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The Framework for Evolutionar y Algorithms:

REPRESENTATION OPERATORS+

T(i       j,k)

TRANSMISSION
FUNCTION

wi

FITNESS FUNCTION

PERFORMANCE

Operator s, (mutation, crossover, inversion, conversion, etc.) act-
ing on the

Representations of the search space (genotypes, strings, pro-
grams, designs, etc.), generate a

Transmission function, the probability distribution of offspring
types from any combination (one, two, etc., sometimes the
whole population) of parent types.

The relationship between the transmission function and the
fitness function is the main determinant the perf ormance
of the evolutionary algorithm.
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The Two Elements of Darwinian
Dynamics:
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Where:�
is an individual’s type,��� is the frequency of type

�
in the population,��� is the fitness coefficient of type

�
, and� �	��
 is the probability that type � produces offspring of type

�
(i.e. transformation—mutation, recombination, migration,
permutation, etc.).� �	��
�
�� is when there are two parents, types � and � .
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A population geneticist encounter s
evolutionar y computation:

“Fitness propor tionate selection” sounds
like

“Velocity proportionate speed”
“Temperature proportionate heat”
“Mass proportionate weight”
“Length proportionate distance”

In other words, in evolutionary biology,

‘Fitness’ is the measure of selection.

Objective function (phenotype) �� Fitness

A better term: ‘Propor tional Fitness’

The selection operator can be expressed as:� ��� � � � � ��� � � where � � ������ � � � � �
or in vector form:� ��� � � � � where � � diag ! � �#"%$
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Q. Isn’t & ' ( ) * ' onl y for ‘pr opor tional selec-
tion’?

A. No: the coefficient & � needn’t be constant:

In fact + � ��, can be functions of:- the frequencies of types in the population,- location,- time,- other species, agents, etc.—coevolution,- or be a random variable.
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Other biological components of Selection:

Fitness Components:- Viability (survival rate)- Fecundity (offspring number)- Fertility (offspring number of particular mating types)

When multi-parameter fitness coefficients may be required:- Survivorship curves — age dependent survival- Fecundity curves — age dependent reproduction- Gene . Environment interactions
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A Classification of Selection:

SELECTION

Frequency (x)
dependent?

NO YES

Constant selection
coefficients, wi
Cases:
• Fitness proportional to
objective function, wi = c ui

• Fitness a function of
objective function, wi = G(ui),

e.g. Linear Scaling

Pairwise
Interactions

Diploidy:
uij is the fitness of

pair (i, j)

Symmetric uij=uji?

YES NO

•Games
•Tournament:
  uij=0if ui<uj
      =1if ui>uj
      =1/2if ui=uj

Whole Pop.

wi = Gi(U, x)

•Truncation
•µ,λ, µ+λ
•Rank Order

wi = Σuij xj

xi’ = wixi / Σwi xi

Q: Suppose there is an evolutionary game being played between
the types in a population. Will the evolutionarily stable strategies
(ESS) be the same whether you use constant (‘proportional’) se-
lection, or truncation selection?
A: No! Illustrates the hazard of calling / �0
 the ‘fitnesses’.
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Models of Canonical Evolutionar y Algorithms:- Lewontin, R. C. 1964. The interaction of selection and link-
age: I. General considerations; heterotic models. Genetics
49: 49-67 (esp. pp. 55-56).- Slatkin, M. 1970. Selection and polygenic characters. Pro-
ceedings of the National Academy of Sciences U.S.A. 66:
87–93.

