be far apart in the
manifold, as shown by the geodesic lines. Thus, naive interpretations of the dimensionality
and “distances” represented by phenotypic variation may not reflect the real structure of
the variation.

The wide application of the isomap, locally linear embedding, and related nonlinear
dimension-reduction methods (Verbeeket al., 2002; Agrafiotis & Xu, 2002) to morpho-
metrics might prove fruitful at exposing unknown structures within phenotypic variation.
If low-dimensional manifolds are discovered amid the morphological variation found in
different organisms, a new window may be opened on the question of “developmental con-
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straints”. The widespread characterizations of such manifolds across different taxa could
provide the basis for a study of “morphomics”, as it were (a la “genomics” and “pro-
teomics”). To my knowledge, the application of these new methods to morphometrics has
not yet been tried.

2.2 Evolvability and Alignment with Selection

I have argued that phenotypic variation which may appear to involve many variables may
in fact represent the variation of very few parameters. Geometrical transformations of
variables can change what appears to be high pleiotropy intolow pleiotropy. We must ask,
then, when does the geometry of variation make a difference to evolution? At this point we
must consider how selection is involved.

In order for a subspace of phenotypic variation to allow a response to selection, it must
pass through a selection gradient. Or, to be more precise, the space of variations must
provide, with some reasonable probability, a sequence of genetic operations that produce
monotonically increasing fitnesses. If the probability of such a sequence is too low, there
is no evolvability. Two causes of such low probabilities arethe phenotype being near its
constrained optimum, and the situation where “frustration” prevails. Here we find ourselves
back at the analysis of Riedl (1977).

Riedl proposes that the solution to the problem of adaptive frustration is the “system-
ization of the genome”. By this he means the creation of new spaces of genetic variation
that move the phenotype in directions that are under positive directional selection. Rather
than modularity, it is the alignment of the space of variation with selective gradients that is
the solution Riedl describes. What I am doing here is describing a geometric interpretation
of Riedl’s argument.

So, despite the fact that genetic variation may alter a number of phenotypic traits, if
there is a selection gradient for that particular dimensionor space of variation, then the
genotype-phenotype map exhibits high evolvability. In thethought experiment about cli-
mate change and a gene that generates change that is adapted to it, I have tried to show that
the involvement of multiple traits, per se, in genetic variation does not create the problem
that modularity is postulated to solve. Rather, it is the relationship ofselective gradientsto
thespace of variationthat is the critical issue.

How does the earlier idea, that a non-modular genotype-phenotype map produces frus-
tration, hold up after this deconstruction? Frustration occurs because none of the spaces of
phenotypic variability are able to provide, with sufficientprobability, a sequence of geno-
types that traverse the selective gradients that may happento be present—i.e. they are not
aligned with selection gradients. Hence, the genome is unable to access regions of the phe-
notype that may be adaptive. Modularity, if it is to be a meansto attain evolvability, must
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somehow imply an alignment between the spaces of phenotypicvariation and the selection
gradients. One can conclude either that:

1. Modularity is one means to such an alignment; or that

2. Modularity should bedefinedin terms of such alignments.

3 The Underlying Degrees of Freedom

I have talked about geometrical aspects of variation, and its relation to selection, without
delving into the possible causes behind such properties. Here I will explore this issue a
little further. I will propose that the notion of causal “screening off” (Salmon, 1971, 1984;
Brandon, 1984, 1990) can be used to describe the sort of modularity in the genotype-pheno-
type map that matters to evolvability.

The fundamental dimensions of variation in the genotype aredetermined by the spec-
trum of genetic changes that can occur. These include:

• point mutation, in which one nucleotide is replaced by another nucleotide;

• deletions and insertions;

• gene duplication, in which a sequence of nucleotides copiedfrom an existing se-
quence is inserted in a chromosome;

• gene conversion;

• polyploidy, in which an entire genome is duplicated one or more times;

• translocation;

• transposition;

• recombination;

• segregation and syngamy;

• methylation change;

• horizontal genetic transmission (e.g. plasmid exchange);and

• a variety of taxon-specific genetic mechanisms.
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Each of these variation processes produces its own space of genetic variation (Stadleret
al., 2002), distinguished not so much by the nature of the phenotypic changes that they
produce, as by the evolutionary paths they make possible between genotypes.

Let me be more concrete in describing the spaces of genetic variation. A genome ofL
nucleotides can be represented as a point in the genotype spaceS = {A, T, C, G}L (ignor-
ing for the sake of discussion the meta-sequence propertiessuch as methylation, chromo-
some structure, etc.). Under the action of point mutation, there existL degrees of freedom
for the genotype. The magnitude ofL varies from being on the order of106 for prokary-
otes to1011 for lungfish and trumpet lilies. A million to a hundred billion is clearly a vast
number of degrees of freedom for point mutations, but each degree of freedom constitutes
only a miniscule space—comprising only four points in fact,the four nucleotide basesA,
T , C, andG. It really makes no sense to even speak of directional selection or a selection
“gradient” on a space of four discrete points; direction is undefined.

However, the process of gene expression groups these individual degrees of freedom
into new spaces of variation with fewer degrees of freedom, but many more elements.
To begin with, DNA triplets in transcribed sequences map to the space of amino acids,
{A, T, C, G}3 7→ P (whereP includes the twenty amino acids and the stop codons).

The dynamics of protein folding and molecular interactionsin turn group the amino
acids in a protein into a new set of variables that characterize the protein and its inter-
actions. This is the first point in this chain of “decoding” where real-valued variables
enter, such as the geometry of the protein fold, the kinetic rates for interaction with other
molecules, binding energies, catalytic rates, thermal stability, hydrophobicity, etc. Non-
transcribed DNA has different mechanisms of expression, and real-valued variables can be
seen to emerge immediately in characterizing its phenotypic effects, such as its affinities
for binding with regulatory molecules, methylation enzymes, replication and transcription
complexes, etc.

