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ABSTRACT

Evolutionary computation systems exhibit various emergent phenomena,
primary of which is adaptation. In genetic programming, because of the
indeterminate nature of the representation, the evolution of both recombi-
nation distributions and representations can emerge from the population
dynamics. A review of ideas on these phenomena is presented, including
theory on the evolution of evolvability through differential proliferation of
subexpressions within programs. An analysis is given of a model of genetic
programming dynamics that is supportive of the “Soft Brood Selection”
conjecture, which was proposed as a means to counteract the emergence
of highly conservative code, and instead favor highly evolvable code.

1 Introduction

The ability of complex systems to exhibit emergent properties (Lewes, 1874) is one of
their main attractions as subjects of study. By “emergent” I here mean behaviors that
are not described in the specification of the system, but which become evident in its
dynamics. In conventional computer programming, the ability of the program to carry
out a desired behavior must be specified by the programmer. The field of evolutionary
computation includes the study and design of algorithms in which adaptation is an
emergent property achieved by the Darwinian process of selection on heritable variation
for adaptations.

But adaptation is not the only emergent property that can be exhibited by evolution-
ary algorithms. The phenomenon of hybrid inviability between subpopulations, which
implies coadaptation within the evolved genomes (Mallet, 1989; Dod et al., 1991), has
been noted for GAs and GP (Singleton, 1994). Evolutionary algorithms can be designed
so that two other properties can emerge as well: the evolution of the genetic transmis-
sion function and the evolution of the representation. In classical, fixed length genetic
algorithms (GAs) (Holland, 1975), and in the simplest evolution strategies (Rechenberg,
1965, 1973), the genetics and representation are specified and fixed at the outset. But
early on in the development of evolution strategies (Rechenberg, 1973; Schwefel, 1981)
and later with GAs (Schaffer and Morishima, 1987) modifier genes (Nei, 1967; Feldman,
1972; Altenberg and Feldman, 1987; Bergman and Feldman, 1992) controlling the genetic

1pp. 233-241 in Proceedings of the Third Annual Conference on Evolutionary Programming: 24-25
February 1994, San Diego, California, Anthony V. Sebald and Lawrence J. Fogel, ed., World Scientific,
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Table 1: A rough categorization of emergent and specified properties of different adaptive
systems. E = emergent, S = specified, — = not applicable.

PHENOMENON
SYSTEM Adaptation Selection Genetics Representation
Analytic design S — — —
Gradient ascent E — — —

Classical GA, EP E S S S
Evolution Strategies E S E/S S

GA w/ modifiers E S E/S S
GP E S E/S E/S

Artificial-Life E E E/S E/S
Life E E E E

operators were included in the genotype, allowing adaptation of the genetic operators
as an emergent property.

Representations have been made to adapt as an emergent property in GAs by using
“adaptive parameter encoding” (Shaefer, 1987) and “messy GAs” (Goldberg et al., 1990).

Selection is usually a specified property of evolutionary algorithms, but in some
artificial life programs such as Tierra (Ray, 1991), selection emerges from the dynamics
of self-replication.

A rough categorization of different dynamical systems by whether the properties
such as adaptation, selection, genetics, and representation are specified, emergent or a
combination is given in Table 1.

In genetic programming (GP), because of the indeterminate size, structure and al-
gorithmic properties of the tree-structured representation, both the genetics and rep-
resentation can evolve as an emergent property of the dynamics. Thus GP has an
intermediate combination of emergent and specified features [Walter Tackett, personal
communication].

In this paper I review current ideas about emergent phenomena in GP, including the
evolution of “junk code”, and the evolution of representations. The issue I have focused
on in the evolution of representations is their evolvability, i.e. the probability that alter-
ations in a program can produce a fitness increase. Previous work on this (Altenberg,
1994) is summarized. I then take up in greater detail the analysis of a conjecture I made
on a selection operator — soft brood selection — designed to increase the evolvability
of code that is produced in GP. The results are supportive of the conjecture.

1.1 “Junk code” and Recombination Modification

The phenomenon of “bloating” has been observed in typical GP runs, in which the av-
erage program size swells as the population of programs matures under repeated action
of selection and recombination operators. Much of this swelling appears to be due to
the accumulation of “junk code” — code that can be eliminated without changing the
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behavior of the program. The emergence of junk code may be analogous to the evolution
of “junk DNA” found in eukaryotic genomes (Zuckerkandl, 1992), such as introns, which
in recent GA experiments have been introduced by hand into the representation (Lev-
enick, 1991). Junk code does not contribute to fitness, but it modifies the recombination
operator by increasing the recombination rates between the code flanking the junk code,
and decrements recombination elsewhere by absorbing recombination events.