Asexual: � � � � �
1��� �324�65 �87 � 
 � 
 � � �
or in vector form: � �9� � :�� �;�
where� � = frequency of genotype � � in the population, and � � � �

frequency in the next generation;� � = fitness of genotype
�

;�324�65 �<7 = probability that genetic operators produce offspring�
from parent � ; and� � = ������ � � � � = mean fitness of the population.
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Sexual � �>� � �
�
��?��� �324�65 � � �@7 � 
A� �B
�� �� �
or in vector form: � �9� � :�� 2 �DC � 7
(a quadratic operator— � 2AE 7 not tractable in general), whereC is the tensor product (see below);� �F
 is the fitness of the parental pair

24� � �87� is the GIH by GIH diagonal matrix of coefficients � �#JK�ML ;�324�N5 � � ��7 = probability that genetic operators produce offspring�
from parents � and � ,= ������ �324�65 � � ��7 � O ;: in this case is the G by G H matrix of transmission probabilities;

For haploid selection, ��� J � L � ��� J ��� L or � � � P C � P , hence:� �9� � : 2 � P � C � P � 7 $
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Solution for generic mutation and constant selec-
tion: � 2AE 7 � 2AE 7 � 2 :�� 7RQ � 2?S 7
Q. What is the limit as

EUT V
?

A. For generic mutation and selection:
One attractor , not multiple peaks.

Result 1 Suppose a mutation operator is ergodic: i.e. repeated
application of the operator can mutate any genotype into any
other genotype. Then, under an algorithm of constant selec-
tion and mutation, there is only one domain of attraction of the
system—i.e. one ‘fitness peak’.
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Perron-Frobenius Theor y

How is this result derived?

Theorem 1 (Perron 1907, Frobenius) If a matrix W , or some
power W �

, has all positive entries, then:

1. The eigenvalue of W with the largest magnitude, X 2 W 7 (the
‘spectral radius’), is always real and positive, and strictly larger
in magnitude that all other eigenvalues of W .

2. The eigenvector, � 2 W 7 , corresponding to eigenvalue X 2 W 7 , is
positive.

Theorem 2 (Frobenius) If W is non-negative and irreducible (i.e.
for each

� � � there exists some power � such that ! W � " �Y
Z
\[ S
),

then:

1. The eigenvalue of W with the largest magnitude, X 2 W 7 (the
‘spectral radius’), is always real and positive.

2. The eigenvector, � 2 W 7 , corresponding to eigenvalue X 2 W 7 , is
positive.
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Example: Deceptive 1-Max Problem
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There is only one attractor at each value ] , but an ‘error catas-
trophe’ is evident for ]_^a` S $Mb .
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Finite Populations- So why do evolutionary algorithms with ergodic mutation
seem to get trapped on ‘local fitness peaks’? e.g. Kauff-
man’s NK Landscapes?- Answer: finite population size causing genetic drift : small
random samples have stochastic variation, and types with
few copies tend to go extinct rather than grow exponentially.

Fisher’ s Result on the Surviv al of a Fitter Mutant- Fisher, R. A. 1930. The genetical theory of natural selec-
tion. Oxford: Clarendon Press.

Result 2 Suppose that,- in a large population of individuals that produce an average of O
offspring each,- a new mutant appears that produces a average of Odc e offspring,- with variance f H , and where e is small.

The probability that the fitter mutant will not eventually go extinct
is g e � f H .
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The Wright-Fisher Model of Finite Populations- Wright, S. 1931. Evolution in Mendelian populations. Ge-
netics 16:97-159.- Fisher, R. A. 1930. The genetical theory of natural selec-
tion. Oxford: Clarendon Press.

How can an evolutionary algorithm with finite population size be
modelled? Wright and Fisher had the same idea for modelling
for finite populations.
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Wright-Fisher Model
Suppose that each individual of the next generation be created
by independent application of selection and genetic operators to
the population.
Let:h

be the population size;i be a vector of the number of individuals of each type
�

in the
population;jk� 2 i 7 be the probability a new individual of type

�
is generated

by selection and genetic operators acting on the populationi .

Then the chance l 24m � � 7 that there are
m � � individuals of type

�
in

next generation is:l 24m � � 7 � n h m �po jrqts� 2 Ovu j � 7�wyx q s $
The Wright-Fisher model forms a Markov chain. Wright and
Fisher analyzed many of the properties of this Markov system,
including probabilities of fixation, time to fixation, and stationary
distributions of allele frequencies.