3.1 Screening Off

While a great many real-valued variables are needed to describe, for example, a protein, it
is typically the case that only a small subset of variables isneeded to describe the causal
effects of a gene on the organism—a catalytic rate, binding constants, levels of expression,
the timing of expression, half-life, and so forth. Variation in a gene will not cause pheno-
typic variation except in how it varies these variables. In other words, there is some set
of variables thatscreen off(Salmon, 1971, 1984; Brandon, 1982, 1984, 1990, 2002) the
causal impact of genetic variation: if one knows the values of these variables, there is noth-
ing more one needs to know about the gene in order to determineits effect on the organism.
By “small number” I mean small relative to the typical numberof nucleotides in a gene,
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which ranges from103 to 105 in eukaryotes.
The processes of gene expression, ontogeny, and physiologyconvert the large number

of essentially “digital” degrees of freedom in the genome into degrees of freedom of a
smaller set of real-valued variables (similar, really, to what happens in electronic digital-to-
analog conversion). The variables that screen off the properties of a gene may themselves
be screened off by other variables that summarize their effects on other functions in the
organism. For example, many factors contribute to levels ofcortisol in vertebrates. But
to the extent that they affect the organism through the action of cortisol, the cortisol level
contains all the information about their effect.

In common usage, when people refer to the “function” of part of an organism, they may
mean one of two things: “What does the partdo?”, or “What is the partfor?” In both cases,
nevertheless, the positing of a “what” implicitly uses the concept of screening off. The
“what” refers to a function that screens off the detailed characteristics of this organismal
part, a variable that summarizes one of its causal consequences for the organism, or one of
its purposes, respectively.

Regarding the latter notion—purpose—I will invoke the popular rejoinder: “Let’s not
go there.” Much has been written—indeed books—on the notionof function as “what
something is for”. In particular I note the line of thought about “proper functions” devel-
oped by Ruth G. Millikan (1984). Throughout this chapter, itwill be “what something
does” that I mean when I refer to “function”.

The idea of phenotypic variables that screen off other variables can be expressed math-
ematically by saying that there is a set of functions,{Fi(gk)}, that forms a complete de-
scription of the causal consequences for the organism due tovariation in the genegk. To
be complete, and account for gene-environment interactions and epistasis, these functions
will need to have other arguments that include genes, and environmental variables,φj , and
therefore be of the formFi({gk}, {φj}). These functions in turn may be screened off for
their organismal effects by other sets of functions,{Gj(Fi1 , Fi2 , . . .)}. Organisms have
many chains of such dependence, which could be said to form a “function network”. A
simplistic illustration of the “function network” can be seen in Figure 4.

Ultimately, one arrives at the variables that describe the rates of mortality and fertility
of an organism as functions of its interactions with the physical and biotic environment.
These variables screen off all other phenotypic propertiesof the organism in determining
natural selection on the organism. Examples of such variables would be efficiency of nu-
trient absorption, mating success, offspring number, death rates due to predation, infection,
injury, etc. When we know the value of such variables, there is no additional information
that can tell us anything further about an organism’s fitness.

If we consider what is meant by “directional selection”, then it is clear that this last tier
of variables defines the “directions” under selection. Directional selection, as conceived,
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Figure 4: The “function network”, showing the relationship between genes, variables that screen
off the gene’s causal effects, and variables that screen offthese variables, etc., all the way to fitness
components.
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means that there is some phenotypic property which alone canconfer a fitness advantage
if it changes in the right direction. Stabilizing selection, as conceived, means that there is
some phenotypic property which alone can impose a fitness disadvantage if it changes in
any direction away from its current value. This is preciselyhow I have defined the highest
level of variables that screen off all other phenotypic variables with respect to selection.

Attempts to describe these function networks can be found inthe literature. Dullemeijer
(1974), for example, presents a graph of the top layer of the function network in a study of
the cranial feeding system of a crotalid snake (cited by Schwenk (2001) in the collection
Wagner (2001)) .

The top level of screening off functions defines what mattersto each component of an
organism’s fitness, and thus defines what needs to be optimized by selection. The degree to
which each of these top-level screening-off functions is optimized, in any particular organ-
ism in a particular environment, can be expected to fall along a spectrum: the functions that
are nearly optimal will be sources of stabilizing selection, while those that are suboptimal
will be the sources of directional selection.

Let us examine whether it is useful to define modularity in terms of the relation between
spaces of phenotypic variation and these top-level screening-off functions. The genotype-
phenotype map is defined as modular if very few of these functions are affected throughout
a space of phenotypic variation. When would such modularityenhance evolvability? First,
it is of no use to evolvability for there to be a modular genotype-phenotype map when all
the modules are under stabilizing selection, since there isno adaptive opportunity no matter
how it is sliced (Wagner, 1996). Modularity among functionsunder stabilizing selection
may nevertheless have other kinetic population genetic consequences, as found in the study
by Waxman & Peck (1998).

Suppose, on the other hand, that the space of variation maps only to functions underdi-
rectional selection. The interactions of these functions in determining fitnesswould define
the selection gradient on the space of variation.

In order for modularity to enhance evolvability, it must parcellate the functions under
stabilizing selection from those under directional selection. The importance of this cleav-
age between stabilizing and directional selection has beenrecognized for some time as an
important element of evolvability, and motivated the development of the “corridor model”
(Wagner, 1984, 1988; Bürger, 1986). Mechanisms that that produce the evolution of such
a cleavage are discussed by Altenberg (1995). Evolvabilityis enhanced when there are
spaces of phenotypic variation that fall narrowly within the functions under directional se-
lection, and remain orthogonal to the functions under stabilizing selection. This is the kind
of modularity that is implicit in the naive framework that I described at the beginning of
this chapter. Genes with that sort of modularity would look like the ones in Figure 4 with
direct connections to variables on the top level that are under directional selection, and few
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connections—direct or indirect—to top level of variables under stabilizing selection.
Hence, these top-level variables provide a way of describing the sort of modularity

that is important to evolvability. There is nothing to prevent one from defining pleiotropy
and modularity in terms of the map between a gene and the variables at any level in the
function network—or for that matter, between a gene and any observer-defined phenotypic
characters. But pleiotropy or modularity so defined will notsay anything about whether
the spaces of variation are aligned with selection gradients, and so will not be relevant to
evolvability. The pleiotropy that is relevant to evolvability is that which applies to the map
between the gene and the top-level screening-off variables.

