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Abstract – This paper reviews the multiobjective fitness 
evaluation method called Energy Minimization 
(Zebulum et al, 1998a; Zebulum et al, 1998b; Zebulum et 
al, 2000a), and presents an analysis of the method’s 
behavior when used in a genetic algorithm applied to 
production scheduling of a petroleum refinery. The 
experimental results are presented and analyzed, leading 
to an overall evaluation of the benefits provided by the 
model. 

1 Introduction 
Frequently, real-world problems require simultaneous  
optimization of multiple performance objectives. Known 
optimization techniques, both conventional and non-
conventional, such as genetic algorithms, are in general 
designed originally for single-objective problems, that is, 
problems in which the levels of optimality of the solutions 
can be given by the ordering of one single performance 
measure (e.g., a scalar value).  

When multiple performance measures are necessary to 
rate a solution’s optimality, it is necessary to define a way in 
which the different evaluations can be combined so as to 
provide a correct decision about which solution is better, 
and how much better it is. Without a suitable method to this 
decision, none of the otimization techniques can work 
efficiently in multiobjective optimization problems. 

In this article, we first review in section 2, the main  
multiobjective optimization techniques, including the novel 
method called the energy minimization method, focus of this 
work. In Section 3, we discuss the energy minimization 
method’s behavior and present the modified energy 
minimization method. Section 4 presents experimental 
results of the method when applied to the production  
scheduling in a petroleum refinery.  Section 5 discusses 
these results and present final considerations. 

2 Multiobjective Optimization Techniques 

2.1 Dominance and the Pareto-Optimal Set 

When comparing different solutions the concept of 
dominance  plays an important role. This concept states that 
a given solution v dominates another solution u only if for 
no objective the evaluation of v is worse than that of u. 
Moreover, for at least one objective the solution v must 
present a better evaluation than that of u (Horn, 1997). For a 
hypothetical maximization problem of n objectives, with vi 
and ui corresponding respe ctively to the evaluations of 
solutions v and u for objective i, the dominance of v over u  
can be state as follows:  
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If a given solution is not dominated by any other, then 
that solution is said to belong to the Pareto-optimal set. This 
set actually corresponds to all those solutions that, in the 
absence of any other information about the problem, cannot 
be surely stated as being inferior to any other solution.   

Several optimization methods for multiobjective 
problems seek the Pareto-optimal set, or Pareto Frontier , 
based on the fact that the optimal solution to the problem 
will surely belong to this set. The main problem with these 
methods is to find out which solution in the Pareto-optimal 
set is the most desirable one. 

2.2 Linear Scalar Aggregation 

The most simple and direct method for combining the 
multiple performance measures is the linear scalar-
aggregative approach (Fonseca and Fleming, 1995; Horn, 
1997). It basically consists of a weighted sum of the 
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individual measures for each objective, with the final fitness 
evaluation F for a given solution being given by: 
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where fi corresponds to the fitness evaluation relative 
to objective i, and wi corresponds to the respective weight, 
for a total of n objectives. 

One important advantage of this method is being 
simple to implement, aside from being efficient 
computationally speaking. Its  main disadvantage is  the 
great difficulty in choosing appropriate weights wi for a 
given problem.  

In practice, the application of this method to a given 
problem almost always ends up in a costly and tiresome 
fine-tuning process, in which the algorithm is repeatedly 
tested with different sets of weights until satisfactory results 
are obtained. 

2.3 Distance-to-Target Techniques 

For many real-world problems a good solution must satisfy 
all the objectives at hand to a minimum extent. One way to 
achieve such a goal is to evaluate a given solution by 
calculating the distance between the vector composed of the 
individual measures fi and the target-vector user made of 
ideal evaluations for each objective (Horn, 1997). Formally, 
such an evaluation method can be described by: 
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When p=1, we have the so-called Manhattan or 
metropolitan distance , which actually consists of a simple 
linear aggregation of the objectives combined with a target 
solution (Horn, 1997). With p=2, we obtain the more 
commonly used Euclidean distance. The quadratic form 
causes the solution to be more penalized for a value fj far 
from the target value userj  than it is benefited for having 
another value fi close to its target user i. There is now a 
“pressure to compromise” in order that it becomes harder for 
an unbalanced solution to be considered superior to a more 
compromising one. 