The theory of Wright and Fisher is known in the Evolutionary
Computation community as the ‘Nix and Vose model’:- A. E. Nix and M. D. Vose, 1991, Modeling genetic algo-

rithms with Markov chains, Annals of Mathematics and Ar-
tificial Intelligence 5: 79–88.
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Karlin’ s Theorem on
Genetic Operator Intensity- Karlin, Samuel. 1982. Classification of selection-migration

structures and conditions for a protected polymorphism. In
Hecht, M. K. and B. Wallace and G. T. Prance, Evolutionary
Biology 14: 61—204.

Result 3 Consider an evolutionary algorithm consisting of- constant selection, and- asexual genetic operators.

The mean fitness of the population at an attractor is a decreasing
function of the probability of the genetic operator acting.

How is this obtained? Let the asexual genetic operator be rep-
resented by the Markov matrix W , and let ] is the probability
of applying the operator. Then the transmission matrix for the
algorithm is: : � 2 Ozu ]_7|{ c ]NW �
and the recursion is:� � � � ! 2 Ozu ]_7|{ c ]}W " � �
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Karlin’ s Theorem , continued.

Samuel Karlin developed a theorem to determine when alleles
introduced into a multi-deme population would increase in num-
ber.

Theorem 3 (Karlin, 1982) Let : 2 ]_7 � 2 O~u ]_7|{ c ]NW , whereW is an irreducible Markov matrix, and let � �� { be a strictly
positive diagonal matrix. Then the spectral radius X 2 : 2 ]_7 � 7 is
strictly decreasing in ] :�� ] X 2 : 2 ]�7 � 79� S � for

S � ] � O�$
For the global attractor, �� , which is the leading eigenvector of:�� , we have:! 2 Ozu ]_7|{ c ]}W " � �� � : � �� � �� X 2 :�� 7 � �� � $
Hence the mean fitness of the global attractor,�� � X 2 : 2 ]_7 � 7 �
is a decreasing function of the operator probability ] .
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Karlin’ s Theorem illustrated with the
Deceptive Function
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Tensor (Kronecker) Products- Roux, C. Z. 1974. Hardy-Weinberg equilibria in random
mating populations. Theoretical Population Biology 5: 393-
416.- Feldman, M. W. and J. Krakauer. 1976. Genetic modifi-
cation and modifier polymorphisms. pp. 547-583 in Pop-
ulation Genetics and Ecology, ed. S. Karlin and E. Nevo.
Academic Press, New York.- Karlin, S. and U. Liberman. 1978. The two-locus multi-
allele additive viability model. J. Mathematical Biology 5:
201-211.

Useful for:- Multiple Loci- Sexual Reproduction- Compound types: genotype C phenotype C deme- Compound operators: mutation C recombination C migra-
tion
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Tensor Products, contin ued
Let � � ��� �|� � � H � ���� H � � H|H � H � � �
and � � ����\� �|� � � H� H � � H�H� ��� � � H��� � ��� H

����� �
Then the tensor product is:� C � � � � �|� � � � H � � ��� �� H � � � H|H � � H � � �

� ������������
� �|� � ��� � ��� � � H � � H � �|� � � H � � H � ��� � ��� � ��� � � H� �|� � H � � ��� � H|H � � H � H � � � H � H�H � ��� � H � � ��� � H|H� �|� � ��� � ��� � � H � � H � ��� � � H � � H � ��� � ��� � ��� � � H� �|� � � � � ��� � � H � � H � � � � � H � � H � ��� � � � � ��� � � H� H � � ��� � H � � � H � H�H � �|� � H|H � � H � H � � ��� � H � � � H� H � � H � � H � � H|H � H�H � H � � H|H � H�H � H � � H � � H � � H|H� H � � ��� � H � � � H � H�H � ��� � H|H � � H � H � � ��� � H � � � H� H � ��� � � H � ��� H � H�H �1� � � H|H ��� H � H � ��� � � H � �1� H

