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The evolution of new genes is distinct from evolution through allelic sub-
stitution in that new genes bring with them new degrees of freedom for genetic
variability. Selection in the evolution of new genes can therefore act to sculpt the
dimensions of variability in the genome. This “constructional” selection effect is
an evolutionary mechanism, in addition to genetic modification, that can affect
the variational properties of the genome and its evolvability. One consequence of
selective genome growth is a form of genic selection: genes with large potential
for generating new useful genes when duplicated ought to proliferate in the ge-
nome, rendering it ever more capable of generating adaptive variants. A second
consequence is that alleles of new genes whose creation produced a selective ad-
vantage may be more likely to also produce a selective advantage, provided that
gene creation and allelic variation have correlated phenotypic effects. A fitness
distribution model is analyzed which demonstrates these two effects quantita-
tively. These are effects that select on the nature of the genotype-phenotype map.
New genes that perturb numerous functions under stabilizing selection, i.e. with
high pleiotropy, are unlikely to be advantageous. Therefore, genes coming into
the genome ought to exhibit low pleiotropy during their creation. If subsequent
offspring genes also have low pleiotropy, then genic selection can occur. If sub-
sequent allelic variation also has low pleiotropy, then that too should have a
higher chance of not being deleterious. The effects on pleiotropy are illustrated
with two model genotype-phenotype maps: Wagner’s linear quantitative-genetic
model with Gaussian selection, and Kauffman’s “NK” adaptive landscape model.
Constructional selection is compared with other processes and ideas about the
evolution of constraints, evolvability, and the genotype-phenotype map. Empiri-
cal phenomena such as dissociability in development, morphological integration,
and exon shuffling are discussed in the context of this evolutionary process.

1 Introduction

In this chapter I discuss an evolutionary mechanism whose target is specifically
the ability of genomes to generate adaptive variants. It is about the evolution
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of evolvability. The main focus of action for this process is the genotype-pheno-
type map (Wagner 1984, 1989), i.e. the way genetic variation maps to phenotypic
variation. The genotype-phenotype map is the concept underpinning the classical
concepts of pleiotropy, polygeny, epistasis, constraints, and gradualness.

The way that genetic variation maps to phenotypic variation is fundamen-
tal to whether or not that variation has the possibility of producing adaptive
change. Even when strong opportunity exists for new adaptations in an organism,
many of its previously evolved functions will remain under stabilizing selection.
Adaptation requires variation that is able to move the organismal phenotype
toward traits under directional selection without greatly disturbing traits re-
maining under stabilizing selection. Variation that disturbs existing adaptations
as it produces new adaptations — i.e. variation which is pleiotropic — will have
difficulty producing an overall fitness advantage.

Other aspects of the genotype-phenotype map that affect evolvability include:

– Gradualness: genetic changes with extreme effects are less likely to be ad-
vantageous;

– Rugged landscapes: adaptive changes that require the simultaneous altering
of several genes are less likely to evolve; and

– Constraints: adaptations for which no genetic variability exists are unable
to evolve.

The question of whether the genotype-phenotype map has evolved so as to
systematically affect evolvability has been dealt with in a variety of ways in the
literature. Approaches include the following:

The genome as fluid: Evolvability is not limited; genetic variation exists within
populations for any trait one wishes to select on.

The internalist view: The degree of evolvability is a byproduct of the physics
of development. It is fortunate that physics permitted evolvability.

Lineage selection: Different developmental systems may have different evolv-
abilities; those which happen to have high evolvability will proliferate as
species lineages.

Genetic modification: Selection for adaptedness happens to systematically
produce high evolvability.

This paper adds an additional hypothesis to this list:

Constructional selection: Selection during the origin of genes provides a filter
on the construction of the genotype-phenotype map that naturally produces
evolvability.

The internalist viewpoint is what this paper will take issue with most. The
internalist viewpoint holds that the variational properties of the genotype-pheno-
type map are the result of the physics of development (Goodwin 1989). The pro-
cess of morphogenesis is proposed as a complex dynamical system toward which
genes contribute, but which has internal macroscopic properties that determine
what kinds of phenotypic variability exist.
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One can ask, however, whether morphogenetic dynamics could have been
shaped by evolutionary forces that systematically affect the nature of develop-
mental constraints, or the smoothness of the adaptive landscape, or its evolv-
ability. Here I discuss an evolutionary mechanism by which selection can come
to act indirectly on evolutionary potential, as a consequence of how genes come
into being in the first place.

The main idea, in a nutshell, is this: the genes that stably exist in a genome
share the common feature that, when they were created, they produced a selec-
tive advantage for the organism. But when a new gene is created, it not only
produces its current phenotypic effect, but carries with it a new “neighborhood”
in “sequence space” — the kinds of variants that it can in turn give rise to.
The phenotypic character of this neighborhood depends on the gene’s mode of
action. Different modes of gene action can be expected to have different overall
likelihood of producing adaptive variants. The fact that a gene’s existence is
predicated on it having originally produced a selective advantage means that
the accumulation of new genes in the genome should be biased toward modes of
action whose variants are more likely to be fruitful in adaptation.

Since there is a diversity of modes of gene action, the question remains as
to why there are the kinds there are, in the frequencies they are found, within
the genomes of organisms. This chapter presents a theory about the statistical
properties of genotype-phenotype maps, and how these statistics would be ex-
pected to change in the course of the evolutionary construction of the genome
toward ways that facilitate the generation of adaptive variants.

There are two basic aspects to the idea of a genotype-phenotype map. One
can think of the genotype as a “representation” or description of the phenotype.
Representation has two aspects: generative and variational. The generative as-
pect of a representation is how the representation is actually used to produce the
object, which in genetics would be the process of gene expression and its integra-
tion in development. It is not the mechanisms of how this map is accomplished
that is relevant to evolvability; rather, what matters is the variational aspect of
a representation — how changes in the representation map to changes in the ob-
ject. Variational aspects can be described by their statistical properties without
having to deal with the generative mechanisms. The principal variational aspect
I will be concerned with is pleiotropy — the constellation of phenotypic effects
from single mutations.

1.1 Bonner’s Low Pleiotropy Principle

Bonner (1974) has articulated a basic “design principle” for the genotype-pheno-
type map necessary to allow the generation of adaptive variants through random
genetic variation, a principle of low pleiotropy:

We presume that it is of a distinct advantage to keep a number of the
units of gene action of the organism quite independent of one another.
The reason for this seems straightforward: mutations that affect a num-
ber of construction units are more likely to be lethal than those that
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affect only one. Or to put it another way, the fewer the interconnections
of gene action (the less the pleiotropy), the greater the chances of its
being a viable mutant. A viable mutant may be one that appears late
in development, such as the pigmentation of hair, eyes, or feathers, or
one that acts in a small developmental unit that is independent of the
others. (1974, p. 61)

Lewontin (1978) proposed the low pleiotropy principle in a somewhat different
manner, as a principle of “quasi-independence”, i.e. that there must be “a great
variety of alternative paths by which a given characteristic may change, so that
some of them will allow selection to act on the characteristic without altering
other characteristics of the organism in a countervailing fashion: pleiotropic and
allometric relations must be changeable.”

However, this design principle suffers from the “for the good of the species”
problem. Even though a property might be “good for the species”, it can only
evolve if organisms bearing it (or “replicators” to be more general (Brandon
1990)) have higher fitness. Although it would be a marvelous design for the
organism to have a genome organized for its future adaptive potential, this future
advantage does not give an organism the present advantage it needs in order to
pass on such a trait.

2 Constructional Selection

All variational aspects of the genotype-phenotype map face the “good of the
species” problem, because variation is not the phenotype of an organism, but
a property of genetic transmission between organisms. How, therefore, can or-
ganismal selection get a “handle” on the processes that produce variation? The
general answer to this question is that there must be correlations between varia-
tional properties and properties affecting organismal fitness. These correlations
can come about through diverse means.

In the case of variational properties like recombination and mutation rates,
correlations can be induced by the evolutionary dynamics of modifier genes —
genes that control recombination, mutation, and so forth. Genes modifying re-
combination rates, for example, can evolve linkage associations to genes under
selection whose transmission they affect. In this case, it is the modifier gene
that provides natural selection with the “handle” to change recombination rates
(Liberman and Feldman 1986, Altenberg and Feldman 1987).

Modifier genes are rather specialized mechanisms. But here I consider a
means by which selection can gain a handle on the variational properties of
any gene, through the selective forces operating during the origin of the gene.
All genes face the problem of selection during their creation, and those genes
that produce a selective disadvantage never become stably incorporated in the
genome. Therefore, existing genes share the common history of having once pro-
duced a selective advantage to the organism. But new genes bring with them new
degrees of freedom for variability in the genome. These new degrees of freedom
are of two types:
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Type I: new genes serve as new templates for further genome growth, and
Type II: new genes afford new sites at which allelic variation can occur.

The phenotypic effects of either of these new degrees of freedom depend on the
physical nature of the gene’s action. And the gene’s mechanisms of action is
unlikely to change radically between its creation and subsequent gene duplica-
tions and allelic variations. Therefore it is reasonable to expect a correlation to
exist between the phenotypic or fitness effects of a newly created gene and subse-
quent duplications and allelic changes. This then is a means by which variational
properties of the genome can become correlated with organismal selection.

Therefore, without the postulation of additional modifier genes, selection
during the creation of new degrees of freedom for genetic variability can gain a
handle on the quality of those degrees of freedom. The strength of this handle
depends on the strength of the correlations. When referring to this process, I
will summarize it with the term “constructional selection”, since it is tied to the
construction of new genes (Altenberg 1985).

2.1 Riedl’s Theory

Riedl’s (1977) theory for the evolution of “genome systemization” is the main
earlier example of a constructional selection theory for the genotype-phenotype
map. He considers the situation where functional interactions arise in the organ-
ism that require the coordinated change of several phenotypic characters in order
to produce adaptive variants. When this would require simultaneous mutations
at several genes, he argues that the evolution of a new gene that produces the
needed coordinated variability — a “superimposed genetic unit” — is a far more
likely possibility. Thus Riedl is proposing that the genotype-phenotype map can
evolve in directions that facilitate adaptation through selective genome growth.

2.2 Fine Points

It is important at this point to be clear that this is not an argument that most
adaptive evolution happens through the origin of new genes, as opposed to allelic
substitution. Rather, I am proposing that the events surrounding the creation
of new genes may play a special role in the evolution of the genotype-phenotype
map because of their distinct property of adding new degrees of freedom to the
genome.

Also, it should be understood that “new genes” can refer equally to new parts
of genes or new clusters of genes, i.e. new sections of DNA sequence that are
of functional use to the organism. Therefore, the arguments here apply to such
elements as exons, promoters, enhancers, operators, other regulatory elements,
etc..

Throughout this chapter, pleiotropy must be understood to refer not to mul-
tiple effects on arbitrary “characters” of the organism, since these are artifacts of
measurement and description, but to organismal functions that are components
of adaptation, what Nemeschkal et al. (1992) refer to as a “unit of characters
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working together to accomplish a common biological role”. Moreover, in the case
of new genes, the definition of “multiple” effects that is germane as a definition
of pleiotropy is when the gene not only produces variability for functions un-
der directional selection, but also disturbs functions under stabilizing selection.
“Low pleiotropy” will refer to genes that affect mainly functions under direc-
tional selection and leave functions under stabilizing selection unaffected.

2.3 Pleiotropy and Constructional Selection

Let us examine Bonner’s low pleiotropy principle in the context of the genome
growth process. New genes which have fewer pleiotropic effects when added to
the genome, whose action causes the phenotype to change mainly in dimensions
that are under directional selection, stand a better chance, by Bonner’s principle,
of providing a selective advantage. This is would hold even if that chance is still
slight. Genes which disturb many adapted functions of the phenotype are unlikely
to be advantageous, and thus would not be incorporated in the genome.

Therefore, selection can filter the pleiotropy of genes as they are added to
the genome. If there is any correlation between the pleiotropic effects during
the gene’s addition and the pleiotropy of subsequent additions or allelic changes
in the gene, then the genome shall have expanded its degrees of freedom in
directions with lower pleiotropy.

The effects of constructional selection on the two forms of genetic variation,
Type I and II above, are distinct, so each is taken up in turn.

2.4 Type I Effect: The Genome as Population.

If there are correlations between the phenotypic effects of duplicated genes and
the effects of their subsequent duplications during macroevolutionary time scales,
then a novel form of intragenomic “genic” selection process becomes possible.
This selection process is based on looking at the genome as a “population” of
genes, as in the case of genic selection in the evolution of transposable elements.
The idea that transposable elements are genetic parasites propagating within
the genome (Cavalier-Smith 1977, Doolittle and Sapienza 1980, Orgel and Crick
1980) lead to the idea that the genome could be considered a population of genes,
within which a new level of selection can operate when certain sequences can
proliferate within the genome. Such “genic” selection is usually associated with
transposable elements, whose activity is generally in conflict with organismal
selection. The type I effect, however, is a form of genic selection in harmony
with organismal selection, which, moreover, has organismal selection as a sub-
process.

