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Abstract. Genetic Programming uses trees to represent chromosomes.
The user defines the representation space by defining the set of functions
and terminals to label the nodes in the trees. The sufficiency principle
requires that the set be sufficient to label the desired solution trees. To
satisfy this principle, the user is often forced to provide a large set, which
unfortunately also enlarges the representation space and thus, the search
space. Structure-preserving crossover, STGP, CGP, and CFG-based GP,
give the user the power to reduce the space by specifying rules for valid
tree construction. However, the user often may not be aware of the best
representation space, including heuristics, to solve a particular problem.
In this paper, we present a methodology, which extracts and utilizes local
heuristics aiming at improving search efficiency. The methodology uses
a specific technique for extracting the heuristics, based on tracing first-
order (parent-child) distributions of functions and terminals. We illus-
trate these distributions, and then we present a number of experimental
results. . . .

1 Introduction

Genetic programming (GP), proposed by Koza [2], solves a problem by utilizing
a population of solutions evolving under limited resources. The solutions (chro-
mosomes), are evaluated by a problem-specific user-defined evaluation method.
They compete for survival based on this evaluation, and they undergo simulated
evolution by means of simulated crossover and mutation operators.

GP differs from other evolutionary methods by using trees to represent po-
tential problem solutions. Trees provide a rich representation that is sufficient
to represent computer programs, analytical functions, and variable length struc-
tures, even computer hardware [1][2]. The user defines the representation space
by defining the set of functions and terminals labelling the nodes of the trees.
One of the foremost principles is that of sufficiency [2], which states that the
function and terminal sets must be sufficient to solve the problem. The reason is
obvious: every solution will be in the form of a tree, labelled only with the user-
defined elements. Sufficiency usually forces the user to artificially enlarge the
sets to avoid missing some important elements. This unfortunately dramatically
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increases the search space. Even if the user is aware of the functions and termi-
nals needed in a domain, he/she may not be aware of the best subset to solve a
particular problem. Moreover, even if such a subset is identified, questions about
the specific distribution of the elements of the subset may arise. One question is
whether all functions and terminals should be equally available in every context,
or whether there should be some heuristic distribution. For example, a terminal
t may be required but never as an argument to function f1, and maybe just
rarely as an argument to f2. All of the above are obvious reasons for designing:

– methodologies for processing such heuristics,
– methodologies for automatically extracting those heuristics.

Methodologies for processing user heuristics have been proposed over the last
few years: structure-preserving crossover [2], STGP [6], CGP [3], and CFG-based
GP [9].

This paper presents a methodology for extracting such heuristics, called
Adaptable Constrained GP (ACGP). It is based on the technology of CGP, which
allows for efficient processing syntax, semantics, and heuristic constraints in GP
[3]. In Sec. 2, we briefly describe the CGP technology. In Sec. 3, we introduce
the ACGP methodology for extracting heuristics, and then present the spe-
cific distribution-based technique that was implemented for the methodology.
In Sec. 4, we define the problem we will use to illustrate the technique, trace
the first-order distribution of functions/terminals during evolution, and present
some results. Finally, in concluding Sec. 5, we elaborate on future work needed
to extend the technique and the methodology.

2 The CGP Technology

Even in early GP applications, it became apparent that functions and terminals
should not be allowed to mix in an arbitrary way. For example, a 3-argument
if/else function should use, on its condition argument, a subtree that computes
a Boolean and not temperature or angle. Because of the difficulties in enforcing
these constraints, Koza has proposed the principle of closure [2], which usually
requires very elaborate semantic interpretations to ensure the validity of any
subtree in any context. Structure-preserving crossover was introduced as the
first attempt to handle such constraints [2] (the primary initial intention was to
preserve structural constraints imposed by automatic modules ADFs).

