
Evolving Finite State Machines with Embedded Genetic Programming for
Automatic Target Detection

Karl Benson
Defence Evaluation and Research Agency,

DERA Malvern, St Andrews Road,
Worcestershire WR14 3PS, UK

Tel: +44(0)1684 894580
kabenson@dera.gov.uk

Abstract- This paper presents a model comprising Finite
State Machines (FSMs) with embedded Genetic Programs
(GPs) which co-evolve to perform the task of Automatic
Target Detection (ATD). The fusion of a FSM and GPs
allows for a control structure (main program), the FSM,
and sub-programs, the GPs, to co-evolve in a symbiotic
relationship. The GP outputs along with the FSM state
transition levels are used to construct confidence intervals
that enable each pixel within the image to be classified as
either target or non-target, or to cause a state transition
to take place and further analysis of the pixel to be per-
formed. The algorithms produced using this method con-
sist of nominally four GPs, with a typical node cardinality
of less than ten, that are executed in an order dictated by
the FSM. The results of the experimentation performed
are compared to those obtained in two independent stud-
ies of the same problem using Kohonen Neural Networks
and a two stage Genetic Programming strategy.

1 Introduction

In the model presented in this paper each state of the FSM has
two GPs (Koza, 1992) embedded within it that cause the state
transitions to take place, and provide the input and output al-
phabet of the FSM. The FSM is thus a function of the GPs em-
bedded within its states, and so the hybrid FSM with embed-
ded GP has been denoted FSM(GP) just as we would denote
a function f of x as f(x) in mathematics. This framework
forms a symbiotic relationship between the FSM and the GPs
which co-evolve together. The FSM must evolve transitions
that enable the most useful GPs to be executed. Also it must
facilitate the appropriate number of states to achieve the ob-
jective, and transition levels that work with the GP outputs
to form confidence intervals. At the same time the GPs must
evolve to produce an output that works with the FSM transi-
tion levels. They must also search and combine the function
and terminal set for productive combinations that can achieve
sub-tasks. In addition, they must co-evolve with each other
to act on the current environment, and, if necessary, cause a
transition to a state that contains a GP that may be more able
to act on the current environment. To the author’s knowledge
the fusion of FSMs and GP has only been used once before by
Ashlock (Ashlock and Richter, 1997; Ashlock, 1997) to play
the game of divide the dollar, and has never been applied to
the field of computer vision. The work presented in this paper
extends that of Ashlock (Ashlock and Richter, 1997; Ashlock,

1997) in several ways to incorporate the following.

1. Self adaptive parameters.

2. The ability to add and delete states.

3. The ability to construct confidence intervals.

4. Mutation types are extended from four to fourteen.

5. The number of GPs per state are extended from one to
two.

2 The Test Problem

The problem on which to test the FSM(GP) is that of Au-
tomatic Target Detection (ATD). More specifically, the de-
tection of ships within 100 meter resolution Synthetic Aper-
ture Radar (SAR) images of a section of the English Channel
known as the Dover Straits. The images were captured be-
tween July and November 1992 by the ERS-1 satellite1. This
problem has been tackled before by Foulkes et al. (Foulkes
and Booth, 2000), and by Howard et al. (Howard et al.,
1999a; Howard et al., 1999b), and their studies are used as
a benchmark for the research presented in this paper. Foulkes
et al. used both a self-organising Kohonen neural network
and a Multi-Layer Perceptron (MLP) neural network in their
research, obtaining their best results with the self-organising
Kohonen neural network. Howard et al. used genetic pro-
gramming with a two stage strategy as follows: In the first
phase GP evolved a detector to locate as many ships as pos-
sible. However, it was found that a large amount of ocean
pixels were also classified as ships and so a second GP was
evolved that could correctly reclassify these errors as ocean.
The two GPs were then fused to perform the ATD. The im-
ages used by Foulkes et al., Howard et al., and in this paper
are shown in Figure 1.