Where do new genes come from? Although there is a certain amount of de
novo synthesis of DNA in the genome, most genes originate from template based
duplication of existing sequences. And while the vast majority of gene duplica-
tions may go to extinction, the genes currently functioning in an organism will
possess an unbroken backward genealogy to earlier, ancestral genes (complicated
perhaps by the occasional reactivation or insertion of pseudogene sequences). So



7

there exists an “intra-genomic phylogeny”, which is actually beginning to be
taken as an object of study as the accumulation of DNA sequences allows the
construction of “gene-trees” (Dorit and Gilbert 1990, Dorit et al. 1991, Strong
and Gutman 1992, Burt and Paton 1992, Klenova, et al. 1992, Streydio et al.
1992, Haefliger et al. 1989).

If one picks any functioning gene in the genome, what would a typical story
for its origin be? One could generally list:

1. Sequence duplication;
2. Fixation in the population, through selection or drift;
3. Maintenance of function by selection;
4. Sequence evolution under mutation and selection.

Differences in gene properties that systematically bias the chances of the
above events can produce a Darwinian process on the level of genome-as-pop-
ulation. Darwinian process have three basic elements: viability, fecundity, and
heritability. If there exist properties which show heritable variation in viability
or fecundity, those properties can evolve over time. Viability, fecundity, and
heritability each have their analogs on the level of genome-as-population:

Viability:
The viability of a genetic sequence is simply its survival in the genome.
This will depend on whether selection establishes it in the population, and
maintains it against mutational degradation or replacement by other genes.
This in turn depends on1:
1. there being adaptive opportunity for properties of the sequence;
2. the sequence having functional properties which are not disrupted by

new functional contexts; and
3. the sequence having properties that allow its duplication without dis-

rupting existing functions of genes with which it interacts.

Fecundity:
The fecundity of a genetic sequence is the rate at which copies of it appear
in the genome. This depends on:
1. the rate of illegitimate recombination events involving that sequence;

and
2. whether the sequence codes for its own duplicative transposition.

1 Note added in revision: Originally these three items were placed under it Fecundity,
below, because I conceived of taking the “census” of offspring genes after they had
been established as a functional genes. Censusing immediately after gene duplication
produces a cleaner distinction between intragenomic viability and fecundity, and is
adopted here. The problem of when to census also arises in standard population ge-
netics when trying to distinguish viability fitness components from fecundity fitness
components.



8

Heritability:
Heritability here refers to ancestral and offspring genes having correlated
properties, and depends on:
1. Conservation of the property of a gene over the time scale on which gene

duplications occur; and
2. Carry-over of the property from ancestral to offspring genes.

In each case above, one could just as well substitute “genetic element” for “gene”,
since the principles apply equally well to exons, promoters, regulatory sequences,
and so forth.

If there are systematic differences between sequences in the likelihood that
duplications of them give rise to useful new genes (viability in the genome),
and these different likelihoods are conserved between gene origins, and carried
from ancestral to offspring genes (heritability), then the genome will become
populated with genes that are better able to give rise to other genes. The type
I, or “genic selection” effect of constructional selection, therefore, is to increase
the genome’s ability to evolve new genes. This is an effect on the variational
properties of the genome.

The genome-as-population analogs of viability, fecundity and heritability in
the type I effect can be contrasted with these analogs in the case of transposable
elements. For such “selfish” DNA, viability as genes is low: on a macroevolu-
tionary time scale, individual copies of transposons are transient, since they
exist either as transient allelic polymorphisms or, if they ever go to fixation, are
deleted or silenced rapidly because as alleles they are usually neutral or dele-
terious, and genetically unstable. The fecundity of transposons in the genome,
however, is unsurpassed, and overcomes their sub-viability in the genome as in-
dividual copies. Furthermore, their heritability as genes is extremely high, since
offspring genes mostly have the same ability to transpose. Thus the type I effect
of constructional selection and “selfish DNA” are two kinds of intragenomic genic
selection, and are in a sense opposite points within a continuum defined by the
genome-as-population analogs of the Darwinian elements, viability, fecundity,
and heritability. 2

2.5 Type II Effect: Correlated Allelic Variation.

If there are correlations between the phenotypic effects of duplicated genes and
the effects of their subsequent allelic variants, then selection during the creation
of new genes can come to affect the nature of allelic variants produced in the
genome. This is what I call the type II or correlated allelic variation effect of
selective genome growth. In particular, if a new gene was advantageous because

2 Note added in revision: Transposable elements and normal genes represent the in-
tragenomic analogues of “r-” versus “K-selection”: transposable elements have high
“r”, reproducing rapidly but with low genomic viability; conversely, functioning or-
ganismal genes have low “r”, being duplicated infrequently, but these duplications
may come to exhibit a “K” strategy of higher intragenomic viability—i.e. a higher
chance of being established and preserved by organismal selection.
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it moved the phenotype along dimensions under directional selection, then sub-
sequent alleles of that new gene may also be likely to be advantageous if they
vary the phenotype along the same “lines” as occurred during the gene’s orig-
inal incorporation in the genome. By “likely”, I mean relative to the effects of
allelic variation at all the genes that were generated by duplication processes,
but never fixed in the population and maintained by selection. If the pleiotropy
of a gene is a relatively fixed result of its mode of action, then there will be a
correlation between the phenotypic effects of the gene’s origin and its subsequent
allelic variation. If low pleiotropy helped the gene become established in the first
place, then the subsequent low pleiotropy of its allelic variants would enhance
their likelihood of being adaptive rather than universally deleterious.

An important case of the correlated allelic variation effect is “function split-
ting”, where a gene that has been selected as a compromise for carrying out
several organismal functions is duplicated and the separate copies can evolve
to specialize in some subset of functions. An example is the duplication of the
hemoglobin gene and its specialization for fetal or postnatal oxygen transport
conditions. In this case, the duplication causes changes in the genotype-pheno-
type maps of both resulting genes, with the net result of lowering the pleiotropy
of allelic variation at these genes, and better optimization of the adaptive func-
tions. This is an area which has already received a good deal of empirical and
theoretical study (Ohta 1991, 1988, Kappen et al. 1989, Li 1985).

The type II effect is entirely dependent on there being correlations between
the phenotypic effects of a new gene and the effects of allelic variation at that
locus. For genes of recent origin, correlations would be expected. However, over
time these correlations would be expected to weaken due to several factors.
First, substantial sequence changes may occur as the gene diverges in function
from that of its ancestral state. Second, whatever novel advantage the gene may
have offered when it first arose will tend to change from being a “luxury” to
being a necessity, as other functions evolve conditioned on the current state of
that gene. This is what Riedl (1977) calls “burden” (and what Wimsatt and
Schank call “generative entrenchment” (Schank and Wimsatt 1987, Wimsatt
and Schank 1988). Histones, polymerases, snRPs, etc, are extreme examples of
burdened genes, since effectively all characters of the organism depend on them;
their mutations are of necessity highly pleiotropic, and they are extremely well
conserved. So over macroevolutionary time scales, the correlated allelic variation
effect may become “stale” once a gene is in place. The low pleiotropy might be
kept “fresh”, however, if changing selection or polymorphism produces a history
of variation in the gene to which other genes coadapt.

2.6 An Overall Picture of Genome Growth.

These considerations lead to the following picture of the intra-genomic phy-
logeny: There should be a static core of genes which have ceased to give rise
to new genes in the genome; these may be extremely ancient and functionally
burdened, or so highly specialized as to have little adaptive potential for dupli-
cations. Once genes enter this core, they should tend to remain there (though
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they may continue sequence evolution). There should in addition be a “growth
front” in the genome consisting of genes that are prolific in generating offspring
genes. The growth front would gradually lose genes to the static core once they
were created, but would be renewed by the influx of newly created genes, which
would be the most likely to give rise to the next set of new genes. On occasion,
static genes would be revived into the growth front by new adaptive opportuni-
ties conferred by changes in organismal selection. In addition, there would be the
various “exceptional” families of genes, including transposable elements, highly
repetitive genes selected for quantity production, “junk” and structural DNA,
and so forth.

2.7 Constraints and Latent Directional Selection.

An examination of the situations discussed in the literature in which the geno-
type-phenotype map constrains evolution shows them to be of two basic kinds:
kinetic and range constraints. A range constraint is simply where no genetic vari-
ation exists for phenotype or specific combination of phenotypic changes. Kinetic
constraints emerge from the population genetic dynamics when the probability
of creating given phenotypic variants is vanishingly low. A softer version of this
is a kinetic bias, in which the most probable variant that responds to a selective
pressure has specific phenotypic forms. The problem of adaptation on “rugged
fitness landscapes” (Kauffman 1989a) is an example of kinetic constraints, in
that what keeps a population at a local fitness peak is the improbability of gen-
erating fitter variants (in fact it is transmission probabilities that define what a
neighborhood is in the sequence space). This includes the situation considered
by Riedl (1977), where mutations are needed at several loci to produce a given
phenotype.

The general consequence of either range or kinetic constraints is that to vary-
ing extents, organisms will be suboptimally adapted. There may be phenotypes
that would be more adapted if only the genome could produce them. The pop-
ulation may have reached a mutation-selection balance, in which new variants
are all deleterious, and so appear to be at an adaptive peak, when the lack of
fitter variants is due to kinetic or range constraints. In such cases one could say
that there exists a “latent” directional selection, which would become visible if
genetic variation existed in this direction.

Riedl’s idea is that much of the adaptive opportunity for the evolution of new
genes may come from latent directional selection. But constructional selection
effects would apply to conditions of normal directional selection as well. There
would be adaptive opportunity for any new gene whose effects on the pheno-
type were in the direction of the current directional selection on the organism.
Therefore, genes may to some extent reflect the historical sequence of direc-
tional selection experienced by the organism’s lineage. Even ancient and highly
functionally burdened genes may reveal the functions they conferred in their
origin. For example, homeotic mutations which change insect segment identity
are universally deleterious. But if an alteration of segment identity was what
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the gene did when it was created (and thereby presupposed to have been selec-
tively advantageous), then the gene’s current function may be a reflection of the
directional selection that existed at the time of its origin.

2.8 Models Illustrating Constructional Selection

To give explicit mathematical form to the ideas sketched so far about genome
growth, several models will be developed. The first is a simple model showing
both type I and II effects, which uses probability distributions of fitness effects
for gene additions and subsequent allelic variation. The analysis shows the expo-
nential quality of the genic selection effect, and the dependence on correlations
in the correlated allelic variation effect. The second and third models are further
illustrations of the correlated allelic variation effect, using as concrete examples
of genotype-phenotype map functions:

1. Wagner’s linear quantitative-genetic model with Gaussian stabilizing selec-
tion (Wagner 1989); and

2. Kauffman’s (1989a) epistatic “NK” adaptive landscape model.

The linear model illustrates latent directional selection arising from constraints
on the range of phenotypic variation produced by the genotype, and exhibits
selection for new genes that overcome these range constraints. The NK model
illustrates latent directional selection arising from kinetic constraints due to
the ruggedness of the adaptive landscape, and exhibits selection for genes that
overcome the kinetic constraints and produce smoother adaptive landscapes.

The Discussion follows, with an overview of the results, an examination of
relevant empirical phenomena, and a discussion of the relation of constructional
selection to current thinking about the evolution of evolvability.

3 A Fitness Distribution Model

The effects of constructional selection can be described directly in terms of the
fitness distributions of new mutations, without having to specify the genotype-
phenotype maps that give rise to these distributions. In the case of the genic
selection effect, the mutation is a gene duplication; in the case of the correlated
allelic variation effect, the mutation is an allelic change.

In this model, a new gene is randomly created from the existing genes in the
genome. Selection then determines whether the gene is kept in the genome. The
model considers what happens when either allelic mutations or subsequent gene
duplications occur. The genes in the population come in different types that
determine the fitness distribution of their mutations. The main elements in the
model are as follows. Let:

G be the space of different types of genetic sequences;
pi be the probability that a newly created gene is of type i ∈ G;
w be the fitness of the genome with the new gene, relative to its value before

the addition;
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gi(w) be the probability that a new gene of type i has relative fitness effect w;
xi be the probability that a new gene of type i is kept in the genome by selection.

The probability density gi(w) would be the result of the phenotypic properties
of the gene, as described under Viability in Sect. 2.4, including its pleiotropy,
modularity, and adaptive opportunity. A concrete illustration is developed in
Sect. 5, on Kauffman’s NK adaptive landscapes.

In a simple-minded approach, a gene would be kept by selection if it increased
fitness, i.e. if w > 1. Then the probability that the gene is kept is

xi =

∫ ∞
w=1

gi(w) dw .