Let us now return to my earlier hypothetical question about selection for sharper teeth.
Would a genetic variant that made all teeth sharper be more orless modular than a genetic
variant that made half of the teeth sharper, or just one pair of teeth, or just one tooth? We
now have some machinery to answer this question.

What are the organismal functions that screen off the causaleffects of tooth morphology
with respect to selection? Such functions would include therate of catching and killing of
prey, the size of food particles sent to the stomach, the amount of flesh removed from a
carcass, the success rate for defenses against attack, morbidity and mortality due to tooth
and gum infections, mating success, and so on. We must ask which of these functions
would be altered by the different spaces of tooth variation.

Suppose that there was directional selection for a strongermouth grip on prey. A ge-
netic variant that sharpened just the front half of the teethwould improve that quantity, and
would leave alone the grinding function of the back teeth. A genetic variant that sharpened
all the teeth might also improve the prey-grabbing function, but make it harder to grind
food, and thus increase the particle size of food in the stomach, decrease nutrient absorp-
tion, and adversely affect fitness. It would affect two top-level functions instead of just one,
involving both directional and stabilizing selection instead of just directional selection, and
would thus be more pleiotropic and less modular than the mutation of just the front teeth,
even though fewer characters (teeth) were altered.

Any number of variants of this example can be posed and analyzed in the same way.
Whether genetic variation has a modular effect depends on how it affects the top-level
screening-off functions.

3.2 Spaces of Environmental Variation

Can this conceptual framework for modularity give us any guidelines as to what we should
expect from nature regarding modularity in the genotype-phenotype map? We have three
principal features to consider: the top-level screening-off functions, the partitioning of
these functions into those under stabilizing selection andthose under directional selection,
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and the modularity of the genotype-phenotype map with respect to this partition.
The amount of modularity with respect to directional selection actually exhibited by an

organism will depend on the particular set of functions thatare under directional selection.
If it happens to be a set for which the organism has a modular genotype-phenotype map,
then it will show a modular relation to selection.

What determines which functions are under directional selection? Clearly, environ-
mental change—biotic and abiotic—would be the principal cause of directional selection
by dislodging the phenotypic optima. So the possession of a modular genotype-phenotype
map—in the way that matters to evolvability—would appear todepend on the vagaries of
environmental change. The study of modularity in the genotype-phenotype map of organ-
isms as it pertains to evolvability would thus be somewhat ofa haphazard subject.

However, there may be processes that give modularity a more systematic existence than
the vagaries of environmental change would lead one to expect. I later describe population
genetic mechanisms that can lead to the evolution of modularity that enhances evolvability.
From the foregoing discussion, we would expect that such modularity would evolve for
functions that were under recurrent directional selection. This brings us to the spaces of
variation in the environment.

The environment is analogous to the phenotype in that it takes vast numbers of vari-
ables to describe it, yet its degrees of freedom for variation are few in comparison. If we
go forward with the idea that low-dimensional manifolds characterize the variation of the
environment, then each of these spaces will be characterized by different fluctuation statis-
tics. The ones that are highly variable will induce recurring directional selection on those
screening off functions of the organism that are sensitive to these environmental variables.
Modularity for these variables will enhance the organism’sability to respond evolutionar-
ily to this recurring directional selection. Therefore, ifevolvability-enhancing modularity
can evolve as a response to directional selection, it will bemost well developed for those
functions that are under recurring directional selection (Altenberg, 1995; Wagner, 1996).

The upshot is that the spaces of variation in the organism maycome to mirror the
spaces of variation in the environment. This idea is really only a technical revision of
the idea originally proposed by Riedl, that “the epigeneticsystem copies the functional
interdependencies of the phene system.” (Riedl 1978, p. 93).

How great a degree of mirroring we can expect depends on the quantitative details of
the processes that would produce the evolution of modularity. Such details are left for
another day, and here are merely proposed as a possibility that merits investigation.
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4 Mutational Kinetics, Modularity, and Evolvability

To pursue the foregoing discussion with a specific example, Iutilize the “B-matrix” model
of Wagner (1989). This model contains all the ingredients discussed thus far:

• Genes control multiple phenotypic variables, creating thedimensions of variation for
the phenotype.

• Phenotypic variables are controlled by multiple genes.

• A fitness function is defined on the phenotypic variables.

In this model, the “function-network” has only this one, top, level of phenotypic variables;
there are no other phenotypic variables that are screened off by these fitness-defining vari-
ables.

Because the B-matrix model is simple and well-defined, we cananswer the question
of how the alignment between the dimensions of variation andselection gradients affect
evolvability, and derive a means to define modularity as a property intrinsic to the model,
not imposed by subjective parsing of the phenotype. We shalldiscover that a critical feature
for defining modularity turns out to be the magnitude of mutation effects.

4.1 Wagner’s B-Matrix Model

In the B-matrix model of Wagner (1989), selection is optimizing, acting on multiple traits
controlled additively by multiple loci. There are three spaces in this model: genotype,
phenotype, and fitness. Genetic variables are mapped to phenotypic variables, and these in
turn are mapped to fitness. Each phenotypic variable has an optimal value, and fitness is
defined as a Gaussian function of the departure of the traits from the optimum. I describe
each of these mappings.

The phenotype-fitness Map.The optimal value of each phenotypic variable is set to0 for
simplicity. Lettingx represent the vector of phenotypic variables, the fitnessw is
defined to be:

w = exp(−
1

2
x⊤Mx),

whereM is a positive definite matrix (positive definiteness assuresthat fitness de-
creases as one departs from the optimum). Here, the functionδ(x, M) = x⊤Mx

is the sole top-level screening-off function in this system, since if we knowδ, the
fitness isw = exp(−δ/2), and there is no additional information thatx gives about
fitness.
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The Genotype-Phenotype Map.The vector of phenotypic variablesx is itself a linear
function of the underlying genetic variablesy:

x = By

The scalar valueyi can be interpreted as the lowest-level screening-off function for
genei, which summarizes the entire causal effect that genei has on the organism.