Larger values for p will increase the penalty given to 
those solutions with mediocre performance for an objective. 
In the extreme case when p→∞, we obtain the technique 
known as minimax or MinMax (Horn, 1997), in which the 
evaluation of a given solution corresponds to the maximum 

distance of any of the n objectives relative to its target, that 
is:  
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This way, for a problem with two objectives the 
optimal solution will correspond to the exact intersection of 
the evaluation curves for each objective. 

2.4 The Energy Minimization Method 

The novel Energy Minimization (EM) (Zebulum et al, 
1998a; Zebulum et al, 1998b; (Zebulum et al, 2000a; 
Zebulum et al, 2000b)  tries to solve the main inconvenience 
of most scalar aggregation techniques, which is the choice 
of the weights associated with each objective. This method 
also incorporates the user’s specifications, which is not 
trivially done with techniques that seek the Pareto-optimal 
set. The method, which has been designed for use within a 
genetic algorithm, is capable to adaptively update the 
weights throughout the evolutionary process. This way, 
greater priorities are constantly shifted to the objectives less 
satisfied by the population of solutions in general.  

The EM method employs  the linear scalar aggregation 
of the normalized fitness vector  as follows:  
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The normalization is usually implemented by the 
following equation:  
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where the denominator represents the fitness average 
for the population of solutions relative to objective i.  

Weight updating is inspired on the back-propagation 
artificial neural network model  (Churchland and Sejnowski 
1992), and uses the formula below:  
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In this equation, t specifies a particular generation of 
the evolutionary algorithm. Thus, wi,t+1 is the weight value 
associated with objective i for the following generation and 
it is based on the current weight wi,t and an error measure ei,t. 
k1 and k2 are normalization constants, computed by a 
procedure which will be described later. The idea of this 
weight-updating scheme is to assign larger weights to the 
objectives with larger errors. The error measure is calculated 
through the difference between the average performance  of 
the population  and the desired value specified by the user 
for objective i at a given time t.   
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This way, the second term of equation (7) guarantees 
that the fitness function defined by equation (5) is 
dominated by those objectives with evaluations farthest 
from the desired values.  

The first portion of equation (7) produces a effect  
analogous to the term momentum in the learning procedure 
of artificial neural networks, since it introduces memory to 
the system in a similar way. Its purpose is to increase the 
system’s stability, avoiding drastic changes in the equation’s 
outcome, which could make the genetic algorithm oscillate 
excessively. The constant α present in equation (7) is used 
to balance the two terms of this equation appropriately and 
can be assigned any value between 0 and 1.  

The algorithm is initialized by choosing the starting 
values for the weights. The sum of these weights is defined 
by an integer value Sw0 defined by the user:  
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The value of Sw0 is arbitrary and does not influence the 
outcome of the system.  

The purpose of normalization constants  k1 and k2 is to 
allow the definition of a measure of the system’s 
convergence state based on the sum of the weights Sw,t for a 
given time t. Establishing an analogy with hopfield neural 
networks, the following scalar quantity is defined:  
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where E corresponds to the energy of the system. In  
fact, without considering the first term of equation (7), each 
weight wi,t is proportional to the corresponding error ei,t. 
Considering that term, then it is necessary that the sum of 
the weights be proportional to the sum of the errors of the 
system at any given time t, that is:  
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where:  
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where Se0 corresponds to the sum of the errors 
observed for the first generation and k3 is proportionality 
constant that takes into consideration the effect of the value 
chosen for Sw0. In order the sum of the weights to keep 
obeying the aforementioned relation, the following values 
must be assigned to the normalization constants:  
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The computation of Sw,t takes place before the 
calculation of the weight values themselves. Therefore, the 
energy obtained by equation (10) is guaranteed to yield a 
coherent measure of the state of the evolutionary process, 
the minimization of the system’s energy actually 
corresponds to the satisfaction of multiple objectives. 
(Zebulum et al, 1998a; Zebulum et al, 1998b; Zebulum et al, 
2000a; Zebulum et al, 2000b) 

3 The Modified Energy M inimization 
Method 

In the energy minimization method, the constant shifting of 
the priorities of the objectives often produces a speciation of 
the population, with groups of solutions specializing in the 
satisfaction of different sets of objectives. Thus, every time 
the weights are updated a different group of solutions (a 
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different species) begins to dominate the remainder of the 
population. This way, the best solution yielded by the 
algorithm frequently oscillates between different solutions 
that excel in different sets of objectives, hardly ever 
converging to a final stable result.  