But in finite populations, or in any population dynamics where there is a chance
that a gene will not be passed down to any offspring, even a gene increasing
fitness can sometimes be lost from the population. The probability that a new
gene is successfully incorporated in the genome will be some increasing function
φ(w) of its fitness w. Classical results using branching process models or diffusion
approximations give a success probability of 0 if w < 1, and φ(w) ≈ 2(w− 1) for
w ≈ 1 (Haldane 1927, Crow and Kimura 1970). So a more general formula for
the likelihood that a new gene of type i is fixed is:

xi =

∫ ∞
0

φ(w) gi(w) dw . (1)

The fixation probability over all random newly created genes is:

x =
∑
i∈G

xi pi .

With these definitions, results for both the genic selection effect and the
correlated allelic variation effect will be derived.

3.1 The Correlated Allelic Variation Effect

Here we will see how selection on the creation of new genes can cause subsequent
allelic variation of the genes to be more likely to be adaptive. We will look at
the fitness distributions of alleles from all new genes and from only those genes
that selection stably incorporates into the genome.

Suppose that a newly created gene of type i gives rise to allelic variants.
Let the allelic fitnesses, w′, be distributed with probability density fi(w

′). No
assumptions need to be made about this density, so it would certainly include
the biologically plausible case in which most of the alleles are deleterious. For a
gene or type i, we see that the proportion

Fi(w) =

∫ ∞
w

fi(y) dy ,

of its alleles are fitter than w.
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Result 1 (Correlated allelic variation)
Let

F (w) be the proportion of new alleles of randomly created genes that are fitter
than w, and

F ∗(w) be the proportion of new alleles of stably incorporated genes that are fitter
than w.

Then
F ∗(w) = F (w) + Cov[Fi(w), xi/x] . (2)

Proof. The proportion of alleles that are fitter than w, among randomly created
gene, is

F (w) =
∑
i∈G

Fi(w) pi ,

while among genes that are stably incorporated in the genome it is

F ∗(w) = Pr[w′ > w | the gene was fixed]

= Pr[w′ > w, and the gene was fixed] / Pr[the gene was fixed]

=
∑
i∈G

Fi(w) xi pi / x = F (w) + Cov[F (wi), xi/x] .

If there is a positive correlation between the fixation probability

xi =

∫ ∞
0

φ(w) gi(w) dw

of a new gene, and the fitness distribution

Fi(w) =

∫ ∞
w

fi(y) dy

of its alleles, then F ∗(w) is greater than F (w). Similarity between the functions
gi(w) and fi(w) would produce a positive covariance. The biological foundation
for a positive covariance would include:

1. there continuing to be adaptive opportunity for variation in the phenotype
controlled by the gene, and

2. the same suite of phenotypic characters being affected by the alleles of the
gene as were affected during the gene’s origin.

With these plausible and general provisions, we see how selection on new genes
can also select on the fitness distributions of the alleles that these genes generate.
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3.2 The Genic Selection Effect

Now we will see how selection on new genes can increase the chance that new
genes are adaptive when created. We will examine how genes with a higher
chance of producing adaptive variants tend to proliferate as the genome grows,
as reflected in the evolution of pi. The model I am considering is this: genes are
randomly picked from the genome and copied. Their fitness effect determines
whether they are stably incorporated in the genome. If they are, then the pool
of genes subject to duplication is increased by one, and the process repeated. In
this way genes of different types come to proliferate at different rates within the
genome.

Consider the process of sequence duplication that is the starting point for the
history of every gene (or part of a gene). One can think of the rate that a gene
gives rise to new, successfully incorporated genes as its “constructional fitness”.
This will be the product of

1. the rate that copies of the gene are produced (intragenomic fecundity), and
2. the likelihood that they are fixed in the genome by having provided a selective

advantage to the organism (intragenomic viability).

While genetic elements such as transposons or highly repetitive sequences may
proliferate because of factor 1, here I wish consider only factor 2, and assume no
systematic differences among sequences in the rate that gene copies are produced.

Perfect Transmission of the Gene’s Type. Suppose for now that copies of
genes of type i are also of type i. Because the gene’s type is transmitted from a
gene to its offspring genes, this provides a correlation between the fitness effects
of a new gene and its subsequent duplications. As in equation (1), a new gene of
type i will have probability xi of fixation due to its yielding a selective advantage.

Let

ni(t) be the number of genes in the genome of type i at time t,

N(t) =
∑
i∈G ni(t) be total number of genes in the genome at time t, so that

the frequency of genes of type i is pi(t) = ni(t) / N(t), and

α be the rate each gene is duplicated per unit time.

One then obtains this differential equation for the change in the composition of
the genome (approximating the number of genes with a continuum), using the
fixation probability, xi, for new genes of type i:

d

dt
ni(t) = αxi ni(t) ,

which has solution:
ni(t) = eαxit ni(0) .
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The ratio between the frequencies in the genome of sequences with different
constructional fitnesses grows exponentially with the degree of difference between
them:

ni(t)

nj(t)
= e(xi−xj)αt

ni(0)

nj(0)
.

Result 2 (Fisher’s Theorem applied to genome growth)
The average constructional fitness of the genome,

x(t) =
∑
i∈G

xi pi(t) ,

which is the portion of new duplicated genes that go to fixation, increases at rate

d

dt
x(t) = α Var(x) > 0 .

Proof.

d

dt
x(t) =

∑
i∈G

xi
d

dt
pi(t)

=
∑
i∈G

xi[
d

dt
ni(t) /N(t)− ni(t)

d

dt
N(t) /N(t)2]

=
α

N(t)

∑
i∈G

x2i ni(t)−
α

N(t)2

(∑
i∈G

xi ni(t)

)2

= α

[∑
i∈G

x2i pi(t)− x(t)2

]

= α Var(x) > 0 .

This result is Fisher’s fundamental theorem of Natural Selection (Fisher
1930), but here, what is evolving is the probability of gene duplications giving
rise to new useful genes.

Imperfect Transmission of the Gene’s Type. The model can be extended
to less-than-perfect heritability of constructional fitness by defining a transmis-
sion function, T (i ← j), which is the probability that a gene of type j gives
rise to a copy of type i (Slatkin 1970, Altenberg and Feldman 1987). It satisfies
conditions∑

i∈G
T (i←j) = 1 for all j ∈ G, and T (i←j) ≥ 0 for all i, j ∈ G .
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Here, the fraction of the new genes that are of type i is

pi(t) =
∑
i,j∈G

T (i←j) nj(t) / N(t) .

The dynamics now become:

d

dt
ni(t) = α xi

∑
j∈G

T (i←j) nj(t) .

Price’s Covariance and Selection theorem (Price 1970, 1972) emerges when we
consider selection in the presence of arbitrary transmission:

Result 3 (Price’s Theorem applied to genome growth)
For a gene of type j, let

ξj =
∑
i∈G

xi T (i←j) .

be the fraction of its duplicate offspring genes that are stably incorporated in the
genome. Then rate of change in the average constructional fitness of the genome
evaluates to

d

dt
x(t) = α

{
Cov(ξ, x) + [ξ(t)− x(t)] x(t)

}
,

where

ξ(t) =
∑
i∈G

ξi pi(t), and Cov(ξ, x) =
∑
i∈G

ξi xi pi(t)− ξ(t) x(t) .

Proof. The portion of gene duplications that go to fixation is

x(t) =
∑
i∈G

xi pi(t) =
∑
i∈G

xi
∑
j∈G

T (i←j) nj(t) / N(t) =
∑
j∈G

ξjnj(t)/N(t) .

This changes at the rate:

d

dt
x(t) =

∑
i,j∈G

xi T (i←j)

[
dnj(t)

dt
/N(t)− dN(t)

dt
nj(t)/N(t)2

]

= α
∑
i,j∈G

xi T (i←j)

[
xj
∑
k∈G

T (j←k) nk(t) / N(t)

− nj(t)
∑
k,h∈G

xk T (k←h) nh(t) / N(t)2


= α

∑
j∈G

ξj

[
xj
∑
k∈G

T (j←k) nk(t) / N(t)

− nj(t)
∑
h∈G

ξh nh(t) / N(t)2

]

= α
∑
j∈G

ξjxjpj(t)− α

∑
j∈G

xjpj(t)

2

= α
{

Cov(ξ, x) + [ξ(t)− x(t)] x(t)
}
.
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The covariance term is between a gene’s probability of fixation and its off-
spring genes’ average probability of fixation. Note that the frequencies used in
the covariance are the frequencies of different types among gene duplications,
not the current genes in the genome.

A positive correlation between ξi and xi is to be expected if a gene and
its offspring genes affect the same sort of phenotypic characters, and the adap-
tive opportunity that existed for these characters still exists. Genes (or gene
parts, e.g. exons) that code for generally useful products, such as promoters,
transmembrane linkers, catalytic sites, developmental controls, etc., would have
such continuing adaptive opportunity, and they would contribute to making
Cov(ξ, x) > 0.

The term ξ(t) − x(t) is the net bias in the transmission of constructional
fitness between a gene and its offspring genes. A conservative assumption is that
the transmission bias is negative — i.e. the chance that gene duplications are
adaptive is less for a gene’s grand-offspring than it is for the gene’s offspring.
This is a reasonable assumption since duplications of a gene (or gene part) would
diverge to various extents from the ancestral gene’s effects, selection may change,
or the adaptive opportunity for new copies of the gene may get saturated.

But even with a negative transmission bias, the average constructional fitness,
x(t), increases as long as

ξ(t)− x(t) > −Cov(ξ, x) / x(t) . (3)

As an illustrative example, we can set ξi = βxi with β < 1, a downward
transmission bias. Still, x(t) increases as long as

β >
1

1 + Var(xi/x(t))
. (4)

Evaluation of (4) requires evaluating the magnitude of Var(xi/x(t)), which de-
pends on the distribution of constructional fitness values in the genome. Let q(x)
be the portion of gene duplications with constructional fitness x. The conditions
for (4) under a variety of distributions are:

– A uniform distribution, q(x) = 1: x increases if β > 3/4;
– An exponential distribution, q(x) = ν e−λx (ν is the normalizer): for large
λ, x increases if β > 1/2;

– A Gaussian initial distribution, q(x) = ν e−λx
2

: for large λ, x increases if
β > 2/π;
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– A Gamma distribution,

q(x) = Γ (x; γ, λ) =

{
λγ xγ−1 e−λx/Γ (γ), x > 0,
0, x ≤ 0,

:

for large λ, x increases if β > γ
γ+1 . Since one can choose γ > 0 close to 0,

distributions can be found for any arbitrarily small β in which the average
constructional fitness of the genome grows.

Thus, even for arbitrarily strong downward transmission bias, where the
probability of a gene giving rise to a useful offspring gene decreases by a factor
β each gene duplication, the average probability in the genome that a gene du-
plication produces a selective advantage may still increase in time, depending on
the initial distribution of these probabilities in the genome.

As ni(t) evolves, both Cov(ξ, x) and the net transmission bias will change.
Under a wide variety of well-behaved transmission functions, where the net trans-
mission bias initially satisfies equation (3), the distribution of constructional fit-
ness values will shift upward until the net bias balances the covariance or the
covariance is exhausted.

Results 1 and 3 are extensions of a line of theorems in quantitative genet-
ics based on the covariance of different traits with fitness, including Fisher’s
fundamental theorem, Robertson’s “secondary theorem of Natural Selection”
(Robertson 1966), and a result by Price (1970) on gene frequency change, which
were elaborated upon by Crow and Nagylaki (1976) and Lande and Arnold
(1983). Price’s theorem has been applied in a number of different contexts in
evolutionary genetics, including kin selection (Grafen 1985, Taylor 1988), group
selection (Wade 1985), the evolution of mating systems (Uyenoyama 1988), and
quantitative genetics (Frank and Slatkin 1990). I have applied it to performance
analysis of genetic algorithms in Altenberg (1994, 1995).

4 Wagner’s Linear Quantitative-Genetic Model with
Gaussian Selection

Wagner (1984, 1989) has investigated evolutionary aspects of the genotype-
phenotype map through analysis of linear maps combined with a number of
different fitness surfaces, including “corridor” and Gaussian fitness functions. In
this section I investigate the correlated allelic variation effect of genome growth
using a variant of Wagner’s (1989) model of “constrained pleiotropy”. The model
here is a multilayered linear map from the genotype to the organismal pheno-
type, and from the phenotype to the adaptive functions they carry out. Figure
1 illustrates this model.