The fitness function, expressed in terms ofy, is:

w(y) = exp(−
1

2
y⊤B⊤MBy), (1)

In this model, the spaces of phenotypic variation are simplestraight lines defined by
the columns ofB,

bk =













B1k

B2k

...
BLk













,

whereL is the number of genetic variables (loci). So the space of phenotypic variation
produced by variation at locusk is the line,Sk = {ykbk : yk ∈ ℜ}.

4.2 Finite and Infinitesimal Models for Mutational Kinetics

In order for a genotype with these dimensions of variation torespond to selection, the
earlier discussion claims that there must be selection gradients along the spaces of varia-
tion. When we wish to analyze the evolutionary dynamics, we see immediately that we
must know something more about the magnitude of variation produced by mutation of the
genotypic variables. In the quantitative genetic literature, we find two main kinetic models
(Bürger, 2000) for the production of variation:

• the “random-walk” mutation model (Crow & Kimura, 1964) and

• the “house-of-cards” mutation model (Kingman, 1977, 1978).

The random-walk model embodies the assumption that mutation perturbs the genetic
variable away from its current value by a random variableǫ, giving

xi → xi + ǫ.

Typically, ǫ is distributed symmetrically around0, having a Gaussian, exponential, orΓ

distribution. The transition probability (or density) is

T (xi←xj) = u(xi − xj).
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The house-of-cards model assumes that mutation “topples the house of cards” that
adaptation has built up, producing a new phenotype that is independent of the old, with
a value that is sampled from the same distribution regardless of the original value, giving

xi → ǫ.

The transition probability (or density) is

T (xi←xj) = u(xi).

A key difference between the models becomes apparent when they are adapted to the
multivariate context. In the random-walk model, the perturbation caused by each individual
mutation is taken to be small, and thus nearly neutral. Finite perturbations are taken to be
the result of multiple small mutations. Under this process,multiple infinitesimal mutations
can accumulate before selection can differentiate them, giving for the random-walk model:

x→ x +
∑

i

ǫκi
1κi

,

whereκi ∈ {1, 2, 3, . . . , L} are independent random variables designating the index of the
locus to be mutated, and1κi

is a vector for theith mutation that has a single non-zero entry:

1k =

























0

0
...
1
...
0

























←kth entry,

so1k has all 0 entries except for thekth entry, which is1.
By the law of large numbers,

∑

i ǫκi
1κi

approaches a multivariate Gaussian random
variableǫ, so the mutation process gives:

x→ x +
∑

i

ǫκi
1κi
≈ x + ǫ.

The mutation process will diffuse away from any “wild-type”genotypes and produce a
cloud of genotypes surrounding it.

In the house-of-cards model, on the other hand, mutations are not infinitesimal in size,
since the mutant genotype value is sampled from a fixed distribution independent of its
current value. In the mutant genotype, a random locusκ is mutated, which replaces element
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Figure 5:A. Distribution of mutational effects under the “house-of-cards” assumptions. B. Distri-
bution of mutational effects under the “random-walk” assumptions.5000 points are sampled.

yκ by ǫκ in the vectory′, leaving the other positions alone. A way to express the mutant
genotype,y′, is:

y′ = y ◦ (1− 1κ) + ǫκ1κ = y + (ǫκ − yκ)1κ, (2)

whereǫκ is the random variable for the new genotype value, sampled from the distribution
u(xκ).

As selection moves the population toward fitter genetic values in the house-of-cards
model, a smaller and smaller fraction of the fixed distributionsu(xi) is closer to the opti-
mum, hence the probability of generating fitter mutants trails off with increasing adaptation.
Contrary to the random-walk model, since mutations are not infinitesimal, they will not be
nearly-neutral, so selection will start to fix or purge mutations as soon as they occur. Thus
it will not be possible to build up small mutations at multiple loci before selection acts.
This has a significant impact, because the mutation process will no longer produce a mul-
tivariate Gaussian perturbation. Instead, the frequencies of single-, double-, triple-locus
mutants, etc., will decrease exponentially (at a rate whichis a function of the mutation rate
and selection magnitude).

The house-of-cards and random-walk models are illustratedin Figure 5. The points in
Figure 5A show the spectrum of phenotypes that are accessible under the house-of-cards
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assumptions. This graph is produced with the assumption that loci mutate independently,
so single, double, triple, mutations occur with frequencies proportional to powers of the
mutation rate. What matters, however, is how the frequency spectrum of multiple mutations
affects the accessibility of the space. Most variants are single mutants, which fall along the
axes of variation produced by each gene. Rarer double mutants fall along the planes defined
by each pair of single-mutant axes. Even rarer triple mutants fall in the interior. The “wild
type” is at the intersection of the single-mutant axes. The points in Figure 5B show the
spectrum of phenotypes that are accessible under the random-walk model, where multiple
infinitesimal mutations allow access to the entire space around the wild-type phenotype.

I have presented the house-of-cards model as a paradigm for amutational kinetics that
generates variation along low-dimensional spaces as depicted in Figure 5A. However, what
is critical to this result is not the “house-of-cards” assumption itself. Rather, it is that
mutation is finite rather than infinitesimal in effect. Any mutational distribution that is
dominated by finite effects will result in a population distribution similar to Figure 5A in
which variation falls along the single-mutant axes. Therefore, I will refer to the two distinct
paradigms for mutational kinetics as “finite” versus “infinitesimal” models.

These two different models for mutational distributions have very different implica-
tions for the issue of modularity. In the finite-effects model, there must be selection gra-
dients along the single-mutant axes in order for adaptationto occur. In the infinitesimal-
effects model, on the other hand, multiple single-mutant axes combine to span a higher-
dimensional linear subspace, and evolution can follow any selection gradient within this
subspace.