Structure–preserving crossover wasn’t a generic method. In the nineties,
three independent generic methodologies were developed to allow problem–
independent constraints on the tree construction. Montana proposed STGP [6],
which used types to control the way functions and terminals can label local tree
structures. For example, if the function if requires Boolean as its first argument,
only Boolean–producing functions and terminals would be allowed to label the
root of that subtree. Janikow proposed CGP, which originally required the user
to explicitly specify allowed and/or disallowed local tree structures [3]. These
local constraints could be based on types, but also on some problem specific
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heuristics. In v2.1, CGP also added type–processing capabilities, with function
overloading mechanisms. For example, if a subtree needs to produce an integer,
and we have the function + (add) overloaded so that it produces integers only
if both arguments are integers, then only this specific instance of add would be
allowed to label the root of that subtree. Finally, those interested more directly
in program induction following specific syntax structure have used similar ideas
to propose CFG-based GP (e.g., [9]).

CGP relies on closing the search space to the subspace satisfying the desired
constraints. The constraints are local distribution constraints on labelling the
tree (only parent–child relationships can be efficiently processed) — the process-
ing was shown to impose only constant overhead for mutation and one more tree
traversal for crossover [3].

CGP v1 allowed processing only parent–one–child contexts. This context
constraint is independent of the position of the subtree in the tree, and of the
other labels beyond this context (even the siblings)1. CGP v2 has one additional
unique feature. It allows a particular local context to be weighted, to reflect some
detailed heuristics. For example, it allows the user to declare that the function
if, even though it can use either f1 or f2 for its condition child, it should use
f1 more frequently. This particular efficient technology is utilized in ACGP to
express and process the heuristics.

Previous experiments with CGP have demonstrated that proper constraints
can indeed greatly enhance the evolution, and thus improve problem–solving
capabilities. However, in many applications, the user may not be aware of those
proper constraints. For example, as illustrated with the 11-multiplexer problem,
improper constraints can actually reduce GP’s search capabilities while proper
constraints can greatly speed up evolution [3]. This paper presents a new method-
ology, which automatically updates the constraints, or heuristics, to enhance the
search characteristics with respect to some user-defined objectives (tree quality
and size at present). In what follows, we describe the methodology and a specific
technique implementing it, and then present some experimental results.

3 ACGP and the Local Distribution Technique

ACGP is a methodology to automatically modify the heuristic weights on typed
mutation sets2 in CGP. The basic idea is that there are some heuristics on the
distribution of labels in the trees both at the local level (parent–child) and at a
more global level (currently not done). These ideas are somehow similar to those
applied in Bayesian Optimization Network [7], but used in the context of GP
and functions/terminals and not binary alleles.

We have already investigated two ACGP techniques that allow such modifi-
cations. One technique observes the utility of specific local contexts when applied
in mutation and crossover, and based on their utility (parent–offspring fitness
1 Types and function overloading in v2 allows this context to be extended to the other

siblings. This provides technology to extend the current first-order distribution.
2 CGP expresses its heuristics by so called weighted mutation sets [3].
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relationships) it increases or decreases the weights for the applied heuristics. A
very simple implementation of this technique was shown to increase GP problem
solving capabilities. However, mutation was much more problematic due to its
bucket-brigade problem [4], and thus the overall improvements were marginal.

In here, we investigate a similarly simple technique, one that observes the
distribution of functions and terminals in all/best trees (and thus the surviving
distribution of all/best parent–child contexts). Note that we are using distribu-
tion to refer to the local context. Examples of such distributions are presented in
Sec. 4. This idea is somehow similar to that used for CFG–based GP as recently
reported in [8].

ACGP basic flowchart is illustrated in Fig. 1. ACGP works in iterations —
iteration is a number of generations ending with extracting the distribution. The
distribution information is collected and used to modify the actual mutation set
weights (the heuristics). The modification can be gradual (slope on) or complete
replacement (slope off ). Then, the run continues, with the population undergoing
the standard reproduction, or with a randomly regrown (regrow on) population.
The regrowing option was found beneficial with longer iterations, where likely
some material gets lost before being accounted for in the distributions, and
thus needs to be reintroduced by regrowing the population (as reported in [5],
regrowing is destructive for shorter iterations). Note that the newly regrown
population is generated based on new (or updated) heuristics and thus may be
vastly different from the first initial population — see Sec. 4 for illustrations.