Several ideas have been offered to explain the evolution of junk code. The “defense
against crossover” hypothesis (Singleton, 1994) poses that junk code absorbs crossover
events, and their neutral outcome on fitness is an advantage over recombination events
that disrupt program function. As such, “defense against crossover” is in keeping with
the heuristic “Principle of Minimum Genetic Load”(Kimura, 1960, 1967) offered as a
guiding principle for the evolution of genetic systems. It is quite similar to the “mutation-
absorption” model for the evolution of smooth adaptive landscapes2 (Conrad, 1979),
and suffers from the same mechanistic problem: In order for selection to systematically
increase the frequency of junk code, the junk code, which is selectively neutral, has to
generate associations with selectively advantageous code (Altenberg and Feldman, 1987).
But as a target for crossover, crossover itself severs the association. Thus, junk code
would not behave as allelic modifiers of recombination rate, nor be subject to the theory
developed for such modifiers (Liberman and Feldman, 1986; Altenberg and Feldman,
1987).

The hitchhiking hypothesis [Walter Tackett, personal communication] suggests that
junk code is hitchhiking along with useful code and this causes program bloating. As
described in item 1 below, subexpressions can emerge as a level of replicator in GP, and
this hitchhiking would have to be at this level of selection. Junk code that happened to
be associated with code that is proliferating within programs because of its effects on
fitness would also proliferate.

The hitchhiking hypothesis has a sound mechanistic underpinning. But I would
suggest further that program bloating with junk code may be simply driven by the
recombination operator, a neutral diffusion process with upward drift. In other words,
even in the absence of selection on programs, programs might be expected to bloat
because of the asymmetry between addition and deletion of code at the lower boundary
of program size. This conjecture can be readily tested.

1.2 Evolution of the Representation

The way changes in the data structure of a program map to changes in its performance
comprises the variational properties of its representation. In order for evolution in ge-
netic programming to achieve performance increases, the representations must give a
non-vanishing likelihood that variation produces performance improvements, and this
property I refer to as “evolvability”. The indeterminate nature of the structure of pro-
grams in GP allows the evolution of evolvability as an emergent property. My main

2Conrad, it should be noted, is among the first to consider the evolution of the genetic representation
as a means to increase evolvability, mechanistic difficulties notwithstanding.
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hypotheses regarding the evolution of representations in GP (Altenberg, 1994) are sum-
marized:

1. Because the recombination operator can produce multiple copies of subexpressions
within programs, subexpressions emerge as a new level of replicator through their
possible differential proliferation.

2. The proliferation rate of a subexpression, i.e. its “constructional” fitness, is deter-
mined by the distribution of fitness changes caused by its insertion or deletion in
the programs in the population, in concert with the population dynamics:

(a) In conditions typical of biological evolution, in which new copies of a subex-
pression go to fixation before recombination changes it again, subexpressions
increase in number proportional to their chance of increasing fitness when
added to programs in the population (their evolvability value). Thus evolv-
ability increases in the population in proportion to the variance in evolvability
values among the subexpressions (Theorem 4 in Altenberg (1994)).

(b) In conditions typical of GP runs, with recombination rates and selection rates
on the same order, neutral or near-neutral (“conservative”) subexpressions my
have the highest constructional fitness. This would be especially true when a
mature population has reached a recombination-selection balance. Thus the
representation may evolve away from high evolvability toward robustness of
fitness in the presence of recombination, reducing the rate of adaptation.

3. In order to control the evolution of the representation toward greater evolvability,
a number of modifications of the population dynamics are proposed: these include
estimating the evolvability value of subexpressions and adapting the recombination
operator to use them more often, and a reproductive operator: soft brood selection.

The idea behind soft brood selection is to shield reproduction from the costs of
producing deleterious offspring. Soft brood selection accomplishes this by holding a
tournament between the members of a brood of two parents, and using the winner as
the offspring contributed by that mating. It is “soft” selection (Wallace, 1975) because
one offspring is contributed regardless of the offspring fitnesses. The production of
deleterious offspring is one of the costs of exploration. When recombination rates are
high, and populations near a recombination-selection balance, it is more of a premium
to have high average offspring viability than high likelihood of offspring being fitter than
parents when this concurrently depresses the average offspring viability. Soft brood
selection should shift constructional selection away from an emphasis on subexpressions
that yield high average offspring viability to those that yield high evolvability. It should
be able to alter the variational properties of the code that emerges from the GP run.
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2 A Model of Genetic Programming Dynamics

To analyze the effect of soft brood selection, a simple model of genetic programming
dynamics can be formulated. Here I assume that the only genetic operator is recom-
bination. The population dynamics assume generational reproduction (discrete, non-
overlapping generations), the infinite population size limit, and frequency-independent
selection. The GP algorithm will thus be:

1. Pairs of parents are picked through roulette wheel selection;

2. With probability α (the probability of no recombination), one of the parents is
chosen as the contribution of this mating to the next generation; with probability
1 − α, an offspring produced by applying the recombination operator, with or
without soft brood selection, is contributed to the next generation.