It should be noted that in the infinitesimal-effects model, the multiple-mutant subspaces
may impose their own constraints upon adaptation if they do not span the entire space of
phenotypes. Translated, this means that no genotype existsthat can produce an optimal
phenotype. In an infinite-dimensional trait such as a growthcurve, this is a generic situation
(Kirkpatrick & Lofsvold, 1992). It is the expectation whenever there are fewer dimensions
to the genotype space than there are to the phenotype space, or if the columns of the B-
matrix are linearly dependent. In either case, the result isthat the B-matrix will not be not
full-rank, and the genetic variance-covariance matrix,B B⊤, will be singular.

When the B-matrix is not full rank, the generic outcome of evolution under an infinitesimal-
effects model is that the phenotype will reach a constrainedoptimum within the space
spanned by the B-matrix, at some distance from the global optimum (Kirkpatrick & Lofsvold,
1992; Altenberg, 1995). At this constrained optimum, additive genetic variation may ex-
ist for each phenotypic variable individually, but the reduced dimensionality of their joint
variation will prevent any response to selection. There will remain a “latent” directional
selection orthogonal to the space of variation (Altenberg,1995).
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The finite-effects model makes possible a form of constraint— frustration — above
and beyond the constraint caused by a non-full-rank B-matrix. Frustration may prevent
even the constrained optimum from being reached.

Frustration is akinetic constraint, in that genotypes with the optimal phenotype may
be possible, but the probability of generating them is minute because it requires multiple
simultaneous mutations away from the wild type.

Riedl (1977) delves into the issue of finite versus infinitesimal effects in his discus-
sion of alternative theories for the evolution of complex phenotypes. One which he calls
the “storage theory” proposes that in cases where multiple mutations are needed to pro-
duce a particular adaptation, these mutations can be storedin the gene pool until they are
brought together by recombination or hybridization. But this requires that the mutations,
not valuable individually, be nearly neutral so as not to be expunged by selection. In order
to be nearly neutral, they must be of extremely small effect.The storage theory, then, is an
infinitesimal-effects model for mutational kinetics.

4.3 Alignment with Selection Gradients

With this distinction between these two models for mutational kinetics now spelled out,
let us return to the thesis described at the beginning of thischapter about the advantage
of modularity for evolvability. As should now be obvious, these conventional ideas about
modularity have as a core assumption that mutation follows afinite-effects kinetics.

Recalling that the fitness function in the B-matrix model is:

w(y) = exp(−
1

2
y⊤B⊤MBy),

then in the house-of-cards model, with locusκ mutated, the fitness of the mutant genotype
y′ = y + (ǫκ − yκ)1κ (from equation 2) is:

w(y′) = exp(−
1

2
y′⊤B⊤MBy′)

= exp

(

−
1

2

[

y⊤B⊤MBy + 2(ǫκ − yκ)y⊤B⊤Mbκ + (ǫκ − yκ)2bκ
⊤Mbκ

]

)

= w(y) exp

[

(yκ − ǫκ)y⊤B⊤Mbκ −
1

2
(yκ − ǫκ)2bκ

⊤Mbκ

]

.

So we see that whether the mutation is adaptive or not dependson the relationship of the
column vectorsbκ with the matrixM and the current genotypey.

One could exactly quantify the magnitude of evolvability for this model by specifying
the sampling distribution ofǫ, and deriving the probability thatw(y′) > w(y). This,
however, would go beyond the purpose of this chapter, which is merely to delineate the
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relationship between the different factors described here: modularity, spaces of variation,
selection gradients, and evolvability.

I have claimed that the natural notion of modularity—a genotype-phenotype map that
is decomposable into the product of lower-dimensional genotype-phenotype maps—is no
more than a means (nor the only means) to enhance evolvability by making it easier to align
the spaces of variation with selection gradients. In the B-matrix model, a modular geno-
type-phenotype map corresponds, in the extreme degree, toB being a diagonal matrix.
Under this condition, we have:

y⊤B⊤Mbκ =
∑

j

yjBjjMjκBκκ,

and
bκ

⊤Mbκ = B2

κκMκκ,

hence

w(y′) = w(y) exp



(yκ − ǫκ)
∑

j

yjBjjMjκBκκ −
1

2
(yκ − ǫκ)2B2

κκMκκ



 .

We notice that, despite the modularity of the genotype-phenotype map, there are interaction
termsyjBjjMjκBκκ that signify epistasis between loci—i.e. whether mutationat locusκ
can generate adaptation depends on the state of the other loci, yj . In fact, the situation
with a modular genotype-phenotype map is really no different from the situation with a
non-modular genotype-phenotype map, because we can write:

w(y) = exp(−
1

2
y⊤M ′y),

whereM ′ = B⊤MB is a positive definite matrix, which is the same form as ifB were
the identity matrix.

Therefore, a modular genotype-phenotype map is not sufficient to ensure any special
evolutionary capabilities of the variation generating system. What is further required is that
theM matrix itself be a diagonal. In that case, we obtain:

w(y′) = w(y) exp

[

(yκ − ǫκ)B2

κκMκκ[yκ −
1

2
(yκ − ǫκ)]

]

= w(y) exp

[

1

2
(y2

κ − ǫ2κ)B2

κκMκκ

]

.

Here, we see that the ability of a new mutation to produce a fitness increase depends solely
on whether the new genotypic value,ǫκ, is closer to the optimum than the old genotypic
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value,yκ. No other loci are involved. But we see that “modularity” here cannot be de-
fined solely in terms of the genotype-phenotype map; it must involve also the matrixM ,
which describes how phenotypes map to selection. So again, what is more fundamental
to evolvability than modularity in the genotype-phenotypemap is the relationship between
the spaces of genetic variation and the selection gradient.

5 Discussion

In this chapter I have tried to focus on some of the low-level issues that arise when trying
to approach the issue of modularity in evolution. I have not delved at all into the question
of how evolutionary dynamics may affect modularity and the alignment of spaces of vari-
ation with selective gradients. I will offer some comments on the evolutionary dynamics
affecting modularity.

5.1 Constructional Selection

The role of gene origin in sculpting the modularity of the genotype-phenotype map is ex-
plored in Riedl’s work (Riedl, 1975, 1977, 1978), and in several of my own papers (Al-
tenberg & Brutlag, 1986; Altenberg, 1994b, 1995).