Initialize P

Evaluate P

Iteration
complete?

selection
mutation
crossover

Extract
distribution

Update
heuristics

Regrow? Regrow P

N Y

N Y

Fig. 1. The flowchart for the ACGP algorithm

ACGP can also work with simultaneous independent multiple populations, to
improve its distribution statistics. ACGP can in fact correlate the populations by
exchanging selected chromosomes — however, we have not tested such settings



Adapting Representation in Genetic Programming 511

yet. Moreover, at present all independent populations contribute to and use
the same single set of heuristics — we have not experimented with maintaining
separate heuristics, which likely would result in solving the problem in different
subspaces by different populations.

Each population is ordered based on 2-key sorting, which compares sizes
(ascending) if two fitness values are relatively similar, and otherwise compares
fitness (descending). The more relaxed the definition of relative fitness similarity,
the more importance is placed on sizes.

Table 1. Examples of extracted distributions (partial matrix)

f1 f2 t1 t2

Function f1 arg1 20 40 10 30
Function f1 arg2 10 10 80 0

Subsequently, the best use percent of the ordered chromosomes are selected
into a common pool (from all populations) and resorted again. This pool of
chromosomes is used to compute distribution statistics (from all or from use
percent of the top chromosomes). The distribution is a 2-dim matrix counting
the frequency of parent-child appearances. Table 1 illustrates some extracted
context distributions. Assume the function f1 has 2 arguments (as shown), and
there are 2 functions and two terminals in the user set {f1, f2, t1, t2}. This
function (f1 ) appears 100 times in the selected set of trees (total for each row is
100). The cell f1 arg1 [f1 ] = 20 says that in 20 of the 100 cases the root of the
first subtree is also labelled with f1. The 0 entry in the last cell indicates that
the terminal t2 never labels the second subtree of f1 in the selected chromosome
set.

4 Illustrative Experimental Results

To illustrate the concepts, we traced the local distributions in the population,
measured fitness gains in subsequent iterations, and also attempted to visualize
the extracted heuristics both quantitatively and qualitatively, as compared to
those previously identified to be beneficial.

All reported experiments used 1000 trees per population, five populations,
the standard mutation, crossover, and reproduction operators at the rate of 0.05,
0.85, and 0.1, and for the sake of sorting, trees with fitness values differing by no
more than 2% of the fitness range values in the population were considered the
same on fitness (and thus ordered ascending by size). Unless otherwise noted, all
experiments report the average of the best of five populations, and they executed
with iteration = 25 generations and regrow on.
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4.1 Illustrative Problem: 11-multiplexer

To illustrate the behavior of ACGP, we selected the well-known 11-multiplexer
problem [2]. This problem is not only well known and studied, but we also know
from [3] which specific constraints improve the search efficiency. Our objective
was to attempt to discover some of the same constraints automatically, and to
observe how they change the search properties over multiple ACGP iterations.

The 11-multiplexer problem is to discover the Boolean function that passes
the correct data bit (out of eight d0. . . d7 ) when controlled by three addresses
(a0. . . a2 ). There are 2048 possible combinations. Koza [2] has proposed a set of
four atomic functions to solve the problem: 3-argument if/else, 2-argument and
and or, and 1-argument not, in addition to the data and address bits. This set is
not only sufficient but also redundant. In [3] we have shown that operating under
a sufficient set such as {not, and} degrades the performance, while operating
with only if (sufficient by itself) and possibly not improves the performance.
Moreover, we have shown that the performance is further enhanced when we
restrict the if ’s condition argument to choose only addresses, straight or negated,
while restricting the two action arguments to select only data or recursive if
[3]. This prior information is beneficial as we can compare ACGP–discovered
heuristics with these previously identified and tested — as we will see, ACGP
discovers virtually the same heuristics.

4.2 Change in Distribution of Local Heuristics

Here we traced the change in distribution of functions and terminals in the
populations, just to visualize specific characteristics and behavior of the distri-
bution. The distribution change is measured in terms of the local contexts, as
explained in the previous section, and with respect to a reference distribution
(the distribution in either the initial or in the previous generation). The dis-
tribution change is defined as the sum of squared differences between the two
populations on individual frequencies (e.g., normalized cells in Table 1). This
change can be measured for individual functions, function–arguments, and even
function–argument–values. However, unless indicated otherwise, the illustrations
presented in the paper use all functions/terminals for the change measure.