3 Finite State Machines (FSMs)

A FSM consists of a finite number of internal states which
map a set of input symbols to a set of output symbols. When
an input symbol is presented to the FSM, the current state will
produce an output symbol based on the input, and a transition
may then be made to a new state. Table 1 shows a three state
FSM with start state 0 (denoted q0), an input alphabet (0, 1)
and output alphabet (A, B, C). An input of 011010110 into
this FSM would produce the output CBACBCBAC. FSMs

1ERS - European Remote Sensing.



(a) Test Image 1. (b) Test Image 2.

(c) Validation Image 1. (d) Validation Image 2.

(e) Training Image.

Figure 1: Imagery of the English channel used in the ATD
experimentation.

State Input Output Next State

q0 0 C q1
1 A q2

q1 0 B q1
1 B q0

q2 0 C q1
1 A q2

Table 1: State transition table of a three state FSM.

were first used in Evolutionary Programming (EP) by Fogel
(Fogel, 1962; Fogel, 1964) with the goal of creating artifi-
cial intelligence. Fogel proposed that “intelligent behaviour
requires the composite ability to predict one’s environment
coupled with a translation of the predictions into a suitable
response in light of a given goal”. The aim of Fogel’s origi-
nal work was to evolve an algorithm that when presented with
a finite set of symbols, could predict the next symbol in the
sequence. FSMs were used by Fogel as a useful representa-
tion of the algorithm.

4 Finite State Machine with Embedded Genetic
Programming: FSM(GP)

As explained in Section 3 state transitions in a FSM take place
according to an environmental input. The environment in our
case is the image, or more precisely, the pixel intensity values.
The number of pixel intensity values in any one image is large
and usually lies in the range (0,255). To cater for all of the
possible intensity values an input alphabet size of 256 would
be required. The search space of FSMs that have an input al-
phabet of this size is very large, and can be computed using
the formulaN = (naba)n, where a and b are the cardinalities
of the input and output alphabets respectively, and n is the
number of states (Atmar, 1976). If we limited the output al-
phabet to a cardinality of 2 and the number of states to 2, then
with an input alphabet cardinality of 256 it is possible to con-
struct 21024 different FSMs. This is a large search space, and
working with a smaller input alphabet than pixel intensities is
desirable. In the FSM(GP) it is the GPs that interact with the
environment, and so their output is used as the input to the
FSM element of the FSM(GP). However, the outputs from
the GP in this research are real valued numbers, which are
greater in quantity than pixel intensity values within an im-
age. Therefore, a wrapper (see equation 1) on the GP outputs
is implemented to reduce the FSM input alphabet. An alter-
native would have been to quantize pixel intensity values, but
this would lose information on small differences in the pixel
intensities. As the objective is to distinguish between targets
and non-targets, it would seem reasonable to apply evolution-
ary pressure to the FSM(GP) in such a manner as to force the
GP outputs to be as different as possible for targets and non-
targets, and at the same time to use these outputs to cause
state transitions. To achieve this, the state transitions and the



halting of the FSM(GP) occur using the following wrapper -

I =

8><
>:

0 if 0 � Ot < Tsi

1 if � Tsi < Ot < 0

Halt if jOtj � Tsi

(1)

where I is the input to the next state, Ot is the GP output, and
Tsi is the transition threshold of state i. The state transition
thresholds are chosen uniformly at random from the interval
(3,15) during the creation of the FSM(GP), and may then be
mutated during the run by adding Gaussian noise. A GP out-
put jOtj � Tsi causes the FSM(GP) to move to the halt state.
In this state if Ot � Tsi then the pixel being processed is des-
ignated as a target, else if Ot � �Tsi then the pixel being
processed is designated as a non-target. The state transition
thresholds also act as a confidence interval. If jOtj < Tsi

then the algorithm does not have the confidence to classify
the pixel under consideration as target or non-target and so
further state transitions occur until a state is entered where a
GP resides that produces an output jOtj � Tsi enabling the
pixel to be classified. For the FSM(GP) to function correctly,
each GP must give an output based on what it has seen of
the environment. This enables the FSM to change to a state
that contains a GP that can usefully act upon the current en-
vironment by forcing another transition to take place (thus
repeating the cycle), or move to the halt state. Thus the GPs
must co-evolve to help each other in the decision of designat-
ing a pixel as target or non-target, and to enable state changes
to occur. At the same time the FSM element must evolve to
‘connect’ co-operating GPs, and have enough states (and thus
GPs) to achieve the task presented to it. Thus the FSM ele-
ment and the GP element of the FSM(GP) have a symbiotic
relationship.