The central idea of this work is that we expect the dimensionsof variation in the genome
to be enriched with spaces that are in alignment with selective gradients. This enrichment
process is a systematic outcome of the dynamics of genome growth. New genes that hap-
pen to change the phenotype along a positive selection gradient are much more likely to
be preserved by selection than genes which produce variation that randomly perturbs the
phenotype and is thus likely to be detrimental. Thus, the degrees of freedom in the genome
should grow in the direction of greater evolvability. My shorthand term for this process is
“constructional selection” because it pertains to the construction of the genome.

Modularity is one means, though not the only means, to achieve the correct alignment
of the space of variation with respect to selection. So modularity is one feature that we
expect to be enriched by the process of genome growth. Clear examples of this sort of
modularity are the separation of regulatory function from coding function in eukaryotic
genomes. Such separation is not a functional necessity, as seen in non-modular genes
where sequences carry both coding and regulatory function.But separation of these func-
tions permits one of the dimensions of genetic variation—sequence duplication—to explore
combinatorial spaces which preserve the regulatory and coding functions of the gene frag-
ments. By maintaining these functions, but bringing them together in a new combination,
such modular genetic elements have a greater likelihood to produce a selective advantage,
and thus be kept by the genome. Therefore, the genome should become more enriched for
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such elements as it grows. This same process would also applyto elements within regu-
latory regions, or within coding regions. And we find that many proteins are mosaics of
function recombined from other genes (Hegyi & Bork, 1997).

What is important to remember is that the modularity that canresult from selective
genome growth is definedin terms of the genetic operatorsproducing the genetic variation,
in this case the processes of sequence duplication. So, for example, if sequence duplication
happened to be restricted to a certain range of sequence lengths, it would be on that length
scale that genome growth would select for modularity. And modularity is selected only
with respect to its ability to increase the likelihood that the sequence duplication event is
beneficial. All structural features that we would call “modular” are defined in terms of this
probability rather than anya priori structural definitions that we might impose.

Failure to appreciate this essential point is a source of confusion when discussing the
issue of modularity of exons (Logsdon, 1998; De Souzaet al., 1998). Modularity with
respect to exon shuffling can be achieved when protein domainboundaries correspond to
exon boundaries. But a lack of correspondence is not in itself evidence against modularity.
If functional properties of an exon are maintained after exon shuffling, then this exon ex-
hibits modularity. It may not be necessary for domain and exon boundaries to correspond in
order for the functional properties to withstand exon shuffling—other properties of the se-
quence can stabilize the functional elements. This distinction is subject to empirical testing
because modifications of splice sites in exons with evolved modularity would be expected
to decrease their modularity, whether or not the splice sites fall between protein domains.

5.2 Other Sources of Modularity in the Genotype-Phenotype Map

In addition to genome growth processes, there may be other sources that produce modular-
ity in the genotype-phenotype map. These deserve some mention here.

5.2.1 Modularity “For Free”

There may be generic features of biology, chemistry, or physics that provide modularity
in the genotype-phenotype map “for free”—to borrow the phrase from Kauffman (1995,
Chapter 4). Kauffman speaks of “order for free”, that is, order in living organisms that
arises not from Darwinian selection (order at a cost), but asa generic outcome of physical
self-organizing processes. Similarly, there may be examples of “modularity for free” in
the genotype-phenotype map that have a similar origin. In other words, there may be
circumstances when we expect modularity to be a generic property of organisms that does
not require natural selection to establish or maintain.

One obvious candidate source for modularity without natural selection is the branch-
ing structure of the cellular genealogy in multicellular organisms. Multicellular organisms
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arise from the repeated division of cells. The ancestral state for the cells of multicellular
organisms is the single-celled organism, which is the epitome of a module. The tendency of
unicellular organisms to separate, disperse, and become independent after replication is a
generic property that makes them modular. Many single-celled organisms can nevertheless
have aggregate properties (e.g., production of biofilms), while multicellular organisms have
adaptations that counteract independence after replication, and maintain proximity and in-
teraction to varying degrees. However, a certain amount of separation and independence
is inescapable among the cells in multicellular organisms.This would be a fundamental
source of “modularity for free” in multicellular organisms.

Vascular plants maintain a close parallel between their physical structure and their ge-
nealogical structure, because their cells have less mobility than cells in animals. So cells
which are genealogically distant also tend to be physicallydistant. This physical distance
makes modularity in the genotype-phenotype map more easilyrealized, because pheno-
typic alterations in the structure of, say, a flower, may havefewer physical interactions
with, for example, a root.

In complex animals, there is less isolation between genealogically distant cells because
of cellular mobility and physiological integration. Multiple tissue lineages participate in
the construction of integrated organs. Hormonal and neuronal communication integrates
genealogically distant cells in their function. Therefore, in animals one would expect to
find significantly less “modularity for free” from the cellular genealogy.

5.2.2 Modularity “Included”

It is possible that modularity in the genotype-phenotypemap can “hitchhike” (Maynard Smith,
1974) along with traits under natural selection. This is what I mean by “modularity included”—
it doesn’t come free, but is included as a side effect of natural selection for traits under
selection. A paradigmatic example of “modularity included” is the work on selection for
robustness in RNA structures by Ancel & Fontana (2000), and Chapter 6 of this volume
(Callebaut & Rasskin-Gutman, 2004). They find that as greater stability evolves in their
molecular structures, most of the molecular sites become structurally neutral, while struc-
tural sensitivity to mutation concentrates in a tightly integrated core of sites.

It is possible that there is a physical explanation for this phenomenon, which may
make it a generic property of molecular interactions. Structural stability depends on strong
molecular bonding, and strong bonding requires physical proximity of bonding sites. Such
physical proximity, however, can be shared by only a limitednumber of sites. There-
fore, the strongest bonding interactions are expected to belimited to a selected set of sites,
screening off other sites from these high-energy bonds. Thus selection for strong bonding
can have the side effect that these high bond energies becomeconcentrated among a small
number of sites.
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This correlation between the strength of interaction and the specificity of interaction
may be a generic feature of a wide class of molecules, especially ones where the interac-
tion is specified by shape, such as proteins, nucleotides, receptors, and enzymatic reactions.
There are obvious exceptions, such as peroxides, that achieve strong interaction with little
specificity. But many biological molecules, especially proteins and nucleotides, may re-
ceive “modularity included” in selection for structural stability because of this correlation.