� ����������� $
In general,� C � � � � � J 
 J � � L 
 L�� � � � O�$>$ $ G � � � � � O�$�$ $4¡ �� H � O�$>$ $ G H � � H � O�$�$ $4¡ H
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Tensor Products for Compound States

Frequenc y Vector of Multiple Loci in Linka ge Equilibrium ,
i.e. no allele associations between loci:� � � � C � H C $�$ $ C �£¢
Frequenc y Vector of Genotypes Randoml y Spread over Mul-
tiple Demes ¤ � �¥C i �
where � is the vector of genotype frequencies and i is the vector
of deme sizes (as fractions of the whole meta-population).
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Tensor Products for Compound Operator s

When multiple independent operators are acting on the types in
the population, the compound operator can be represented by
tensor products.

Mutation at Multiple Loci

Suppose locus � mutates with transition probabilities: � � 2 Ovu ] � 7|{ c ] � W � $
Then the mutation operator acting on the entire genotype of ¦
loci is: :¨§ � : ��C : H C $ $>$ C : ¢ $
Mutation + Recombination

When both recombination and mutation act independently on
the genotype, the transmission function can be represented as
( © � recombination, ª � mutation, « � migration):: � :¨¬ 2 :¨§ C :¨§ 7
Mutation + Recombination + Migration: � :¨­ C :¨¬ 2 :¨§ C :¨§ 7
Generaliz ed Nonepistatic Fitnesses (Karlin and Liberman 1979)� � ®>¯±°t² 
³�4´¶µ¸· 2?¹ 7 � ® J� C � ® LH C $ $>$ C � ® µ¢
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Selection and Transf ormation Comm ute:

Does the order Mutation
T

Selection vs. Selection
T

Mutation
produce different evolutionary outcomes?

Assume frequency-independent selection:
Asexual: � � � :�� � � � �
Clearly, :�� �� � : . However, make a change of variables: letº � � � , and º � � � � � . Then:º � � � �9� � � :�� � � �� � : º � � $
So the operators :�� and � : produce the same trajectories
with mapping between variables º � � � .

Sexual:� � � : 2 � �\C � � 7 � � H2
Selection

T
Random Mating

T
Transformation 7 �

Again let º � � � , and º � � � � � .º � � � ��� � � : 2 � �\C � � 7 � � H� � : 2 º C º 7 � � H2
Random Mating

T
Transformation

T
Selection 7
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Selection on both Parents and Offspring:

What is the effect of applying selection to the choice of parents,
and then applying selection again to the offspring?

Selection
T

Random Mating
T

Transformation
T

Selection� � � � : 2 � �\C � � 7 � � H
Now, make a change of variables: let º � � x � � , and º � �� x � � � . º � � � x � � � � � x � � : 2 � �¥C � � 7 � � H� : 2 � H º C � H º 7 � � H
Hence

Random Mating
T

Selection
T

Transformation
T

Selection

is equivalent to:

Random Mating
T

Selection H T Transformation $
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Giering er’s Representation of ‘all possib le’
Crosso ver operator s- Geiringer, H. 1944. On the probability theory of linkage in

Mendelian heredity. Ann. Math. Statist. 15: 25-57.- Karlin, Sam and Uri Liberman. 1978. Classification and
comparisons of multilocus recombination distributions. Proc.
Natl. Acad. Sci. 75: 6332-6336.

Geiringer (1944) developed a way to represent all possible re-
combination operators acting on two parents. This includes sin-
gle point, multiple point, and uniform crossover. She considered
which genes get transmitted together into an offspring.
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Giering er, contin ued- All the genes transmitted from one parent can be marked
with a 0, and- all the genes transmitted from the other parent can be marked
with a 1.- Hence a particular recombinant offspring can be represented
as a binary string, e.g.