3. In the case of soft brood selection, a brood of size b is produced by each mated
pair and a tournament held between the offspring; the winner of the tournament
is the contribution of this mated pair to the next generation.

This is described with these definitions. Let

P be the space of programs, and S be the space of different subexpressions extractable
from programs in P by the recombination operator;

xi be the frequency of program i in the population;

wi be the fitness of program i, and w =
∑

iwixi be the mean fitness of the population;

α be the probability of recombination during reproduction;

C(s←k) be the probability that the recombination operator picks out a particular
subexpression s from a program k for recombination into the other parent. So∑

s∈S C(s←k) = 1, for all k ∈ P ;

P (i←j, s) be the probability that when subexpression s is recombined into program j it
produces program i. So

∑
i∈P P (i← j, s) = 1, for all i ∈ P . Note that P (i←j, s)

is not symmetrical in arguments j and s. In Altenberg (1994) I erroneously noted
that C(s ← i) > C(s ← j), given that subexpression s is added to program j
to make program i; clearly it is possible that a single s could replace a subtree
containing several copies of s.

This yields the following recursion for the change in frequency of program i in the
absence of soft brood selection:

Recursion 1 (Genetic Programming Model).
The frequency of program i in the next generation is:

x′i = (1− α)
wi

w
xi + α

∑
j,k∈P

wjwk

w2 xjxk
∑
s∈S

P (i←j, s)C(s←k). (1)
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2.1 The “Constructional Fitness” of a Subexpression

In analyzing the evolution of the representations in GP, we would like to know how
the composition of subexpressions within the programs changes as a function of the
effect each subexpression has on fitness when recombined into a program. The rate
of proliferation of a subexpression in the population is measured by the change in the
average value of C(s← i):

us =
∑
i∈P

C(s← i)xi,

the average chance that the recombination operator would pick subexpression s from a
randomly chosen program. Using Eq. (1) we have

u′s =
∑
i∈P

C(s← i)x′i (2)

= (1− α)
∑
i∈P

C(s← i)
wi

w
xi + α

∑
i,j,k∈P

C(s← i)
wjwk

w2 xj xk
∑
r∈S

P (i←j, r)C(r←k).

Elimination of the term times α gives a “Schema Theorem” for genetic programming:

u′s ≥ (1− α)
vs
w
us,

where vs =
∑

i∈P C(s← i)wixi/
∑

i∈P C(s← i)xi is the marginal or “schema” fitness of
subexpression s. But this is not useful for understanding the evolution of the represen-
tations, since it is a pure selection effect without reference to the genetic operator, which
is where brood selection acts.

Analysis of Eq. (2) is difficult due to the complex possibilities relating C(s← i) and
C(s← j) when j is a parent of i. Instead, I examine here the frequency with which
subexpression s is used to produce the offspring i, with the expectation that greater use
of a subexpression in producing the next generation would be correlated with an increase
in us.

2.2 Analysis of Soft Brood Selection

We wish to know how different subexpressions contribute differentially to the creation
of new programs in the population. We begin with the statistic

d(s|j, k) =
∑
i

P (i←j, s)C(s←k) = C(s←k),

the proportion of offspring of parents j and k that were produced by a recombination
of subexpression s into program j. We want to know how soft brood selection changes
the proportion, d(s|j, k)(b), of subexpression s contributed to the winning offspring of
the brood of size b.
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Define the measurement function:

Fi(w) =

{
1 wi ≤ w
0 wi > w

.

For any parental pair {j, k}, the proportion, Gjk(w), of their offspring with fitness less
than or equal to w is:

Gjk(w) =
∑
i,s

Fi(w) P (i←j, s) C(s←k).

Let gjk(w) be the proportion of offspring of parents j and k with fitness equal to w.
Thus, allowing for discrete measure in integration, Gjk(w) =

∫ w

0
gjk(u) du.

Lemma 1.
When tournament selection is applied to a brood of size b from parents j and k, the
probability that the fitness of the winning offspring will be less than or equal to w is

Gb
jk(w). The proportion, g

(b)
jk (w), of winning offspring with fitness equal to w will be

g
(b)
jk (w) = Gb

jk(w)− [Gjk(w)− gjk(w)]b

≈ bGb−1
jk (w) gjk(w) for small gjk(w).