5 Performance and Fitness

A well established metric used to evaluate an ATD algorithms
performance is the Figure Of Merit (FOM) given by equation
2 (NAC, 1994). The FOM is defined in terms of the num-
ber of correctly classified targets, true positives (TP), and the
number of non-targets classified as targets - false positives
(FP).

FOM =
TP

FP + number of targets
(2)

As can be seen from equation 2 the FOM increases with an
increase in target detection and a decrease in false detection.

Three fitness functions were considered during this re-
search - (a) the FOM (b) the Pareto optimal set of true posi-
tives and true negatives, and (c) the function shown in equa-
tion 3. Using the FOM as the fitness function produced re-
sults that were no worse than those produced by the other two
functions, but the FOM only applies evolutionary pressure to
increase target detection and decrease false detections, which
is what we want, but it does not force the Evolutionary Algo-
rithm (EA) to produce a FSM(GP) that can also detect non-
targets (ocean). It was found that when using the FOM as the

fitness function the FSM(GP) would halt for targets, but com-
plete the maximum number of state transitions allowed when
presented with ocean. This did not hinder the accuracy of the
detector in any way, but it is more computationally expen-
sive. The second strategy was to select the Pareto optimal set
(Goldberg, 1989, pp 197–198) of TPs and TNs at each gen-
eration. This did cause the FSM(GP) to halt when presented
with ocean pixels, but did not perform as well as the fitness
function shown in equation 3, which is a weighted sum of the
FOM for targets, and the FOM for ocean pixels.

fitness =
� TP

FP +Nt

+
� TN

FN +No

(3)

where Nt = number of targets, No = number of ocean pix-
els, TN = true negatives, and FN = false negatives. This
fitness function produced detectors as accurate as those using
the FOM as the fitness function, but with the added benefit
that the FSM(GP)s it produced also halted when presented
with ocean pixels, thus producing more efficient ATD algo-
rithms. In all experimentation carried out � and � were set to
0.5, on the assumption of equal importance of detecting tar-
get and non-target. The maximum number of state transitions
allowed was set at 10.

6 Mutation of FSM(GP)

In this research an Evolutionary Programming (EP) approach
was adopted for the modification of an individual in the pop-
ulation. That is, the method of modification is mutation. The
following mutations are performed on the FSM(GP)

1. Add a state.

2. Delete a state.

3. Change the start state.

4. Mutate a transition.

5. Cycle the states.

6. Mutate a state transition threshold.

7. Perform headless chicken crossover on the states.

8. Exchange two GPs from different states.

9. Replace a GP within a state with a new randomly cre-
ated GP.

10. Perform headless chicken crossover on the GPs.

11. Grow a sub-tree.

12. Shrink a sub-tree.

13. Mutate a tree terminal.

14. Mutate a tree function.



Since there are 14 possible forms of mutation, choosing
the rate at which each of them should be performed is a dif-
ficult task. To overcome this problem the mutation probabili-
ties are co-evolved along with the FSM(GP), that is, adaptive
parameters are used. The parameter update rule chosen is part
of the lognormal method of Schwefel (Schwefel, 1981). In
particular the equation � 0i = �ie

� 0N(0;1)+�Ni(0;1) that is used
to update the standard deviations of the strategy parameters
in Evolutionary Strategies. The reader may at first find this
questionable - after all this equation was designed to update
standard deviations, not the probability of a mutation. But
we see that it does have the desired properties to solve our
problem of not knowing the correct levels at which to set the
mutation probabilities. The global factor e�

0N(0;1) allows for
an overall change in mutability. At the beginning of an EA
run we would suspect that a high rate of mutability would be
desirable whilst the population of solutions climb to an opti-
mum, and that at the end of a run, when the solutions are near
optimal, we would desire only small changes in the solution.
This global factor allows this to occur. However we still do
not know which of the mutations is having the most beneficial
effect at any one time during an EA run. The inclusion of the
term e�Ni(0;1) will allow for changes of the individual mu-
tation probabilities, and thus the mutations having the most
beneficial effect at that stage of the EA run will be carried
forward to the next generation. So recasting Schwefel’s stan-
dard deviation equation as one for the updated probability P 0

i

of mutation i taking place, we have

P 0

i =Pi e
� 0N(0;1)+�Ni(0;1)

� =
1

p
2
p
n

� 0 =
1p
2n

n =number of possible mutations.