What I want to capture with this model is the following idea: genes don’t
“know” a priori what they are doing, what functions they are carrying out;
i.e. there is “universal pleiotropy”. Pleiotropic constraints may limit the geno-
type’s ability to optimize simultaneously all the functions it controls, so that
the best phenotype achievable, given the genetic variability available, may be a
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Fig. 1. Wagner’s linear model of the genotype-phenotype map with a Gaussian fitness
function on the departure, z, from optimality.

compromise between tradeoffs that represents a departure from the global selec-
tive optimum. The genotype may appear to be at a selective peak, but if new
dimensions of genetic variability were opened up, this peak would be revealed
to be on the slope of a larger selective peak.

Therefore, at these constrained peaks there exists a “latent” directional se-
lection to which the population could respond if the proper dimension of genetic
variation existed. In such situations, events which makes the proper variation
possible can be major factors in evolution. Genetic changes that alter the nature
of the pleiotropic constraints can therefore come under selection. In this model,
I will show how, when there exists variability in the pleiotropic effects of genes
coming into existence, genes which are most aligned with the latent directional
selection will have the best chance of being incorporated into the genome, and
the genomes that result will be able to simultaneously optimize all the adaptive
functions much better than would be expected from the underlying distribution
of pleiotropic effects. Moreover, the pattern of phenotypic effects of each gene
will tend to reflect the directional selection that existed when the gene came into
being. The phenotypic variability present in the genomes will therefore indicate
the history of directional selection that the genomes experienced during their
evolutionary construction.

4.1 The Adaptive Landscape

The organismal phenotype is defined as a k-element long vector, y ∈ Rk. The
organism carries out f different adaptive functions. The optimal organismal
phenotype is y∗, which would perform each of these functions maximally. For
each of the f organismal functions there will be a vector qi ∈ Rk, i = 1, . . . , f ,
such that when the phenotype y departs from y∗ in the direction qi, only the
performance of adaptive function i is altered. Thus the set of {qi} must be
orthogonal. The amount, zi, of this departure of adaptive function i from its
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optimum is simply the component of qi present in y− y∗, i.e., the projection of
y − y∗ onto qi:

zi = qTi (y − y∗) .

Let the departures from optimality in each adaptive function interact multi-
plicatively in reducing the fitness of the organism, with the relative importance
of function i measured by a value λi > 0, i = 1, . . . , f . A Gaussian selection
scheme satisfies these specifications, giving

w(y) = exp
[
−(y − y∗)TQΛQT(y − y∗)

]
= exp

[
−

f∑
i=1

λiz
2
i

]
, (5)

where
Q =

[
q1, . . . , qf

]
∈ Rf×k

is the matrix whose columns are qi, and Λ is the diagonal matrix

Λ = diag
[
λi
]f
i=1

.

Assume that {qi} are linearly independent, which requires f ≤ k. Let them also
be normalized, so that QTQ = Ik (if f = k then Q is an orthogonal matrix,
hence QT = Q−1).

Together, y∗, Q, and Λ determine the structure of the “adaptive landscape”
in terms of the organismal phenotype, y.

4.2 Genetic Control of the Phenotype

Suppose there are n genes, and the allelic state at each gene i determines a
genotype xi ∈ R. The organismal phenotype, y, is the sum of a set of normalized
vectors ai ∈ Sk on the unit k-sphere, weighted by the values xi. Hence

y = Ax , (6)

where
A =

[
a1, . . . ,an

]
∈ Rk×n

is the matrix whose columns are the vectors aj , j = 1, . . . , n. The gene effects
on the phenotype are additive, by the linearity of equation (6). The magnitude
is partitioned from the direction of the gene’s effects by normalizing aj , so that

aT
j aj =

k∑
i=1

a2ij = 1, j = 1, . . . , n.

The allelic value xj controls the magnitude of the gene’s effects.
The fitness function for the genotype is:

w(x) = exp
[
−(Ax− y∗)TQΛQT(Ax− y∗)

]
.

A note on epistasis: Although the loci interact additively in this model, they are
also epistatic in terms of fitness, since the contribution of each allelic value to
fitness depends on the value of the alleles at the other loci:

∂w(x)/∂xi = −2w(x) (Ax− y∗)TQΛQTai . (7)
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4.3 “Latent” Directional Selection at Fitness Peaks under
Pleiotropic Constraints

I assume that each of the elements of x are free to evolve, and that the population
will eventually become fixed, through allelic substitution, on the genotype vector
x̂ that produces the maximum fitness, i.e. which minimizes

δ(x) = (Ax− y∗)TQΛQT(Ax− y∗) . (8)

If y∗ is not in the column space of A, then there is no x such that Ax = y∗.
This is illustrated in Fig. 2. The dynamics of the evolution toward this optimum
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Fig. 2. Illustration of the “latent” directional selection remaining when adaptation is
constrained by phenotypic variability to be suboptimal. The global optimum phenotype
is y∗ and the constrained optimum is ŷ.

are not critical to what follows, but the gradient ascent model of Via and Lande
(1985), extended to arbitrary dimensions, would be applicable. The constraints
in this model are therefore entirely range constraints, and not kinetic constraints,
on the attainable optima.

To find the minimum of δ(x) in equation (8) one differentiates. Let

M = QΛQT .

Then M is positive definite (if f = k) or semi-definite (if f < k). The system

ATM(Ax̂− y∗) =
1

2
∂δ(x)/∂x = 0 (9)

represents the “normal equations” for the minimization problem (Luenberger
1968). The closed-form solution, when unique, is

x̂ = (ATMA)−1ATMy∗ , (10)
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and requires that the matrix ATMA, known as the Gram matrix of A, be
positive definite. This is assured if the column space of A does not intersect the
null space of QT except at 0, a generic condition here when n < f, k. Note that
numerical computation of x̂ in what follows utilizes LU decomposition, not the
matrix inversion in equation (10).

In his analysis of variability maintained by a mutation-selection balance in
this model, Wagner (1989) changes coordinates so that y∗ = 0. But then by
equation (10), ŷ = y∗, so the system evolves to the global fitness peak, and
is not constrained by variation to be suboptimal. Although this is of no conse-
quence for the nature of a mutation-selection balance, it eliminates the evolu-
tionary potential afforded by the “latent” directional selection that exists when
the population is constrained to be suboptimal, which is what I consider here.

Quantitative genetic models with the kind of constrained optima described
here present a number of important features. Adding allelic polymorphism to
the current model, as in Wagner (1989), would reveal that there can be additive
genetic variance for a trait under directional selection and yet no evolution of that
trait. Moreover, if selection is increased on any trait, the population will respond
to it and move in the direction of the increase of selection until a new balance is
found; upon relaxation of the selection to the former level, the population would
return to the previous value.

4.4 Constructional Selection

The presence of latent directional selection at a constrained optimum creates
adaptive opportunity for new genes that give different directions of phenotypic
variability, and so until evolution reaches the global maximum, there is always
the opportunity for genome growth. The process of adding new genes to the
genome then is modeled as increasing the matrix A column by column. Here
this process is examined under very simple evolutionary dynamics, where the
population is fixed on its best attainable genotype at the time a new gene is tested
in the genome. If the new gene increases fitness, it is added to the genome, and
before any new genes are tested, the genotype evolves through allelic substitution
to the new optimum that the new gene allows it to attain. This process is then
repeated and the genome thus built up.

A new gene is added to the genome according to some random sampling
process, producing a random vector, an+1 — its vector of effects on the organ-
ismal phenotype — which expands A by one column to yield A′. Addition of
a new gene increases the length of x̂ by one element, xn+1, a random variable,
to yield x′. The number of phenotypic characters, k, remains unchanged. Once
the new gene is added to the genome, mutations in its allelic value xn+1 will
change the phenotype along the same vector of variation, an+1, as produced by
the gene’s creation. Thus there is complete correlation in this model between
the phenotypic effects from the creation of the gene and the effects of its subse-
quent allelic variation, which is what provides the basis of the correlated allelic
variation effect of constructional selection.
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The departure of the fitness components from the optimum before the addi-
tion of the new gene is:

δ(x) = zTΛz =
∑
i

λizi
2 .

where z = QT(Ax̂−y∗), and each zi is the departure of phenotype from perfect
realization of adaptive function i. The fitness of the organism after addition of
the new gene is

w(x′) = e−δ(x
′)

where

δ(x′) = (Ax̂+ xn+1an+1 − y∗)TQΛQT(Ax̂+ xn+1an+1 − y∗) . (11)

Define:
ε = xn+1Q

Tan+1 .

Then
δ(x′) = (z + ε)TΛ(z + ε) . (12)

So fitness increases if and only if

δ(x′)− δ(x) = 2xn+1 (Ax̂− y∗)TMan+1 + x2n+1 a
T
n+1Man+1

= (2z + ε)TΛε =
∑
i

λi(2zi + εi)εi < 0 . (13)

The effect of the new gene on fitness depends on both its magnitude xn+1

and its direction an+1. In order for changes in function i to contribute toward
increased fitness, zi and εi must be of opposite sign (i.e. the new gene changes
the genotype in the opposite direction from its error), and

|εi| < 2|zi| . (14)

If xn+1 is very small, then

(2zi + εi)εi ≈ 2ziεi ,

and under a wide variety of assumptions about the distributions of xn+1, the
probability that a new gene will produce a fitness increase would be 1/2, in-
dependent of the new gene’s pleiotropy vector, an+1. Thus there would be no
constructional selection on an+1.

If xn+1 is distributed with larger values, however, the condition in equation
(14) corresponds to the new gene not causing the phenotype to overshoot the
maximum for function i and produce a fitness contribution lower than before. If
any zi has evolved to be very small, i.e., the organismal phenotype has realized
adaptive function i very well, then a large perturbation εi from any new gene
reduces the chance that it increases fitness. This selection against large εi is
greater with larger λi. Thus there will be selection against the addition of new
genes that alter existing highly adapted functions. Under this model, new genes
that are incorporated in the growing genome will therefore tend to have lower
pleiotropy for existing organismal functions than randomly added genes.
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A Measure of Pleiotropy. A measure pA(an+1) of the pleiotropy of the new
gene can be defined to display the extent to which the new gene disturbs the
existing constrained optimum:

pA(an+1) =
x̂TATMan+1

y∗TMan+1

.

We see from equation (9) that pleiotropy is large for a new gene that moves
the phenotype in a direction within the space of variability that it is already
optimized for:

pA(ai) = 1 for i = 1 . . . n .

Whereas pleiotropy is small when the new gene moves the phenotype in the
exact direction of the global optimum, Ax̂− y∗:

pA(Ax̂− y∗) = 0 .

Then condition equation (13) for a fitness increase can be written:

δ(x′)− δ(x) = x2n+1 a
T
n+1M an+1 − 2xn+1 y

∗TM an+1 [1− pA(an+1)] < 0 .

Since the first term is always positive, a fitness increase requires that:

1. xn+1 be the same sign as y∗TM an+1, i.e. the change is toward rather than
away from the optimum; and that

2. the term 1− pA(an+1) be as large as possible, i.e. that the pleiotropy value
is small.

Genetic Modifiers of Pleiotropy. It should be mentioned that the same
analysis applies to selection on a modifier gene that changes the A matrix.
Suppose an allele at a modifier locus changes matrix A to A+C. Then with the
substitution xn+1an+1 = Cx̂ in equation (11) the subsequent analysis (through
equation (14)) applies. The selective advantage of the modifier relative to the
unmodified genotype is

w′(x)

w(x)
− 1 = eδ(x)−δ′(x) − 1 .

Here, w′ and δ′ indicate values using A+C for A. So any modifier locus which
is able to change the genotype-phenotype map, A, has a potential selective
advantage of as much as the “latent” directional selection, eδ(x) − 1.

4.5 Numerical Simulation

A numerical simulation of this model illustrates the constructional selection pro-
cess. The genome is grown gene by gene according to the algorithm illustrated
in Fig. 3:
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1. Randomly create the adaptive landscape matrices matrices Q, Λ, and opti-
mal phenotype vector y∗:
(a) pick the elements of Q uniformly on [−1, 1] and then orthogonalize the

columns (the Modified Gram-Schmidt algorithm was used (Golub and
Van Loan 1983));

(b) generate the diagonal elements of Λ uniformly on [0, 1];
(c) generate elements y∗i uniformly on [−1, 1].

2. Add a new gene to the genome:
(a) create a new pleiotropy vector an+1 by picking elements ai uniformly on

[−1, 1] and then normalizing so that
∑
i a

2
i = 1;

(b) let the allelic value, xn+1, for the new gene equal a scale value which
exponentially decreases until the new gene is kept.

3. In a run when constructional selection is acting: if the new gene decreases
fitness, reject it and repeat step 2. Otherwise, keep it.