Fig. 2 illustrates the change in the distribution of the local heuristics in the
whole population, and also in just the best 4% of the population, when executed
on the 11-multiplexer problem with iteration=25 and slope on (graduate change
in heuristics). Fig. 2a uses initial population as the reference. As can be seen,
the distribution grows with generations, but then diminishes upon regrowing
the population at the end of each iteration. However, overall each new random
population becomes more distant from the original initial population — an il-
lustration of the fact the the heuristics change causes different distribution of
labels in each regrown population. Moreover, the changes eventually saturate —
as we will see shortly, this is because the heuristics have been extracted. Fig. 2b
uses the previous population as the reference. As can be seen, each regrow dra-
matically changes the population (spikes) — however, the changes eventually
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Fig. 2. Function/terminal distribution in the whole population and the best 20%

diminish, indicating (as see Fig. 3) that even the randomly regrown populations
contain high quality chromosomes.

4.3 Change in the Speed of Evolution

The obvious question is what is the effect of the new heuristics on the learning
curves. In this section, we answer the question in terms of average fitness growth,
while in the next section we look at the extracted quantitative and qualitative
heuristics.
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Fig. 3. Average fitness across five populations in selected iterations (with regrow)

We have conducted two experiments, with iteration=25 and total of 250 gen-
erations (10 iterations). In one experiment, we adjusted the heuristics (slope on)
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while in the other we replaced the heuristics with those from the distribution
(slope off ). Fig. 3 presents the results, shown separately for each of the 10 iter-
ations. As seen, the average fitness grows much faster in subsequent iterations,
indicating that ACGP did indeed extract helpful heuristics, which can be help-
ful in subsequent runs (in Fig. 8 we show that ACGP can also improve on the
first run vs. standard GP). Moreover, the initial fitness in the initial random
population of each iteration (regrow causes each new iteration to start with a
new random population) also increases. Between the two, we can see that the
second case (slope off ) causes much faster learning but it is too greedy and
indeed fails to solve the problem consistently (average saturation below 1.00 fit-
ness). Inspection of the evolved heuristics revealed that some terminals in the
evolved representation had very low weights, making it harder to consistently
solve the problem in all populations even though it made it easier to ”almost”
solve the problem (in fact, the same experiment with smaller sampling com-
pletely dropped one terminal from the representation, making it impossible to
solve the problem).
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Fig. 4. Distribution changes in the whole population vs. the initial population, for each
iteration separately

Finally, we also traced the same distribution change as in the previous sec-
tion, for individual iterations. The results are presented in Fig. 4, which shows
distribution changes in the whole population, with the initial population as the
reference. They support the conclusions from Fig. 3 — slope off causes much
faster changes in the distributions, but as seen before this can be too greedy. It
will be important in the future to be able to predict the trade off between the
pace of extraction of heuristics and and loss of representative power.
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4.4 The Evolved Heuristics

In this section, we look at the evolved heuristics, attempting to qualify them and
compare against those previously identified and tested for this problem. Recall
that the best results were obtained with only the if function, the three addresses
(directly or through not) in the condition subtree of if, and then recursive if and
the data bits in the two action subtrees [3].
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Fig. 5. Evolved heuristics for if, the condition argument (direct and indirect through
not

Fig. 5 illustrates the evolution of the heuristics on the condition part of if. All
functions and terminals start equally (no prior heuristics on the first iteration).
In the course of the ten iterations, we can observe that and, or, and the data bits
are indeed dropped off (average shown). We can also see that the best heuristics
indeed evolved around iteration six–seven (in fact the learning curves dropped off
slightly after this point). This illustrates the need for other means to determine
termination of the process. Fig. 5a illustrates the direct heuristics on if condition
argument. As seen, not is highly present (to allow indirect addresses, see Fig. 5b).
Among the address bits, a0 is highly present, a2 is marginally present, and a1
is virtually absent. However, as seen in Fig. 5b, a1 is very highly supported
through indirect not, while a2 has additional support as well.