(4)

We should note that equation 4 also provides a means of con-
trolling the amount of mutations an individual receives. For
example, if Pi = 1 8 i then the individual would receive n
mutations (14 in our current case), and if P i = 0 8 i it would
receive none. If P 0 > 1 then it is reset to 1.

7 GP Parameters

7.1 Terminal Set

The terminal set for this problem was chosen to be the pixel
intensity and a combination four sets of statistics calculated
around the center pixel of a 9 � 9 sub-image. The terminal
set is a subset (the statistics) of those used by Howard et al.
(Howard et al., 1999a; Howard et al., 1999b). The reason for
using this terminal set is that a direct comparison of the re-
search presented in this paper and the research presented in
(Howard et al., 1999a; Howard et al., 1999b) may be drawn
thus providing a benchmark. If an alternative terminal set

were chosen then better or worse performance of the algo-
rithms developed in this paper could be attributed to a supe-
rior or inferior terminal set and not the algorithm itself, thus
a fair comparison could not be made. The approach of using
statistics centred on a pixel is similar to that taken by Poli
(Poli, 1996a; Poli, 1996b), who uses moving averages. Poli
also calculated the pixel statistics before running the EA to
speed up the evaluation of an individual. This approach was
also used in this research. Each pixel under consideration was
treated as the centre pixel of a 9�9 sub-image on which a shift
in the mean and standard deviation was performed before the
statistics were calculated. The statistics used are listed below
and the terminal set calculated from these statistics is given
in Table 2.

1. The intensity value of the centre pixel - PIX

2. The average pixel intensity of an n�n sub-image cen-
tered at P (x; y) - Avn�n

3. The average pixel intensity of the perimeter of an n�n
sub-image centred at P (x; y) - PAvn�n

4. The standard deviation in pixel intensity of the perime-
ter of an n�n sub-image centred at P (x; y) - PStdn�n

5. The difference of the average pixel intensity of an
n�n sub-image and the average pixel intensity of the
perimeter of an r�r sub-image both centred at P (x; y)
- DAvn;r

7.2 Function Set

The function set used is shown in Table 2, where s i and sj
represent two arbitrary terminals. As can be seen from Ta-
ble 2 the function set consists of the very simple mathemat-
ical functions +; �; �; and �, along with max, min, and
neg. The first four functions were chosen to allow the EA to
construct and exploit useful combinations of the terminal set.
Since the FSM(GP) must act within thresholds, we need to
equip the GPs with functions that will enable the FSM(GP)
to move between these thresholds. Hence we include the GP
functions max to enable a maximum output, min to enable a
minimum output, and neg to assist in the production of nega-
tive outputs needed for the designation of non-targets.

8 Selection method

Two selection methods were considered. The first considered
was a (�+ �)-EP approach. In the (�+ �)-EP approach the
population (which contains � + � individuals) is first evalu-
ated and each individual is assigned a fitness value. Each pop-
ulation member is then placed in a tournament with k other
members and assigned a tournament score proportional to its
fitness compared to the other k in the tournament. The popu-
lation is then ranked according to their tournament score, and
the top � individuals go forward to the next generation along
with � offspring produced from these � parents. The second



Functions
Name Definition Name Definition
+ si + sj � si � sj
� si

sj
� si � sj

max si if si > sj ; else sj neg �si
min si if si < sj ; else sj

Terminals
Name Definition Name Definition
s0 PIX s8 PAv9�9
s1 Av3�3 s9 PStd3�3
s2 Av5�5 s10 PStd5�5
s3 Av7�7 s11 PStd7�7
s4 Av9�9 s12 PStd9�9
s5 PAv3�3 s13 DAv3;5
s6 PAv5�5 s14 DAv3;7
s7 PAv7�7 s15 DAv3;9