This mechanism for “modularity included” would also apply to spatial compartmen-
talization (Wenget al., 1999). Compartmentalization of reacting molecules increases the
strength of interaction simply by increasing concentrations, but because of the conserva-
tion of matter, it decreases concentrations elsewhere, andthereby increases the specificity
of interactions. Selection for high concentration of molecules may thereby bring along
modularity as a side effect.

5.2.3 Direct Selection for Modularity

Specificity of interaction may be a side effect of selection for strong interaction, but it
may also be a target of selection in its own right. Coordination of activities from the
scale of the chromosome to the entire organism, or even an entire population, requires
precise specificity between signals and receptors. Specificity is needed so that the control
of different processes in the organism has the degrees of freedom needed to optimize their
coordination. This specificity of interaction can translate directly into specificity for the
phenotypic effects of genetic variation, a.k.a. modularity.

5.3 Subfunctionalization

Where are we to place the phenomenon of subfunctionalization (Forceet al., 1999; Lynch
& Force, 2000) within this categorization scheme? Subfunctionalization is a process in
which duplicate genes make themselves necessary to the organism by losing, rather than
gaining, function. In the classical thinking about the fateof gene duplications, the dupli-
cates had to gain new functions in order to avoid being redundant and eventually silenced
by mutation (Ohno, 1970). However, if genes carry out multiple functions, and these func-
tions can be silenced independently of one another, then a different set of functions can be
silenced in each gene, and the remaining functions of each gene can be preserved by selec-
tion. In essence, after subfunctionalization, there is still only one gene functioning, but it is
split up into two different loci, and involves two differenttranscripts with complementary
function. The complementation must therefore betrans-acting.

It should be immediately clear that subfunctionalization is not a means to produce mod-
ularity, but rather the reverse: it requires that functionsof the gene already be modular, in
that the gene has independent degrees of freedom for the lossof each function. The process
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of gene duplication and subfunctionalization will exhaustitself when the modules inher-
ent in the original gene have been completely parceled out among the duplicate genes. A
further gene duplication will not be able to simultaneouslylose part of its function and
complement the losses in other genes. It will either be redundant or necessary as a whole.

Subfunctionalization thus faces a finite limit on the process, which distinguishes it from
constructional selection. In constructional selection, the amplification of modular elements
in the genome is limited only by the selective opportunity for new combinations of modules.
Subfunctionalization, on the other hand, is effectively conservative for module number—
spreading out modules among multiple loci but not creating them. Therefore it cannot
explain module origin, and thus is a consequence, rather than a source, of module-creating
processes, such as constructional selection, genetic modification, and selection for proper-
ties that have “modularity included”.

6 Conclusion

I have endeavored in this chapter to delve into some of the low-level conceptual issues as-
sociated with the idea of modularity in the genotype-phenotype map. My main proposal
is that the evolutionary advantages that have been attributed to modularity do not derive
from modularityper se. Rather, they require that there be an “alignment” between the
spaces of phenotypic variation, and the selection gradients that are available to the organ-
ism. Modularity in the genotype-phenotypemap may make suchan alignment more readily
attained, but it is not sufficient; the appropriate phenotype-fitness map in conjunction with
the genotype-phenotype map is also necessary for evolvability.

Acknowledgements

My greatest thanks to the Konrad Lorenz Institute for inviting me to participate in the work-
shop and creating a very stimulating scientific environment; to the editors Diego Rasskin-
Gutman and Werner Callebaut for their forbearance; to the Department of Information and
Computer Sciences at the University of Hawaii at Manoa; and to my family and friends on
general principle.

Bibliography

Agrafiotis, D. K. and Xu, H. (2002). A self-organizing principle for learning nonlinear
manifolds. Proceedings Of The National Academy Of Sciences Of The United States Of
America 99, 15869–15872.



28 Lee Altenberg

Altenberg, L. and Brutlag, D. L. (1986). Selection for modularity in the genome. Unpub-
lished. Cited in Doolittle (1987), and Tomitaet al. (1996).

Altenberg, L. (1994a). The evolution of evolvability in genetic programming. In Kinnear,
K. E. (Ed.)Advances in Genetic Programming(pp. 47–74). Cambridge, MA: MIT Press.

Altenberg, L. Evolving better representations through selective genome growth. InPro-
ceedings of the 1st IEEE Conference on Evolutionary Computation. Part 1 (of 2)(pp. 182–
187) Piscataway N.J. 1994. IEEE.

Altenberg, L. (1995). Genome growth and the evolution of thegenotype-phenotype map.
In Banzhaf, W. and Eeckman, F. H. (Eds.)Evolution and Biocomputation: Computational
Models of Evolutionvolume Lecture Notes in Computer Science 899 (pp. 205–259).Berlin:
Springer-Verlag.

Ancel, L. W. and Fontana, W. (2000). Plasticity, evolvability and modularity in RNA.
Journal of Experimental Zoology (Molecular and Developmental Evolution) 288, 242–283.

Ancel, L. W. and Fontana, W. (2004). Evolutionary lock-in and the origin of modularity in
RNA structure. In Callebaut, W. and Rasskin-Gutman, D. (Eds.) Modularity: Understand-
ing the Development and Evolution of Natural Complex Systemschapter 6. MIT Press.

Brandon, R. N. (1982). The levels of selection. In Asquith, P. and Nickles, T. (Eds.)PSA
1982volume 1 (pp. 315–323). East Lansing, MI: Philosophy of Science Association.

Brandon, R. N. (1984). The levels of selection. In Brandon, R. and Burian, R. (Eds.)
Genes, Organisms, Populations: Controversies Over the Units of Selection(pp. 133–141).
Cambridge, Massachusetts: M.I.T. Press.

Brandon, R. N. (1990).Adaptation and Environment. Princeton: Princeton University
Press.