Fig. 6 illustrates the total heuristics on the two action parts of if. Recall
that the action part in the best scenario should allow only data bits, and then
recursive if. Moreover, if should have higher probability to allow deeper trees. We
can see that this is indeed what has evolved. The function if spikes, and the data
bits remain relatively stable - however because the remaining functions/terminals
drop off, in fact the data bits are extracted. In the future, we plan to extend the
heuristics not only to types but also to different levels - in this case we would
hopefully observe that the if ’s weight diminishes with node depth.
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0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9

Iteration

S
ta

nd
ar

d 
de

vi
at

io
n

Functions
Terminals

(a) Update heuristics (slope on)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9

Iteration

S
ta

nd
ar

d 
de

vi
at

io
n

Functions
Terminals

(b) Replace heuristics (slope off )

Fig. 7. Standard deviation on the function/terminal heuristics for function if test
argument

Finally, we observe the changes in the heuristics of the if ’s condition ar-
gument by tracing the standard deviation in its distribution of functions and
terminals, separately for both. The results are illustrated in Fig. 7. Of course
the deviations start very low on the first iteration (driven by the initially equal
heuristics). At subsequent iterations, the weights become more diverse as the
heuristics are learned, and they also change less (relative to the iteration), in-
dicating again that heuristics extraction has saturated. Between the two, again
slow updates (a) in heuristics led to slower changes, while drastic replacement of
heuristics (b) led to faster changes and faster saturation. One more interesting
observation is the sudden spike in terminals distribution for the update case (a),
which coincides with the previously identified iteration where we observed the
sudden shift in the heuristics (Fig. 5a).
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4.5 Influence of Population Size, Sampling Rate, and Iteration
Length

So far, we have reported experiments with long iterations (25 generations), pop-
ulation of 1000 trees (per population), and using regrow at the beginning of each
new iteration. The results indicate that ACGP can extract meaningful heuris-
tics, which helps in solving the problem fast and better in subsequent iterations.
This is fine if the objective is to extract the heuristics or solve the problem with
unlimited time. However, one may wish to make those improvements when solv-
ing the problem for the first time as well, while also extracting the heuristics.
In this section, we relate population size needed to solve the problem, while at-
tempting to learn and use the heuristics on the first execution of the system.
More extensive results are reported in [5]. Fig. 8 presents accumulative result
for iteration=1, various population sizes, and various effective sampling rates
(effective rate refers to the percentage of trees eventually used for distribution
with respect to all the trees in all the populations). As seen, ACGP works quite
well with short iterations, and in fact beats GP especially for smaller populations
and smaller sampling rates. It seems that ACGP allows smaller populations to
solve the same problem faster. However, much more studies are needed here.

5 Conclusions

This paper presents the ACGP methodology for automatic extraction of heuris-
tic constraints in genetic programming. It is based on the CGP technology,
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which allows efficient processing of such constraints and heuristics. The ACGP
algorithm presented here implements a technique based on distribution of local
first-order (parent-child) contexts in the population. As illustrated, ACGP is
able to extract such heuristics, which not only improve search capabilities but
also have meaningful interpretation as compared to previously determined best
heuristics for the same problem.

The paper also illustrates the changes in the distributions in the population,
and raises a number of questions for the future.

– Extending the technique to the CGP v2 technology, which allows overloaded
functions, and thus extending the heuristics to the context of siblings.

– Linking population size with ACGP performance and problem complexity.
– Determining scalability of ACGP.
– Varying the effect of distribution and the heuristics at deeper tree levels.
– Exchanging chromosomes or separating heuristics between populations.
– Clustering techniques to explore “useful” high-order heuristics (more levels

deep). This is similar to ADFs, except that ACGP would learn clusters of
deep heuristics rather than abstract functions.

– The resulting trade-off between added capabilities and additional complexity
when using deeper heuristics (CGP technology guarantees its low overhead
only for the one–level constraints/heuristics).

– Other techniques for the heuristics, such as co–evolution between the heuris-
tics and the solutions.
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