Table 2: Function and Terminal Set.

method used is one which shall be denoted (1+�)n-EP. In the
(1+�)n-EP approach a population of size n is evaluated and
each individual in the population is assigned a fitness score.
Thereafter, at each generation each individual in the popula-
tion produces � offspring. The � offspring are then ranked
against their siblings only, and the fittest offspring replaces
its parent if its fitness is greater than or equal to that of its
parent. Using this methodology no interaction between pop-
ulation members takes place. This promotes diversity in the
population, and each population member’s lineage is guaran-
teed to continue.

9 Experimental Results

Five runs using a (250+250)-EP, and five runs using a (1 +
10)50-EP were performed. Each run was executed for 500
generations. The maximum number of states was set to 5,
and the maximum GP tree depth was set to 4. At each gen-
eration the population was presented with 57 targets and a
random sample of 1000 ocean pixels from the training im-
age. At each generation g, the population member with the
greatest fitness, the Best Of Generation (BOG), was applied
to the two validation images shown in Figure 1. If the BOG’s
average fitness over the validation images was greater than
the average fitness of the BOG at generation g � 1 over the
validation images, then the BOG of generation g was desig-
nated the Best Of Run (BOR) individual so far. The reason
for using only 57 of the 77 possible targets is that the au-
thor believes the remaining 20 targets were in fact ocean, and
could not be safely classified (by a human) as targets. This
view was also shared by Howard et al. (Howard et al., 1999a;
Howard et al., 1999b). The best individual found over the ten
runs performed is shown in Table 3, and was found using the
(1+10)50-EP at generation 101 of run 3. The start state of this
FSM(GP) is zero, and an initial input of zero is applied. The
GP functions evolved in this FSM(GP) are given in equations

5, where Fij denotes function i of state j. It is worth noting
that function F21 was never executed when the FSM(GP) was
presented with the five images used in this paper. A compar-
ison of this FSM(GP) and the results obtained by Howard et
al. (Howard et al., 1999a; Howard et al., 1999b) and Foulkes
et al. (Foulkes and Booth, 2000) on the two unseen test im-
ages of Figure 1 are shown in Table 4. Figure 2 shows the
output produced by the FSM(GP) depicted in Table 3 on test
image 1. The white squares are TPs and the black circles are
the FPs.

F10 = min

�
(s0 � s4);

s15

s6

�
�max[max(s1; s4); (s3 � s6)]

F20 = min[(s11 � s4); 1]�max[(s0 + s7); s13]

F11 = (s0 + s1)� (s1s12 + s4)

F21 = s10fmin[min(s7; s12); (s2 � s10)]g
(5)

State Input I Output Next State

q0 0 � I < 0:07 F10 q0

�0:07 < I < 0 F20 q1

jIj � 0:07 I Halt
q1 0 � I < 6:36 F11 q0

�6:36 < I < 0 F21 q1

jIj � 6:36 I Halt

Table 3: FSM(GP) evolved to perform automatic ship detec-
tion.

10 Discussion

A method of co-evolving GPs within an overall control struc-
ture, a Finite State Machine, to perform the task of ATD has
been presented. The FSM(GP) is analogous to most human
written programs in that there is a main program, the FSM,
and functions that are called by the main program, the GPs.
The FSM(GP) achieves the task of ATD in two ways:

1. A search over the provided features (terminal set) is
performed. Useful features are combined as a GP to
create a sub-program that performs part of the overall
task of ATD. Each GP co-evolves with the other GPs
within the FSM to perform a different sub-task.

2. A FSM is evolved that controls how many GPs are
available (since they are embedded in its states) and
the order in which the GPs are executed. The FSM’s
state transition thresholds are mutated during the run.
The resulting state transition thresholds, in conjunction
with the GP output, allows confidence intervals to be
formed. The GP outputs, along with these confidence
intervals, enable the FSM(GP) to cluster targets and
non-targets into their appropriate classes.