4. Adapt x to the new optimum x̂.
5. Repeat step 2 until the genome has 32 genes.

NEW GENE PRODUCES

A FITNESS DECREASE

GENOME GROWTH ALGORITHM:

ADD A NEW GENE

TO THE GENOME

OBTAIN ITS

FUNCTIONAL EFFECTS

RANDOMLY FROM A

GIVEN DISTRIBUTION

REJECT IT

NEW GENE PRODUCES

A FITNESS INCREASE

ADAPT THE GENOME THROUGH

ALLELIC SUBSTITUTION UNTIL

IT IS AT A FITNESS PEAK

KEEP IT

IF

CONSTRUCTIONAL

SELECTION

Fig. 3. The genome growth algorithm used in the simulation.

In this simulation, the pleiotropy vectors, an+1, are chosen from the same
distribution throughout the run. Therefore, there is no heritability on the level
of genome-as-population, and thus no opportunity for the genic selection effect.
The obvious scheme of heredity for gene-to-gene duplications will not produce
meaningful results given the way the model is set up. Consider a simple form of
heredity, where new vectors an+1 are resampled from {a1, . . . ,an}, the columns
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of A. The new gene would have maximal pleiotropy and always be deleterious
since it could only move the phenotype off its constrained peak; the new matrix
A′ would be less than full rank, moreover, giving a continuum of constrained
optima. So with the linear genotype-phenotype map, the genic selection effect
would not occur under this model of heredity.

The procedure for choosing xn+1 in step 2b was taken instead of choosing
xn+1 from some random distribution in order to lessen the variance in the strin-
gency of constructional selection on a (as discussed in Sect. 4.4) and to maintain
a roughly constant stringency of constructional selection as the genome grows.

Simulation were run both with and without constructional selection (where
each new gene is accepted in the genome regardless of its immediate effect on
fitness), to allow comparison between genomes resulting from constructional se-
lection and genomes sampled from the underlying random distribution of gene
effects. In these simulations, there are 64 organismal functions under Gaussian
stabilizing selection, and the genomes evolve from one gene to 32.
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i , measures departure of each organismal function from optimality. For clarity, only

32 of the 64 different adaptive functions are plotted, in arbitrary order.

Figure 4 shows the evolution of the fitness components for each organismal
function as the genome grows. The height, λiz

2
i , plotted for each function i,

represents the departure of each component from optimality as the genome is
increased from 1 to 32 genes. The bumps in the landscape indicate where gene
addition decreases the adaptation for certain components, while raising it for
other. Comparison between the genomes grown with and without constructional
selection shows that adaptation simultaneously at many organismal functions
can be achieved with a much smaller genome when constructional selection acts
during the evolution of the genotype-phenotype map.
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Fig. 5. Organismal fitness as a function of genome size for several runs of the genome
growth algorithm, with (dark lines) and without (light lines) constructional selection.

Figure 5 shows the trajectories of organismal fitness as new genes are added
to the genome. The phenotype y always moves closer to y∗ whether or not
constructional selection is acting, because any generic new gene increases the
phenotype subspace spanned by the genetic variation regardless of its immediate
effect on fitness. With constructional selection, however, rapid approach to the
global optimum in the adaptive landscape occurs with much smaller genome size.
Genomes with the random distribution of phenotypic effects had to grow to a
size of 32 genes to reach the same fitnesses attained by genomes of only around 5
genes when these underwent constructional selection. In these simulations, most
of the adaptation occurs not from the addition of the new genes, but from the
climb to the constrained fitness peaks that occurs between gene additions, the
part attributable to allelic substitution.

5 The “NK” Adaptive Landscape Model

Kauffman’s “NK” adaptive landscape model (1989) will be used to illustrate
the effects of constructional selection because it explicitly shows the epistatic
structure of the genotype-phenotype map. A separate presentation of this ma-
terial can be found in Altenberg (1994). First I will describe the NK model and
review existing analytical work on its evolutionary behavior. Then I will exam-
ine the properties of genomes evolved under constructional selection including
their adaptive performance and the nature of the emergent genotype-phenotype
maps.

Kauffman’s NK model has the following components:
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– A genome consists of n genes;
– Each gene contributes a fitness component to the organism, and these are

summed to give the total organismal fitness;
– The fitness component contributed by a given gene i depends on the allelic

state at k other genes.

Although Kauffman ascribes each fitness component to a particular gene, in his
model control over each fitness component is, in fact, symmetric with respect to
all the genes that affect it. So in the development to follow, I recast the NK model
in terms of a map between a set of genes and a set of fitness components. This
allows the number of fitness components to differ from the number of genes,
and allows genes to be added to the genome while keeping the set of fitness
components fixed. This is illustrated in Fig. 6. The elements of the model are
recast as follows:

1. The haploid genome consists of n binary-valued genes, that exert control
over f phenotypic functions, each of which contributes a component to the
total fitness.

2. Each gene controls a subset of the f fitness components, and in turn, each
fitness component is controlled by a subset of the n genes. This genotype-
phenotype map can be represented by a matrix,

M =
[
mij

]
, i = 1 . . . n, j = 1 . . . f ,

of indices mij ∈ {0, 1}, where mij = 1 indicates that gene i affects fitness
component j;

3. The columns of M , called the polygeny vectors, gj =
[
mij

]
, i = 1 . . . n, give

the genes controlling each fitness component j;
4. The rows of M , called the pleiotropy vectors, pi =

[
mij

]
, j = 1 . . . f , give

the fitness components controlled by each gene i;
5. If any of the genes controlling a given fitness component mutates, the new

value of the fitness component will be uncorrelated with the old. Each fitness
component φi is a uniform pseudo-random function3 of the genotype, x ∈
{0, 1}n:

φi(x) = Φ(x ◦ gi, i, gi) ∼ uniform on [0, 1] ,

where Φ : {0, 1}n × {1, . . . , n} × {0, 1}n 7→ [0, 1], ◦ is the Schur product
(x ◦ gj =

[
ximij

]
, i = 1 . . . n). Any change in i, gi, or x ◦ gi gives a new

value for Φ(x ◦ gi, i, gi) that is uncorrelated with the old;
6. If a fitness component is affected by no genes, it is assumed to be zero:

Φ(x ◦ gi, i, gi) = 0 for all x, if gi =
[
0 . . . 0

]
;

7. The total fitness is the normalized sum of the fitness components:

w(x) =
1

f

f∑
i=1

φi(x) . (15)

3 The popular Park-Miller algorithm generates non-random bits, so the encryption-like
algorithm ran4 described in Press, et al. (1992) was used.
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Fig. 6. Kauffman’s NK model recast as a map between the genotype and a set of fitness
components. Arrows indicate that the gene affects the fitness component. A new gene
with effects on two fitness components is shown being introduced to the genome.

5.1 Pleiotropy and Evolvability

With the random fitness function w(x) now defined, the relationship between
the genotype-phenotype map and the model’s adaptive behavior can be investi-
gated. The random fitness function w(x) causes genotypes that are one muta-
tional event away from one another to be more or less correlated, depending on
the genotype-phenotype map. The statistical property that affects adaptation
is the likelihood that a genotype is fitter than all the genotypes that are one
mutation different from it. The set of genotypes that are one mutation away
from a given genotype can be called its “neighborhood”, and if it is the fittest
genotype in its neighborhood, then it is a fitness “peak”, to use the metaphor of
the adaptive landscape (Wright 1932). The NK fitness function thus produces a
tunably rugged landscape (Kauffman 1989).

Mutation is not the only variation-producing mechanism involved in evolu-
tion. Recombination is also very important. However, in the case of sequence
evolution on rugged adaptive landscapes, it has been argued that single muta-
tions are the main mechanism of change. Maynard Smith (1970) proposed that
molecular evolution must be limited mainly to moves from a genotype to one of
its fitter single- mutation neighbors. Gillespie (1984) provided a theoretical pop-
ulation genetic analysis corroborating that evolution on “mutational landscapes”
would consist mainly of “adaptive walks”, in which the population moves from
fixation of one genotype to fixation of a neighboring genotype of greater fitness.
So such adaptive walks will be used here.

Adaptive walks have been used to study the statistics of adaptation on NK
fitness landscapes (Kauffman and Levin 1987, Kauffman 1989, Macken and Perel-
son 1989, Weinberger 1991). Beginning with a chosen genotype, the fitness of
each of its 1-mutant neighbors is evaluated. If there are no fitter genotypes, the
genotype is at a fitness peak and the adaptive walk stops. Otherwise, one moves
to the fittest genotype and begins the process again.
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In the NK model, the chance that a mutation produces a fitness increase will
depend on the pleiotropy of the genotype-phenotype map. This effect can be
analyzed as follows. Define the pleiotropy value,

ki =

f∑
j=1

mij

to be the number of fitness components affected by gene i (the K in Kauffman’s
usage is ki − 1 here). Define the marginal fitness of gene i as the sum of the
fitness components it affects:

wi(x) =

f∑
j=1

mijφj(x) .

When gene i mutates, each fitness component it affects is resampled uniformly
from [0,1] independently. The probability that its new marginal fitness will be
less than y is

Fk(y) = Pr[Sk < y] (16)

=
1

k!

k∑
i=0

(−1)i
(
k

i

)(
y − i+ |y − i|

2

)k
,

where Sk is the sum of k independent uniform random variables on [0,1] (Feller
1971). The probability distribution Fk(y) is plotted against y/k for different
values of k in Fig. 7. One can see how as k increases, the probability density
concentrates around the expected value E(φi) = 1/2, an illustration of the Cen-
tral Limit Theorem. Thus in genes with higher pleiotropy k, mutations have a
stronger regression toward the fitness y/k = 1/2, with diminishing upper tails
of the fitness density. Therefore, lower fitnesses are likely to be fitness peaks (i.e.
all its 1-mutant neighbors are less fit) for genotype-phenotype maps with high
pleiotropy.

5.2 Statistics of Fitness Peaks on Generic Landscapes

We would like to take our knowledge of the neighborhood properties of the fitness
function in equation (16) and see how evolution proceeds. A principle question is
how fit the peaks are that are arrived at from random starting points. Analysis
of the probability distribution of endpoints of such adaptive walks have been
made for k = 1 and k = n (Kauffman and Levin 1989, Macken and Perelson
1989).

Intermediate values of k present analytical difficulties, so Weinberger (1991)
took an indirect approach to solving the distribution of fitness peaks. Instead
of looking at the distribution of fitness peaks arrived at from random initial
genotypes, he looked at the fitness distributions of adaptive peaks from among
the unweighted set of fitness peaks. The results are reviewed as follows.
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Fig. 7. The probability, Fk(y), that the marginal fitness of a mutation affecting k
fitness components will be greater than y. Plotted with the abscissa normalized by k,
for k = 1 . . . 32.

Given that a genotype x has marginal fitnesses, wj(x), the probability that
it is a fitness peak is

Pr[x is a local fitness peak | φ] =

n∏
i=1

Fki (wi(x)) , (17)

where φ = ‖φi‖, i = 1 . . . f , and {Ski} are independent random variables with
distributions Fki . Letting φi and Ski be random variables, the probability that
a random point is a fitness peak is

p̂ = Pr[

f∑
j=1

mijφj > Ski∀i] (18)

=

∫
φ∈[0,1]f

n∏
i=1

Fki(

f∑
j=1

mijφj)dφ .

The probability, G(y), that a genotype, given it is a fitness peak, has fitness less
than y is

G(y) =
1

p̂
Pr[

f∑
i=1

φi < y and
∑
j

mijφj > Ski∀i] . (19)

Weinberger (1991) obtained normal approximations of G(y) for intermediate
large values of k, with f = n. Assuming ki = k for all i, and denoting µ =
E[φi(x)] and σ2 = Var[φi(x)], Weinberger’s (1991) approximation for the distri-
bution of fitnesses among fitness peaks is

G(y) = N
(
y/f − µG

σG

)
, (20)
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where N () is the normal distribution with mean 0 and variance 1, and

µG = µ+ σ

√
2 ln(k)

k
and σ2

G =
σ2

n
[
1 + (1 + 1

k )2 ln(k)
] .

For the uniform fitness functions, µ = 1/2 and σ2 = 1/12. Figure 8 shows Wein-
berger’s approximation of G(y) plotted for n = 31 and several values of k. As
k increases, the distribution of fitness peaks gets lower (when normalized by f),
approaching the expectation for random genotypes, f/2. In other words, geno-
type-phenotype maps with large amounts of pleiotropy do not allow 1-mutant
adaptive walks to get very near their global optima (≈ f).
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Fig. 8. Weinberger’s (1991) normal approximation for the distribution of fitnesses
among fitness peaks in the NK model. Plotted for n = 31 and k = 10, 20, 40, and
80.

5.3 Constructional Selection for Low Pleiotropy

The effect of selective genome growth on the degree of pleiotropy in the evolved
genotype-phenotype map can be analyzed, as follows.

Suppose a gene newly added to the genome has pleiotropy vector pn+1, and

affects kn+1 =
∑f
j=1mn+1 j fitness components, which become resampled uni-

formly from the interval [0,1]. If a fitness component is not yet affected by any
gene, then its preexisting value is 0.