Lemma 2.
The effect of soft brood selection is to boost the probability that parents j and k produce
an offspring with fitness w by the factor

ω(w|j, k)(b) = g
(b)
jk (w)/gjk(w) ≈ bGb−1

jk (w) for small gjk(w). (3)

Using the lemmas we obtain:

Recursion 2.
Under soft brood selection with a brood size b, the frequency of program i in the next
generation is:

x′i = (1− α)
wi

w
xi + α

∑
j,k∈P

wjwk

w2 xjxk ω(wi|j, k)(b)
∑
s∈S

P (i←j, s)C(s←k). (4)

and:

Theorem 1 (Soft Brood Selection).
When tournament selection is applied to a brood of size b from parents j and k, the
probability, d(s|j, k)(b) that the winning offspring will be created by the contribution of
subexpression s is:

d(s|j, k)(b) = C(s←k)
∑
i

ω(wi|j, k)(b)P (i←j, s)

≈ bC(s←k)
∑
i

Gb−1
jk (wi)P (i←j, s) with small gjk(wi) for all i. (5)
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Proof. Given Lemma 1, all we need include is P (i← j, s)/gjk(wi), the probability that
the winner is i given the winner has fitness w = wi. Summing over all possible offspring
i gives us d(s|j, k).

From Eq. (5), the factor

ω(s|j, k)(b) =
∑
i

ω(wi|j, k)(b)P (i←j, s) ≈ b
∑
i

Gb−1
jk (wi)P (i←j, s)

amounts to a selection coefficient on subexpression s due to brood selection, in terms
of its participation in offspring production. This selection coefficient is a projection of
the distribution P (i← j, s) onto Gb−1

jk (wi). In the case of no brood selection (b = 1), it

can be seen that ω(s|j, k)(b) = 1. As brood selection increases with larger b, the factors
Gb−1

jk (wi) remain substantial only for higher and higher wi. It is assumed that boosting
a subexpression’s participation in offspring production will enrich the offspring for this
subexpression.

Hence, the subexpressions with the greatest probability of producing offspring with
high fitness gain the largest brood selection coefficients. The probability of produc-
ing offspring with low fitness is irrelevant to the calculation of d(s|j, k)(b) under large
brood size because the terms Gb−1

jk (wi) are negligible. Thus, reproduction is shielded
from the effect of producing deleterious offspring, and only the evolvability value of the
subexpression is relevant to its transmission.

The average participation of subexpression s in reproduction over the whole popu-
lation is

d(s)(b) =
∑
j,k

d(s|j, k)(b)
wjwk

w2 xjxk

≈ b
∑
j,k

wjwk

w2 xjxkC(s←k)
∑
i

Gb−1
jk (wi)P (i←j, s) with small gjk(wi) ∀i, j, k.

This mean “prolificacy” of subexpression s thus depends on the frequencies, xi, of pro-
grams in the population. From one generation to the next it is unlikely to change much,
but over the course of a GP run, subexpressions may change in their relative prolificacy,
as seen in (Angeline and Pollack, 1994) and elsewhere.

3 Discussion

Genetic programming exhibits several emergent phenomena not found in classical genetic
algorithms, including program bloating, the differential proliferation of subexpressions,
and the evolution of the variational properties of the program representations. For an
understanding of these phenomena one needs to turn to the population genetic dynam-
ics of the algorithm. Program bloating may represent hitchhiking or simply neutral
diffusion with upward drift. The evolution of representations has been hypothesized to
result from the proliferation of subexpressions within programs as a consequence of the
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fitness distribution of recombinant offspring resulting from subexpression exchange, and
depends on the magnitude of the recombination rate and the maturity of the population.

Soft brood selection has been proposed as a method of shifting the evolution of
representations away from a conservative strategy toward an exploratory strategy. Here
I have analyzed the effect of soft brood selection on the differential contribution of
different subexpressions toward reproduction. The result shows that larger brood size
gives an advantage to subexpressions with high evolvability value, regardless of their
average effect on offspring fitness.

The production of large broods multiplies the computational effort in the GP run.
However, by using reduced numbers of fitness cases during the brood selection tour-
nament (Tackett and Carmi, 1994), which merely increases the variance in the effect
of brood selection on subexpressions, the computational effort can be kept the same
as in the absence of brood selection. Then the conjectured increase the evolvability
of the population could make soft brood selection an advantageous operator in genetic
programming.
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