2?S � O � O � S � O � O � S � S � S 7 .- Hence, the recombination operation corresponds to a mask»½¼ + S � O , ¢ $- There are g ¢ � ¾ + S � O , ¢ ¾ possible such recombination
operations.- What defines a crossover operator is the probability of per-
forming a particular recombination operation.- Thus, a crossover operator can be defined as a probability
distribution over the set of masks:¿ À + S � O , ¢ÂÁT ! S � O " À Ã ¯±°t² 
³�4´ µ ¿ 2 » 7 � O- Since every recombination event can produce an offspring
with the genes from the reversed parents, we have the sym-
metry constraint that:¿ 2 · � � · H � $ $�$ � · ¢ 7 � ¿ 2 Ovu · � � Ozu · H � $>$ $ � Ozu · ¢ 7
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Representing the Mult-locus, Multi-Allele Model with
Nonepistatic Selection and Arbitrar y Crosso ver- Karlin, Sam and Uri Liberman. 1979. Central equilibria in

multilocus systems. I. Generalized nonepistatic selection
regimes. Genetics 91: 777-798.� �Ä� � Ã ¿ 2 » 7 2 � Å J� C $�$ $ C � Å µ¢ 7 ��Æ 2 � � x Å J� C $>$�$ C � � x Å µ¢ 7 � �

where each � � ! ���F
 " is a diploid fitness matrix.- Note: Haploidy is the special case where:� � Ç�ÇÂÈ � Ç � ��� � �...� ¢ ���� $- Analytical solutions for the existence and stability of poly-
morphisms have been found for the general non-epistatic
model.- Generalized non-epistasis is a highly non-generic space of
fitness functions.- Trajectories and equilibria of the general epistatic model are
unsolved in closed form.
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Takeover Times- Goldberg, D. and Deb. 1991. A comparative analysis of se-
lection schemes used in genetic algorithms. In G. Rawlins,
editor, Foundations of Genetic Algorithms, pages 69–93.
Morgan Kaufmann, San Mateo, CA.

Goldberg and Deb use a ‘pseudo finite population’ analysis:- Let
�

be the fittest type;- Calculate, in terms of G , the time for an infinite population to
go from � � � O � G to � � � OÉu O � G under selection alone.- Problem: method does not take into account genetic drift in
finite populations.
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‘Takeover Times’ known in Population Genetics as
Fixation Times

Keywords:

Fixation: When only one variant remains in the populaton.

Polymorphism: When more than one variant exists in the pop-
ulaton.

Fixation Time: Time until the population goes from polymor-
phism to fixation.

Conditional Fixation Time: Time until fixation, given that the
population fixes on specific genotype.

Takeover Time: Time until the fittest type goes to fixation, given
that the population fixes on it.
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Literature on Fixation TimesÊ Fisher, R. A. 1930. The genetical theory of natural selection. Oxford:
Clarendon Press.Ê Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:97-
159.Ê Kimura, M. and T. Ohta. 1969. The average number of generations until
fixation of a mutant gene in a finite population. Genetics 61: 763-771.Ê Carr, R. N., and R. F. Nassar. 1970. Effects of selection and drift on the
dynamics of finite populations. II. Expected time to fixation or loss of an
allele. Biometrics 26: 221-227.Ê Ohta, T., and M. Kimura. 1972. Fixation time of overdominant alleles
influenced by random fluctuation of selection intensity. Genetical Re-
search 20: 1-7.Ê Nei, M., and A. K. Roychoudhury. 1973. Probability of fixation and
mean fixation time of an overdominant mutation. Genetics 74: 371-
380.Ê Nassar, R. F., and R. D. Cook. 1974. Ultimate probability of fixation
and time to fixation or loss of a gene under a variable fitness model.
Theoretical and Applied Genetics 44: 247-254.Ê Ewens, W. J.. 1979. Mathematical Population Genetics. Springer-
Verlag, Berlin.
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Conditional Fixation Time
of a Fitter Allele- Kimura, M. and T. Ohta. 1969. The average number of gen-

erations until fixation of a mutant gene in a finite population.
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