Let y be the sum, before the new gene is added, of the fitness components
the new gene is going to alter. The probability that the new sum will be less
than y is Fkn+1

(y) from equation (16). Then, from equation (16), the probability
that the new gene will produce a fitness increase is 1−Fkn+1

(y). As can be seen
from Fig. 7, when the average of the fitness components to be altered by the
new gene is above 1/2, the greater kn+1 is, the less the chance that the new gene
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will produce a fitness increase, precipitously less so for highly adapted fitness
components. Since the new gene is kept only if it produces a fitness increase,
constructional selection will filter out genes with high k.

Suppose that there is an underlying probability density s(k) of pleiotropy val-
ues k for genes newly added to the genome. Then the density s∗(k) of pleiotropy
values among genes that are kept by the genome (i.e. which improve fitness) will
be

s∗(k) = s(k)
∑

p∈{0,1}f
Pr[p|k]

[
1− Fk(pTφ)

]
/N , (21)

where φ is the vector of fitness components before the gene was added, Pr[p|k]
is the probability of sampling pleiotropy vector p given that the new gene’s
pleiotropy value is k, and N is the normalizer so that

∑
k s
∗(k) = 1.

The way constructional selection filters out high pleiotropy as the adapted-
ness of the genome increases is illustrated in Fig. 9. It plots equation (21) with
the assumption that all fitness components are the same, i.e. φi = φ for all i. The
underlying density of pleiotropy values before selection is taken to be uniform
on 1 . . . f . The figure shows that the more highly adapted the genome is, the
more severe is the selection against high pleiotropy.
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Fig. 9. The density, s∗(k), of pleiotropy values k, among genes successfully incorporated
in the genome, plotted as a function of the fitness component average, φ, prior to the
gene’s addition. The arrow points out the plot of the prior density s(k), of pleiotropy
values from which the genes are sampled. s(k) is uniform on {1, . . . , f}, and here,
f = 31.
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5.4 Numerical Results

A numerical simulation of constructional selection in the NK model was per-
formed using the same genome growth algorithm as was used in Sect. illustrated
in Fig. 3:

1. Add a new gene to the genome:
(a) create a new pleiotropy vector pn+1, choosing uniformly (from {1, . . . , 31})

the number, kn+1, of fitness components to be affected by the new gene,
and then selecting randomly which fitness components these are, from a
set of f = 31 possible;

(b) pick the allelic value, xn+1, of the new gene with probability 1/2 being
either 0 or 1.

2. If the new gene decreases fitness, reject it and repeat step 1. Otherwise, keep
it.

3. Adapt x to the new (local) optimum x̂ by allelic substitution through a
“greedy” 1-mutant adaptive walk.

4. Repeat step 1 until the genome has 31 genes.

The pleiotropy vectors, pn+1, are chosen from the same uniform distribution
throughout the run. As a basis for comparison, the genome growth algorithm is
also run without step 2, giving the result of choosing representations a priori.

Evolved Genotype-Phenotype Maps. Figure 10 shows typical genotype-
phenotype maps produced during runs with and without constructional selection.
The run without constructional selection reflects the underlying distribution of
pleiotropy vectors sampled for each new gene. In the run with constructional
selection, during the evolution of the first few genes, the discovery of new fitness
components selects for high pleiotropy, but as these fitness components evolve
toward their optima, selection becomes strong against new genes affecting them.

This increasing selection for low pleiotropy can be seen in Fig. 11, which
shows the distribution of pleiotropies kn as the genome grows, over repeated
runs of genome growth. It can be seen to resemble the predicted distribution in
Fig. 9. The mode for kn is always 1 after the first few genes, but as shown in
Fig. 12, the mean kn tends toward 1 from initial values of around 16, or half of
the maximum possible, f = 31.

The progress in adaptation can be compared between runs with and without
constructional selection. Figure 13 shows plots for a number of runs. Without
constructional selection, disruptive new genes are not filtered out, and adaptation
shows little progress once the fitness components are saturated with genes that
affect them. With constructional selection, however, fitness continues to increase
with each new gene throughout the genome growth.

As the genome grows, the trajectories of individual fitness components can
be seen in Fig. 14. With constructional selection, once a fitness component has
reached a high value (low points in graph), only new genes that leave it alone are
likely to be incorporated in the genome. Occasionally, however, one component is
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sacrificed for the improvement in another, which show up as spikes in the graph.
By the time the genome has reached a size of 31 genes, most of the components
have reached values well above their expected value of 1/2. Without construc-
tional selection, the jumble of spikes represents the continuing randomization of
the fitness components as genes with random pleiotropy are incorporated into
the genome.
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Fig. 14. Fitness components during genome growth, for one genome evolved with (left)
and one without (right) constructional selection. Fitness components are sorted accord-
ing to their value at the end of the run.

Here, most of the adaptation occurs during the incorporation of new genes,
rather than during the adaptive walks (through allelic substitution) between gene
additions. This is because there is a much larger pool of new pleiotropy vectors
to sample from than the pool of genotypes in the 1-mutant neighborhood of
an existing genotype (2f vs. n). The evolutionary process under constructional
selection is figuratively the “building” of a fitness peak, gene by gene, rather
than the climbing of a fitness peak.

The correlated allelic variation effect as discussed in Sect. 3.1 is illustrated
here by the fact that low pleiotropy evolves. Compared to average genes being
tested, the genes kept by the genome will have a higher correlation between the
fitness when the gene was added and its alternate allele because of its low plei-
otropy. However, by the nature of the NK model, the single alternate allele of
an advantageous new gene is unlikely to be fitter still. The ability of the corre-
lated allelic variation effect to enhance evolvability, through the low pleiotropy
of genotype-phenotype maps produced under constructional selection, would be
evident in the event of shifts in the adaptive peak. Should any of the fitness com-
ponents change due to a changed environment, the low pleiotropy of the genes
that affect these fitness components would enhance their chance of producing
alleles that respond to the change, without causing a prohibitive disruption of
functions for which selection has not changed.
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Non-Generic Properties of Evolved Landscapes. Existing theory for adap-
tive walks on NK landscapes, as in Sect. 5.2, has been derived for generic land-
scapes, i.e. landscapes that one would typically obtain from a random sampling
of landscapes with given values of n and k (Kauffman and Levin 1987, Kauffman
1989, Weinberger 1991) . The applicability of these results to organic evolution
assumes that evolutionary processes produce such generic adaptive landscapes.
However, the distribution of fitness peaks in the NK landscapes grown here un-
der constructional selection are nowhere near the distributions for generic NK
landscapes with identical genotype-phenotype maps.

Constructional selection produces genotype-phenotype maps that are much
more finely tuned to the fitness function under which they evolved. To illus-
trate this, the distribution of fitness peaks for several landscapes evolved under
constructional selection are plotted in Fig. 15. For comparison, distributions are
plotted for landscapes using the same genotype-phenotype map, but with fitness
functions, Φ, chosen a priori. Each point represents the fitness peak obtained
by starting an adaptive walk from a randomly sampled genotype. The distribu-
tions are plotted by sorting the fitness peaks by size (the transpose of the figure
therefore represents the cumulative probability distribution for fitness peaks).
The width of horizontal plateaus represents the size of the domain of attraction
for a particular fitness peak.

The plateaus, and discontinuities between them, indicate fewer and larger
domains of attraction for the evolved landscapes, i.e. they are smoother than the
generic landscapes. The distributions for the generic landscapes follow roughly
the Gaussian approximation derived by Weinberger (1991) as seen in Fig. 8
(fitting close to the generic k = 10 landscapes). While the least-fit peaks are
approximately the same for both evolved and generic landscapes, at various
points in the ranking, the fitness of the evolved landscapes grows much higher.
Interestingly, the jumps in the distribution are highly variable.

An additional beneficial outcome of constructional selection is that the geno-
types resulting at the end of the run are usually the apparent global fitness peak.
In 77% of adaptive landscapes evolved under constructional selection (304 sam-
pled), the genotypes attained at the end of genome growth were fitter than any
other adaptive peak found (from 250 other starting genotypes). Of the remaining
landscapes, only an average of 19% of random initial genotypes evolved to peaks
fitter than the genotype attained at the end of genome growth.

5.5 Lineage Selection vs. Constructional Selection

The NK model can be used to compare the effectiveness of lineage selection
(see Sect. 6.3) with that of constructional selection in producing evolvable geno-
type-phenotype maps. The idea of lineage selection is that the organisms whose
developmental mechanisms happen to be most evolvable will found the most suc-
cessful phyletic lineages, so that evolvable species will proliferate at the greatest
rate (Dawkins 1988). It leaves evolvability within lineages as a byproduct of their
genotype-phenotype map not subject to secular evolutionary pressure.
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Fig. 15. Distributions of fitness peaks of NK landscapes: upper 10 plots are for adaptive
landscapes evolved under constructional selection; lower 10 plots are with the same
genotype-phenotype maps but randomized fitness functions. In each plot, the peaks
attained from 1000 random starting genotypes are sorted by fitness. Plateaus indicate
large domains of attraction for the peak.
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Lineage selection in the NK model could be implemented by generating ran-
dom NK landscapes, selecting those with the greatest evolvability, and evaluating
the height of the fitness peaks on these landscapes. This can be compared to the
height of fitness peaks of genomes evolved through constructional selection. The
basis for comparison will be the fitness of the fittest individual obtained after a
set number of genotypes have been generated. The payoff in the level of opti-
mization obtained through constructional selection shows it to be a much more
powerful than lineage selection.

To give lineage selection the best possible advantage, I will consider the class
of NK landscapes with the highest expected fitness peaks, the k = 1 landscapes
(which is K = 0 in Kauffman’s original definition). In the k = 1 landscapes,
there is a one-to-one map from each gene to each fitness component, and f = n.

Each gene can be optimized individually, so it takes the evaluation of 2n
genotypes to find the global peak for the landscape. Each fitness component is
i.i.d., where the optimal φ̂i is distributed as the maximum of two independent
uniform random variables on [0,1]. The probability density of each maximum φ̂i
is f(φ̂) = 2φ̂. So E(φ̂) = 2/3 and Var(φ̂) = 1/18. With n = f = 31 genes and
fitness components, one obtains:

E[w(x̂)] = 2/3, and Var[w(x̂)] =
1

18f
≈ 0.00179 .

The average fitness attained under constructional selection in the numerical sim-
ulations (where the average k is much larger than 1) is about 0.89, which is
therefore some 5 standard deviations (5 × 0.0423) above the expected value of
peaks obtained from generic k = 1 landscapes. The fraction of randomly gener-
ated k = 1 landscape having a peak with fitness at least 0.89, under a normal
approximation, is 3× 10−7. So over 2× 106 different k = 1 genotype-phenotype
maps would need to be sampled to be likely to obtain fitness peaks as high as
those obtained through constructional selection, which in the runs here took
some 3000 sampled genotypes. The ability to select on the genotype-phenotype
map as it is constructed is the key to finding higher fitness values.

For a more even comparison with lineage selection, we can see what kind of
k = 1 landscapes constructional selection can produce. A simple way to imple-
ment this would be to add one gene to the genome at a time, map the gene to
each of the remaining unmapped fitness components, evaluate the fitnesses of
both alleles with each map, and keep the allele and map that give the fittest
value.

The first gene would be evaluated for the f possible genotype-phenotype
maps, for a total of 2f evaluations. The second gene would be sampled with
the remaining f − 1 unmapped fitness components, and so forth, giving a total
of f(f + 1) genotypes sampled. Each resulting fitness component would be the
maximum of 2(f − i + 1) uniform i.i.d. values, for the ith gene/gene map pair.

So the ith fitness component would be distributed as Fi(φ̂) = φ̂2(f−i+1). The
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fitness components would have expectation

E(φ̂i) =
2(f + 1− i)

2(f + 1− i) + 1
.

The expected value for the fitness peaks obtained through this constructional
selection process would be

E[w(x̂)] =
1

f

f∑
i=1

2i

2i+ 1
.

For n = f = 31, the expected fitness peak would be E[w(x̂)] ≈ 0.945, and
would take 31 × 32 = 992 genotypes to find. So when lineage selection and
constructional selection are both compared with k = 1 landscapes, the levels of
adaptation achieved with constructional selection are seen to be vastly greater.

6 Discussion

6.1 Overview of Results

The goal of this chapter is to introduce the idea of “constructional” selection
as a description of how the evolutionary acquisition of new genes can produce a
genome better able to generate adaptive variants. In the Introduction I sketched
out the basic conceptual framework of the idea, the two main parts being the
genic selection effect (type I) and the correlated allelic variation effect (type II).
The genic selection effect was based on the idea of defining viability, fecundity,
and heritability differences at the level of the genome-as-population. I described
how characteristics of the genotype-phenotype map, in particular Bonner’s low
pleiotropy principle, would lead to predicted differences in gene fecundity for
giving rise to new, useful genes, and how this in turn would filter genome growth
in the direction of lower pleiotropy.