FOM
Image Kohonen NN Two stage GP FSM(GP)
Test 1 0.67 0.67 0.74
Test 2 0.72 0.69 0.8

Table 4: Performance comparison of Kohonen NN, two stage
GP, and FSM(GP) on two unseen test images.

Figure 2: Output of FSM(GP) on Test image 1. The white
squares are the TPs, and the black circles are the FPs.

It has been shown that the approach taken in this paper can re-
sult in an algorithm that consists of a few small GPs that are
very easy to read and understand. Conventional GP however
has a tendency (in non-toy problems) to create very large tree
structures that make it impossible to determine exactly how
the resulting program performs its given task. When encoded
into an in service computer vision system these evolved algo-
rithms should be very efficient owing to their simplicity.

This limited investigation has shown promising results.
The FSM(GP)s evolved compare favourably to both Kohonen
Neural Networks and two stage Genetic Programming. The
true test of an algorithm is over the test set were it is applied
to unseen images. Here the FOMs achieved by the FSM(GP)
are greater than those achieved using Kohonen NNs, or a two
stage GP strategy.

11 Current and Future Work

The work described in this paper has now been extended to a
new version of the FSM(GP) that has no transition thresholds.
A transition to a new state is based on a positive or negative
output from the GP. In addition each state now contains two

logical functions that combines the GP output of the current
state with the outputs of the GPs of previously visited states.
This concatenation of the GP outputs via logical functions al-
lows highly complex decision spaces to be formed. The next
stage of development is to provide the FSM(GP) with a mem-
ory. The memory will be modeled as a tape, thus mapping the
Finite State Machine to a Turning Machine.

12 Acknowledgments

The author would like to thank Steve Foulkes for providing
the imagery and ground truth target positions used in this re-
search, and David Booth, James Cubillo, and Colin Reeves
for editing this paper. Thanks also go to Mike Molland of
MFM software for providing C++ expertise.

References

Ashlock, D. (1997). GP-automata for dividing the dollar. In
Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B., Garzon,
M., Iba, H., and Riolo, R. L., editors, Genetic Program-
ming 1997: Proceedings of the Second Annual Confer-
ence, pages 18–26, Stanford University, CA, USA. Mor-
gan Kaufmann.

Ashlock, D. and Richter, C. (1997). The effect of splitting
populations of bidding strategies. In Koza, J. R., Deb,
K., Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and
Riolo, R. L., editors, Genetic Programming 1997: Pro-
ceedings of the Second Annual Conference, pages 27–
34, Stanford University, CA, USA. Morgan Kaufmann.

Atmar, W. (1976). Speculation on the Evolution of Intel-
ligence and its Possible Realization in Machine Form.
Sc.D dissertation, New Mexico State University, Las
Cruces.

Fogel, L. J. (1962). Autonomous automata. Industrial Re-
search, 4:14–19.

Fogel, L. J. (1964). On the organization of intellect. PhD
thesis, UCLA.

Foulkes, S. B. and Booth, D. (2000). Ship detection in ESR-
1 and radarsat SAR images using self-organising neural
networks. In Procceding of the amrs workshop on ship
detection in coastal waters.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Opti-
mization, & Machine Learning. Addison Wesley.

Howard, D., Roberts, S. C., and Brankin, R. (1999a). Evo-
lution of ship detectors for satellite SAR imagery. In
Genetic Programming, Second European Workshop, Eu-
roGP’99, pages 135–148. Springer.

Howard, D., Roberts, S. C., and Brankin, R. (1999b). Tar-
get detection in SAR imagery by genetic programming.
Advances in Engineering Software, 30:303–311.



Koza, J. R. (1992). Genetic Programming: on the program-
ming of computers by means of natural selection. The
MIT Press.

NAC (1994). Autonomous long-range IR target acquisi-
tion. Technical Report AC/243(Panel 3)TR/12, North
Atlantic Council.

Poli, R. (1996a). Genetic programming for image analysis.
Technical Report CSRP-96-1, University of Birming-
ham, UK.

Poli, R. (1996b). Genetic programming for image analysis. In
Proceedings of the First Annual Conference on Genetic
Programming, pages 363–368.

Schwefel, H. P. (1981). Numerical Optimization of Computer
Models. John Wiley, Chichester, U.K.