Brandon, R. N. (2002). Philosophy of selection: Units and levels.Human Nature Review 2,
373. http://www.spee.ch/archive/evolutionphiloso–phyof selectionunits and levels.htm.

Bürger, R. (1986). Constraints for the evolution of functionally coupled characters: A
nonlinear analysis of a phenotpyic model.Evolution 40, 182–193.

Bürger, R. (2000).The Mathematical Theory of Selection, Recombination, and Mutation.
Chichester: John Wiley & Sons, LTD.

Callebaut, W. and Rasskin-Gutman, D. (Eds.) (2004).Modularity: Understanding the
Development and Evolution of Complex Natural Systems. Cambridge, MA: MIT Press.



Modularity in Evolution: Some Low-Level Questions 29

Crow, J. F. and Kimura, M. The theory of genetic loads. InProceedings of the XIth
International Congress of Geneticsvolume 2 (pp. 495–505) Oxford 1964. Pergamon Press.

De Souza, S. J., Long, M., Klein, R. J., Roy, S., Lin, S., and Gilbert, W. (1998). Toward a
resolution of the introns early/late debate: Only phase zero introns are correlated with the
structure of ancient proteins.Proceedings of the National Academy of Sciences U.S.A. 95,
5094–5099.

Doolittle, W. F. (1987). The origin and function of intervening sequences in DNA: A
review. American Naturalist 130, 915–928.

Dullemeijer, P. (1974). Concepts and Approaches in Animal Morphology. Assen, the
Netherlands: Van Gorcum.

Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., and Postlethwait, J. (1999).
Preservation of duplicate genes by complementary, degenerative mutations.Genetics 151,
1531–1545.

Hegyi, H. and Bork, P. (1997). On the classification of evolution of protein modules.
Journal of Protein Chemistry 16, 545–551.

Kauffman, S. A. and Levin, S. (1987). Towards a general theory of adaptive walks on
rugged landscapes.Journal of Theoretical Biology 128, 11–45.

Kauffman, S. A. and Weinberger, E. D. (1991). The NK model of rugged fitness landscapes
and its application to maturation of the immune response. InPerelson, A. S. and Kauffman,
S. A. (Eds.)Molecular Evolution on Rugged Landscapes: Proteins, RNA and the Immune
System(pp. 135–175). Redwood City: Addison-Wesley.

Kauffman, S. A. (1995). At Home in the Universe: The Search for the Laws of Self-
Organization and Complexity. Oxford: Oxford University Press.

Kingman, J. F. C. (1977). On the properties of bilinear models for the balance between
genetic mutation and selection.Mathematical Proceedings of the Cambridge Philosphical
Society 81, 443–453.

Kingman, J. F. C. (1978). A simple model for the balance between selection and mutation.
Journal of Applied Probability 15, 1–12.

Kirkpatrick, M. and Lofsvold, D. (1992). Measuring selection and constraint in the evolu-
tion of growth.Evolution 46(4), 954–971.



30 Lee Altenberg

Logsdon, J. M. (1998). The recent origins of spliceosomal introns revisited. Current
Opinion in Genetics and Development 8, 637–648.

Lynch, M. and Force, A. (2000). The probability of duplicategene preservation by sub-
functionalization.Genetics 154, 459–473.

Maynard Smith, J. (1974). The hitch-hiking effect.Heredity 33, 130.

McKay, S. R., Berker, A. N., and Kirkpatrick, S. (1982). Spin-glass behavior in frustrated
ising models with chaotic renormalization-group trajectories. Phys. Rev. Lett. 48, 767.

Millikan, R. G. (1984).Language, Thought, and Other Biological Categories :New Foun-
dation for Realism. Cambridge, Mass: M.I.T. Press.

Ohno, S. (1970).Evolution by Gene Duplication. Berlin: Springer Verlag.

Plato (c. 370 B.C.). Statesman. In Skemp, J. (Ed.)Plato’s Statesman: A Translation of the
Politicus of Plato with Introductory Essays and Footnotes. London: Routledge and Kegan
Paul (1952).

Riedl, R. J. (1975). Die Ordnung des Lebendigen: Systembedingungen der Evolution.
Hamburg and Berlin: Parey.

Riedl, R. J. (1977). A systems-analytical approach to macroevolutionary phenomena.
Quarterly Review of Biology 52, 351–370.

Riedl, R. J. (1978).Order in Living Organisms: A Systems Analysis of Evolution. Chich-
ester: John Wiley and Sons. A translation of Riedl (1975) by R.P.S. Jefferies.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear
embedding.Science 290, 2323–2367.

Salmon, W. C. (1971).Statistical Explanation and Statistical Relevance. Pittsburgh: Uni-
versity of Pittsburgh Press.

Salmon, W. C. (1984).Scientific Explanation and the Causal Structure of the World.
Princeton, N. J.: Princeton University Press.

Schwenk, K. (2001). Functional units and their evolution. In Wagner, G. P. (Ed.)The
Character Concept in Evolutionary Biology(pp. 165–198). Boston: Academic Press.

Simon, H. A. (1962). The architecture of complexity.Proceedings of the American Philo-
sophical Society 106, 467–482. Reprinted in Simon (1969).



Modularity in Evolution: Some Low-Level Questions 31

Simon, H. A. (1969).The Sciences of the Artificial. Cambridge: MIT Press.

Stadler, B. M. R., Stadler, P. F., Shpak, M., and Wagner, G. P.(2002). Recombination
spaces, metrics, and pretopologies.Zeitschrift f̈ur Physikalische Chemie 216, 217–234.

Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric framework
for nonlinear dimensionality reduction.Science 290, 2319–2323.

Tomita, M., Shimizu, N., and Brutlag, D. L. (1996). Introns and reading frames: Corre-
lations between splice sites and their codon positions.Molecular Biology and Evolution
13(9), 1219–1223.

van Nimwegen, E. J., Crutchfield, J. P., and Huynen, M. (1999). Metastable evolutionary
dynamics: Crossing fitness barriers or escaping via neutralpaths?Bulletin of Mathematical
Biology 62, 799–848.
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