Three models were provided to give concrete illustrations of constructional
selection effects. The genic selection effect was illustrated with a simple model
in which genes are ascribed “constructional” fitnesses — the probability that
duplications of them are useful genes. The result is exponential growth in the
genome of genes better able to spawn new genes. The correlated allelic variation
effect was illustrated with some concrete examples of genotype-phenotype map
functions, Wagner’s linear quantitative-genetic map with Gaussian selection, and
the epistatic NK fitness landscape of Kauffman. The NK model, because of the
discreteness of the different organismal functions, provided a good example of
how the level of pleiotropy of a new gene’s effects affects the probability that it
is selectively beneficial.

One general implication of constructional selection is that the genotype-
phenotype map ought to be less complex than one might suppose. In other
words, to some degree “bean bag genetics” might not be entirely wrong, at least
for more recently evolved genes. One can also expect that there would be an
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attunement (Barwise and Perry 1983) between the dimensions of recurrent en-
vironmental variation and the dimensions of genetic variation, in that recurrent,
environmentally caused shifts of optimal phenotypes along certain phenotypic
dimensions would expose the lineage to repeated directional selection along the
same phenotypic axes; this would create the potential for the evolution of genes
with phenotypic effects along these dimensions.

In the simulation models here, because the selection functions do not change
during evolution, once a gene is incorporated in the genome, it is always dele-
terious to delete it. Examples are accumulating of genes that have been lost in
the course of evolution (Brakenhoff, et al. 1990, Nishikimi et al. 1992, Wu et al.
1992), so clearly gene loss is a possibility, but the degree to which genes turn
over in the genome is not known yet. The addition of gene loss to the models
here would not prevent the constructional selection process; in fact, systematic
differences in the rate that different genes are lost would also contribute to con-
structional selection as viability differences on the level of genome-as-population.

6.2 Empirical Phenomena

The main empirical predictions that come out of the processes discussed here
are that:

1. There ought to be signatures of differential gene fecundity within the genome,
and these should relate to way the gene duplications and/or allelic variation
maps to the phenotype;

2. There ought to be dimensions of variation within the genome with low plei-
otropy, affecting a relatively small suite of organismal functions; and

3. More recently evolved functions ought to have the least pleiotropic genetic
control.

The advent of intra-genomic gene trees makes it foreseeable that some of these
predictions could be tested. Observations on allelic variation by itself, without
knowledge of the lineage of the gene, could be manifestations of other evolu-
tionary processes besides constructional selection, and present methodological
difficulties. Also, the prediction of low pleiotropy requires a basis for compar-
ison in order to be tested, i.e. null hypotheses about levels of pleiotropy. And
pleiotropy itself is a slippery concept, because the discretization of organismal
traits is primarily an observer artifact; what is required is a quantification of
functional relationships.

Genic Selection Effect. Numerous examples can be pointed to of genetic el-
ements with specific functions that appear to have proliferated in the genome.
Promoter sequences provide one example. A comparison can be made between
transcription promoters that are external to the transcribed sequence, and inter-
nal promoters, whose sequence is part of the transcribed gene. Whereas internal
promoters (which use RNA polymerase III) cannot be recombined with other
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genes without large pleiotropic effects (Shi and Tyler 1991), external promot-
ers can routinely be recombined with other peptide coding sequences, with the
promoter retaining its regulatory properties and the peptide retaining its func-
tional properties. External promoters are ubiquitous (i.e. they evidently have
high constructional fitness), while internal promoters are restricted mainly to
rRNA, tRNA, and snRNA genes and appear to be of ancient origin.

Signal peptides may be another example of a low-pleiotropy module that has
proliferated. But because the constraints on the amino acids of signal sequences
are rather broad, accurate intragenomic phylogenies are difficult to be certain of.
Multi-gene families are examples of sequences that proliferate because of their
ability to produce new useful variants, and their parts and subparts, as in the case
of serine proteases, tend to have very specific functions that are retained in their
different combinations (Doolittle 1985). The immunoglobulins are a spectacular
example of genes of specific function which when duplicated produce offspring
genes with a very high likelihood of being selectively advantageous.

There are several ways that the genic selection effect may have left a mark on
multi-gene families, which I give with some suggestive anecdotal examples. These
predictions apply to those gene families that are highly diversified (rather than
multiple-copy gene families which have a very different selection and transmission
dynamic due to unequal crossing over and gene conversion):

1. Gene families should show periods of exponential growth, possibly followed
by logistic-like stasis as the genes saturate the available adaptive opportu-
nities, depart from their original effects on organismal function, or become
functionally burdened (e.g. the vertebrate Wnt developmental gene family
(Sidow 1992); antennapedia-class vertebrate homeobox genes (Kappen et al.
1989));

2. During periods of exponential gene family growth, adjacent branches in the
gene tree should show correlations in the time intervals between gene origins,
producing acceleration in the branching rates in fecund branches; i.e. most
new genes should come from genes that are themselves new;

3. Gene families that are in the process of expanding should continue to do so
in independent lineages after taxon branching (e.g. neurofilament proteins
in fish (Mencarelli et al. 1991)).

Exon Shuffling. The genic selection effect offers some explanatory clarity to
questions about exon shuffling. Gilbert (1978) proposed that the characteristic
exon/intron mosaic structure eukaryotic genomes existed so as to “speed evo-
lution” by the creation of new genes through exon shuffling. But Crick (1979)
criticized this evolutionary reasoning as being non-Darwinian, because it ap-
peared to rely on “evolutionary foresight” in the genome — structures existing
for their future evolutionary potential. Blake (1978) instead proposed that ex-
ons were descendents of the original “proto-genes”, later assembled into complex,
multi-exon proteins. Others, however, have proposed that introns were inserted
later into contiguous genes through a transposition process. Subsequently, the
debate on the exon-shuffling hypothesis has focused on a number of issues:
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– Whether introns arose “early” or “late” — i.e. were present at the origin
of eukaryotic genes or were inserted later into contiguous genes, possibly
through a transposition process;

– Whether exons correspond to units of peptide structure or function, i.e.
whether exons are “modular”;

– Whether protein evolution through exon shuffling has indeed occurred;
– Whether selection could create a correspondence between exons and protein

structures or whether exons would need to be descendents of the original
“proto-genes”.

Proving a correspondence between intron position and peptide structure has
been seen as crucial for answering whether gene evolution through exon shuffling
has occurred, and whether introns arose “early” or “late”. Evidence has been
marshalled both in favor (e.g. Gilbert 1993) and against (Stoltzfus 1994) there
being a significant correspondence between exon structure and protein structure
in eukaryotic genes.

Once it is understood that constructional selection would enter into exon
shuffling dynamics, however, the question of when exons arose early or late be-
comes decoupled from the phenomenon of exon modularity. The genic selec-
tion effect provides a Darwinian mechanism for the evolution of modular exons
through exon shuffling (Altenberg 1985). Exon modularity is the equivalent of
low pleiotropy on the molecular level, so more modular exons would be expected
to have a better chance of producing useful variation when recombined with other
genes. Even a genome composed of randomly partitioned exons would come to be
populated by modular exons if enough genome growth had occurred to allow the
differential proliferation of exons, i.e. the genic selection effect (Altenberg and
Brutlag 1986). Moreover, the evolutionary increase in modular exons needn’t be
relegated to the distant past, but would be occurring presently in any evolution
of new genes through exon shuffling. This and other hypotheses for the evolution
of split genes are reviewed in Doolittle (1987).

Second, the genic selection effect clarifies the feature of exons that would help
them proliferate in the genome and speed evolution. What matters fundamen-
tally is not that introns fall between structural elements of the peptide, but that
each exon be able to maintain, within a new peptide environment, the properties
that it was selected for. It has been assumed that the latter would require the
former, but this assumption needs to be justified. Therefore, the negative statis-
tical results carried out by Stoltzfus (1994), based on where introns fall in the
peptide structure, might not be measuring whether exons have modular prop-
erties under exon shuffling. The more definitive test is to perform experimental
manipulation of gene or peptide structure showing functional autonomy of the
product of the exon or set of exons (e.g Craik 1980, Sanctis 1986, Zonneveld
1986, de Vries 1988, and Casorati 1993). Modularity of exon function has been
found in many but not all cases.

A testable prediction I proposed as to whether exons with modular properties
may have proliferated in the genome was to examine the reading frame statistics
of exons (Altenberg 1983). Exons or group of exons that were a multiple of 3
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nucleotides long would have greater modularity, because insertion of such exons
into a protein-coding gene does not shift the reading frame down-stream. Such
exons would have a constructional fitness advantage under exon shuffling. Data
confirming this prediction were presented (Altenberg 1985, Altenberg and Brut-
lag 1986) showing statistical excesses of exons and pairs of exons with lengths
a multiple of three. Subsequently, Patthy (1987) proposed what is also a con-
structional selection theory for exon shuffling, and also made similar predictions
about exon reading frame properties. Smith (1988) and Gelfand (1992) have
both corroborated these statistical findings on exon reading frame lengths.

Selection has been proposed as a possible cause of modular exons, but with-
out sufficient attention to the level at which selection would have to act. The
genic selection effect clarifies the means by which selection could produce modu-
lar exons. Doolittle (1985) had proposed that modular exons should be prevalent
because “introns that occur between potentially useful domains will have added
survival value”. But one must ask, survival value for whom? It cannot be the
survival of the organism carrying the intron, because intron position generally
does not affect organismal viability. It could be perhaps the long term survival
of the intron within the gene, if rates of introns loss were found to correlate with
protein structure. In terms of the genic selection effect, intron survival within a
gene corresponds to viability on the level of genome-as-population. If there were
differences in intron longevity based on peptide position, this could produce a
correspondence between intron position and peptide structure. But the differen-
tial proliferation of modular exons within the genome is a matter of differential
survival, but differential fecundity on the level of genome-as-population.

Dissociability in Development and Morphological Integration. Disso-
ciability in development and morphological integration are two aspects of the
correlation structure of phenotypic variability. Morphological integration is said
to be present where morphological characters which are functionally interde-
pendent are also genetically correlated. Dissociability is where one such suite
of functionally related characters has variability independent from another such
suite. It is a form of low pleiotropy in developmental processes (defined for phe-
notypic as well as genetic perturbations), in that the development of certain
structures can be changed without altering the development of other structures.

Both phenomena are predicted outcomes of constructional selection. But
both can come about from modifier evolution as well, in which evolution under
organismal selection at one locus systematically changes the genotype-pheno-
type maps at other loci, which is a form of epistasis (see Sect. 6.3, below). So
evidence of their existence cannot alone be taken as support for an impact of
constructional selection processes.

Cheverud (1984) has hypothesized modifier evolution under stabilizing se-
lection as a primary mechanism producing morphological integration. The ar-
gument is principally one of genetic load: modifiers should evolve to reduce the
genetic variance for the phenotypic dimensions under the most severe stabiliz-
ing selection. Wagner (1988) notes, however, that for populations in mutation-
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selection balance around a fitness peak, the strength of selection on modifiers
of the genotype-phenotype map can be only on the order of the mutation rate.
Wagner has consequently looked to situations in which the population is not
near equilibrium, but is at an earlier stage of directional selection, where there
can be stronger selection on modifiers. He notes that rather special ecological
conditions may be needed, however, to keep a population continually far from
equilibrium, limiting the ubiquity of this mechanism for generating morphologi-
cal integration.

This difficulty is overcome by recalling, from Sect. 4.4, that pleiotropic con-
straints can be expected to leave the population in a state of “latent” directional
selection that can provide strong selective advantage to modifiers, or newly cre-
ated genes, that break or shift the constraints in the right way. This is the context
for Riedl’s (1977) constructional selection mechanism. Therefore, morphological
integration could be the result not of ongoing stabilizing selection about a fit-
ness peak, but the legacy of changes in the genotype-phenotype map driven by
the presence of latent directional selection for the morphological function. If the
origin of the morphological adaptation involved the creation of new genes, then
morphological integration could reflect the suite of phenotypic correlations that
originally gave these genes their selective advantage (the correlated allelic vari-
ation effect). This would require a certain degree of stability in the correlation
structures over evolutionary time.

One of the means to test for morphological integration is to examine the
eigenvalues of the genetic correlation matrices for quantitative traits. Wagner
(1984) pointed out that conclusions about the significance of the eigenvalues
requires a null hypothesis. Wagner investigated of the eigenvalue distributions for
random genotype-phenotype maps as a null hypothesis, and this was extended to
other statistics on genetic correlation matrices (Cheverud et al. 1989). Significant
departures in real data from the random expectation were found. The genotype-
phenotype maps evolved here in simulations of genome growth can be used to
derive genetic correlation matrices and thus yield expectations from the action
of constructional selection that can be compared with quantitative genetic data.

Patterns of dissociability are ubiquitous in development, but little quantita-
tive theory for the origins or maintenance of dissociability has been developed.
Rieppel (1991) proposes that phylogenetically successful taxa are those which
have been able to achieve greater dissociability in their ontogenetic systems,
using snakes as his example. This is exactly what is expected from construc-
tional selection acting during genome growth, and what may also result from
the evolution of modifiers of the genotype-phenotype map.

Much of the thinking about dissociability places it as an aspect of von Baer’s
Laws (1828), that dissociable developmental pathways are those added recently
in evolution to later stages of ontogeny. A view of developmental mechanisms as
causal cascades gives rise to this view (Riedl 1977, Schank and Wimsatt 1987,
Wimsatt and Schank 1988), but it should not be forgotten that there is variation
for developmental mechanisms and that what emerges is filtered by selection.
Terminal additions in ontogeny may be prevalent because on the average they
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are less likely to be pleiotropic. But if pleiotropic cascading effects constrain the
evolutionary malleability of earlier ontogeny, then there may exist large degrees
of latent directional selection which would drive the evolution of new dimensions
of genetic variability that produced dissociability. An example is the evolution of
imaginal disks in Drosophila, a highly derived trait which effectively decouples
larval and adult morphology. Variation in larval morphology, as long as it doesn’t
impinge on the imaginal disks, has little “generative” consequence for adult
functioning, thereby unburdening the larval form. Imaginal disks thus were an
invention that reduced pleiotropic constraints within Drosophila development.

Raff and coworkers (Raff 1992, Raff et al. 1992) have demonstrated espe-
cially well with sea urchins that divergent early development does not necessi-
tate divergent adult forms, so that cascading effects of perturbations to early
development must be seen as contingent results of evolution. Other examples
include the frog Gastrotheca and the clam Unio (Levinton 1988, del Pino and
Elinson 1983). This supports a view of the evolution of the genotype-phenotype
map in which constraints on early development are not a mechanistic necessity,
but are always unstable to new dimensions of variation that compartmentalize
the genetic underpinnings for different adaptive functions.

Allelic Polymorphisms. If constructional selection has indeed produced genomes
with a prevalence of genes with low pleiotropy, this might be expected to be ev-
ident in the phenotypic nature of allelic polymorphisms. Koehn et al. (1983)
surveyed several cases of enzyme polymorphisms to get a sense of the levels
of pleiotropy that typically exist. Their evaluation was that natural polymor-
phisms have low levels of pleiotropy when compared with the possibilities that
exist for wide functional effects. The genes studied may not be reflective of genes
in general because the nature of their pleiotropy may influence whether the genes
maintain polymorphisms. Gimelfarb (1986, 1992) and Hastings and Hom (1989,
1990) have shown in the case of linear genotype-phenotype maps and stabiliz-
ing selection (as in Sect. 4), how the degree of pleiotropy can be critical to the
number of loci at which polymorphisms can be maintained. In these quantitative
genetic models, higher pleiotropy allows for greater polymorphism, which would
strengthen the significance of Koehn et al.’s observations. Further theoretical
study is needed in this area before natural genetic polymorphisms can be inter-
preted as evidence with respect to the genotype-phenotype map, and therefore
constructional selection.

Macroevolutionary Dynamics. The creation of new genes may represent
only a tiny fraction of the genetic events that contribute to adaptation, yet they
may play a significant role in the sculpting of the genotype-phenotype map.
All that is required is that the mode of action of the gene on the phenotype
be somewhat conserved over macroevolutionary time scales. Still, however, one
should not overlook the possibility that the evolution of new genes may often
have a profound effect on the rates and direction of evolution. Several cases have
been found where gene duplication was followed by accelerated rates of allelic
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substitution (Li 1985). Because changed selection regimes would be expected to
increase adaptive opportunities for the evolution of new genes, and because new
genes can open up new dimensions of adaptive variation, one might expect to
find associations between the origin of new genes and the origin of new taxa.
This should be statistical testable once sufficient quantities of gene tree data
accumulate.

In discussions of macroevolutionary dynamics, Eldredge (1989) points out
that since Wright (1932) introduced the notion of the “adaptive landscape”,
adaptive change has been seen as either the tracking of moving adaptive peaks,
or shifts from one adaptive peak to another. The dynamics considered here
are another kind of adaptive change, in which new dimensions of variability
in the phenotype are created, and what appeared to be an adaptive peak is
now revealed to be a “slice” through the side of a peak of higher phenotypic
dimensions. The organismal change afforded by new dimensions of variability
may be incremental or profound, depending on how well the new variability
allows decoupling of conflicting pleiotropic constraints and progress toward new
adaptive optima. But the potential at least exists that certain “punctuations”
or “saltational” changes during phylogeny reflect rapid climbing of pre-existing
adaptive peaks through the introduction of new degrees of genetic freedom.

6.3 The Evolution of Evolvability

The main significance of constructional selection is that it is a mechanism that
can apply more or less to all genes, with the effect of enhancing the ability of the
genome to generate adaptive variants, and the effect of extending the genotype-
phenotype map in the direction of lower pleiotropy. As such, it is an anagenetic
mechanism that can enhance the genome’s evolvability. Several other mecha-
nisms that have been proposed for the evolution of evolvability are reviewed
below.

Lineage Selection. Dawkins (1989) has discussed a mechanism for the evolu-
tion of evolvability that has perhaps made inroads into making the “evolution
of evolvability” more discussible in evolutionary research (Arnold, et al. 1989,
Alberch 1991). Dawkins’s mechanism is lineage selection. In lineage selection, or-
ganisms whose genotype-phenotype map by happenstance makes them evolvable
— i.e. better able to generate adaptive variants — are the ones whose lineages
would have most proliferated and endured. Thus, even though there would never
be selection for evolvability within a lineage (consonant with Concept 3), most
of the species we see would have high evolvability.

Dawkins proposes lineage selection for the prevalence of species with evolv-
able developmental mechanisms; Doolittle proposed lineage selection for the
evolvability-enhancing property of introns in protein evolution (Doolittle 1987);
lineage selection has also been proposed for the evolution of sex (Stanley 1976,
Aboitiz 1991). However, lineage selection must still turn to chance as an expla-
nation of why certain genomes came to be more evolvable; it cannot produce an
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increase in the evolvability of the genome within lineages. Genetic modification
and constructional selection are mechanisms that can change evolvability within
lineages.

Genetic Modification. Modification, as mentioned earlier, is a form of epis-
tasis, in which the nature of the phenotypic variability determined by one locus
is affected by the allelic state at another locus, the modifier.

The most widely discussed idea for the evolution of evolvability through
genetic modification is “regulation” in development, otherwise called canaliza-
tion (Waddington 1957), developmental homeostasis (Lerner 1954), morpho-
genetic correlations (Schmalhausen 1949), or morphological integration (Olson
and Miller 1958, Cheverud 1984). In this mechanism, genes are selected on for
their organismal fitness effects but modify the variational properties of the ge-
nome as a systematic side effect. Most discussions of this mechanism do not
explicitly describe it as a modifier effect. Selection to stabilize morphological
functions against environmental and genetic variability can systematically lead
to the reduction of pleiotropic effects from genetic background variability. There-
fore, this may endow the developmental system with “extrapolation” capabil-
ities if it can produce the morphological function in the face of evolutionary
changes in other parts of the organism (Frazzetta 1975). Kauffman argues that
the properties of dynamical systems would produce such a systematic correla-
tion between phenotypic stability, which is selected for, and smooth adaptive
landscapes, which are not directly selected for (Kauffman 1989b).

Riedl, in his theory of ‘genome systemization”, adds a modifier effect to the
evolution of “superimposed” regulatory genes, through an unnecessary assump-
tion about the nature of these genes. The process Riedl proposes is constructional
selection, because new genes evolve that produce coordinated variation in the
right direction for adaptation. Existing genes are unable to produce the adap-
tation because it would require the simultaneous mutation of several of them.
This creates the situation of latent directional selection. But Riedl emphasizes
that the regulatory genes will also eliminate the previously existing uncoordi-
nated dimensions of variability. This is the basis of his argument for hierarchies
of constraint in the phenotype. Yet it is not the suppression of uncoordinated
variability that allows a new superimposed gene to survive. It is its ability to
produce variation in the direction of adaptive opportunity. The former effect
would produce a reduction in genetic load, which is another example of the ge-
netic modification described above. Although the evolution of new genes could
involve both constructional selection and genetic modification effects, these are
not inherently linked.

One additional modifier mechanism is the idea of hitchhiking, which Con-
rad (1979 1982) proposes can evolve smoother adaptive landscapes, and Wag-
ner(1981) proposes can accelerate responses to selection. A near-neutral modifier
allele that increases the chance that mutations at another locus are adaptive can
hitchhike along with these mutations. Conrad provides no population genetic
analysis of the hitchhiking model, but it is plausible based on the model of Eshel
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(1973) for modification of mutation rates. Modifiers that alter the adaptive land-
scape, however, would in general be expected to have direct effects on fitness,
either advantageous or deleterious, which would swamp any hitchhiking effects
on the modifier evolution. Wagner also proposed what is effectively a hitchhiking
mechanism for the evolution of increased rates of adaptation in his idea of “feed-
back” selection (Wagner 1981). Wagner considers the general situation where a
neutral modifier can evolve if it increases the rate at which selection increases
the fitness of the modifier’s carriers.

Evolvability and the Randomness of Mutation. There is often a Darwinian
hesitation in discussing the evolution of evolvability, because it seems to step
outside of what natural selection can act upon, or invoke non-random mutational
processes. To claim that the evolution of new genes should enhance the genome’s
ability to produce adaptive variants is, on the surface, contrary to the idea that
mutation is random with respect to adaptation. But if one looks more closely at
these notions of randomness, one finds three different concepts:

Concept 1: Mutation pressure by itself will not produce adaptive evolution.
Concept 2: Current selective pressures do not affect the direction of mutations,

with respect to those selective pressures.
Concept 3: The ability of the genome to generate adaptive variants is not

molded in any systematic way by its evolutionary history.

Neither Concepts 1 nor 2 are at issue with constructional selection. Concept 2,
I should note, has been the center of the controversial claim of “directed muta-
tion” in bacteria (Cairns et al. 1988, Lenski et al. 1989, Hall et al. 1990, Cairns
and Foster 1991, Foster and Cairns 1992, and Mittler and Lenski 1992). The
mechanism of lineage selection that Dawkins (1988) proposed for the evolution
of evolvability is in keeping with Concept 3. It is Concept 3, however, with which
I have taken issue here. Concept 3 is well exemplified by Maynard Smith, et al.
(1985):

Furthermore, there is usually no reason to suppose that the developmen-
tal mechanisms in question evolved because of the particular phenotypes
that they make readily accessible. In general, therefore, the direction of
the resulting constraints (biases on the production of variant phenotypes)
is “accidental” or “random” with respect to the demands of adaptive
evolution. (1985, p. 269)

The argument of this chapter could be boiled down simply to this: the propo-
sition in the first sentence of this quote does not logically entail the assertion
in the second sentence. In other words, while it is reasonable and Darwinian
to claim that developmental mechanisms do not evolve because of the pheno-
types they make readily accessible, the resulting accessible phenotypes will not
be “accidental” with respect to the demands of adaptive evolution if they are
correlated with the phenotypes originally made accessible by the developmental
mechanisms.
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6.4 Future Directions

The models described here have been designed to be simple and illustrative of
the constructional selection effects. There are numerous refinements and elabo-
rations one could make to the genome growth models, including allelic polymor-
phism, changing selection and coevolution, stochastic mixing of gene duplication
and allelic mutation events, and finite population size. Other models for geno-
type-phenotype maps can be analyzed for their evolution under constructional
selection. I suspect that the basic findings about the evolution of pleiotropy will
be robust under these elaborations, and further phenomena may emerge as well.

Models specific to some of the predictions made here need to be developed,
such as statistics of gene-tree topologies under the genic selection effect. Riedl’s
idea of burden, while not directly dealt with in the models here, may be incor-
porated with minor modifications.

Moreover, the model genotype-phenotype maps evolved under constructional
selection can be utilized in providing underlying models for what the effects of
genetic constraints on evolution should look like. Theories about how constraints
affect morphological evolution and cladistics can be concretely simulated with
such model maps.

Levinton (1988) writes,

Evolutionary biologists have been mainly concerned with the fate of vari-
ability in populations, not the generation of variability. ... Whatever the
reason, the time has come to reemphasize the study of the origin of
variation.

Levinton’s call is certainly heeded in this chapter, which has attempted to pro-
vide a framework for thinking about the evolutionary forces acting on the genera-
tion of variability, and to describe new mechanisms which enable the evolvability
of the genome to evolve.
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