Further studies need to be made in order to explain the 
output oscillations in the energy minimization method which 
could have been caused by the interaction between a non-
convex Pareto surface and the inadequacies of weighted sum 
approach. Also, we have not studied the case where many 
points on the Pareto surface need to be identified. 

In order to prevent the algorithm from oscillating and 
promote a convergence to a balanced compromise solution, 
with no particular objective being excessively neglected, 
Jonathan et al (2000) have proposed a modified form of the 
energy minimization method.  

The first change is on fitness evaluation function 
described in equation (5).  The new fitness measure 
considers the distance betweeen the solution’s vector of 
evaluations and the target vector of user-defined values for 
each objective (see Section 2.3). 

Thus, formally we rewrite equation (5) and combine it 
with equation (3): 
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where ei corresponds to the error of the solution’s 
evaluation relative to its target value for objective i, and p 
defines how the vector distance is measured, as seen in 
section 2.3. 

By employing p=2 , we define a solution’s final fitness 
as the quadratic weighted sum of the errors  of its individual 
evaluations for each objective. By increasing the value of p 
we also increase the “pressure to compromise” induced by 
the algorithm (see Section 2.3). Consequently, the speciation 
tendency observed for the original method is averted, 
preventing the evolutionary process from excessively 
oscillating between different species 

This fitness evaluation is only coherent when the errors 
ei are normalized so that they can be appropriately compared 
to each other. Indeed, it must also be observed that a correct 
normalization should consider each of the evaluations fi for 
a given objective i relative to its search space. Thus, for 
instance, the best possible evaluation for a particular 
objective i could yield ei= 0, with the worst possible value 
corresponding to ei = 1.  

When the search space is not known a priori, it is 
necessary to estimate it during the evolutionary process 
itself, using the best and worst evaluations found so far 

(best i and worsti). The average evaluation avgi of the  
population is employed to extract the notion of a 
“reasonable” evaluation for the current stage of the 
evolution. Optionally, the target values useri is used in order 
to achieve a more controlled estimate of the search space, 
although these values can somewhat distort the evolutionary 
process due to their arbitrary nature.  

Considering these aspects, the error normalization 
equation has been changed to:  
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where best i corresponds to the best evaluation found so 
far for objective i or a target defined by the user, while avgi 
corresponds to the average evaluation obtained for the entire 
population relative to this objective. 

4 Applying the Modified Minimization 
Method to Production Scheduling of a 
Petroleum Refinery  

This Modified Energy Minimization Method was successful 
implemented and tested on an evolution of electrical circuit 
problem by Jonathan et al (2000). In order to prove the 
performance of the multiobjective optimization technique 
defined previously, the algorithm has been tested using 
genetics algorithms to solve the production scheduling in a 
real plant of the fuel oil and asphalt area of a petroleum 
refinery. 

4.1 Description of the Fuel Oil and Asphalt Area 
at REVAP  

The Henrique Lage Refinary (REVAP) is located in São 
José dos Campos, in the State of São Paulo. The refinary 
receives crude and intermediate feedstock from pipelines 
and dispatches most of its finished products via pipelines as 
well.  

The key business goals to maximize diesel and jet fuel 
production at minimum cost subject to the constrained of 
supplying the market demand for all the remaining products, 
mainly fuel oil and asphalt. 

The refinary total capacity is 1.000.000 m3/m. The 
production of the fuel oil and asphalt area are  180.000 
m3/mês and 40.000 m3/mês, respectively. 

Magalhães et al (1998) state that the fuel oil and 
asphalt area is very complicated to schedule because of the 
several options for components and final products existent 
in this area. 

sonms
563



The problem of production scheduling relative for the 
fuel oil and asphalt production at REVAP  is a real problem 
based on a multiproduct plant, with one machine (mixer), 
without setup time and with resource-constrained in 
continuous operating. The plant has one desasphalting unit 
(UDASF), one Fluid Catalytic Cracking Unit (UFCC), six 
tanks to stock diluents (22, 23, 24, 25, 26 and 27), twenty 
one tanks to stock final products (11, 12, 13, 14, 15, 16 - 
fuel oil; 1, 2, 3 , 4, 5 – asphalt;  6, 7, 8, 9 – ultraviscous fuel 
oil; and 10, 18, 19 , 20, 21 – CM-30), five terminal of truck-
tanks, two pipelines to transport final produtcts to final 
consumer and connections between this system’s elements, 
showed at Figure 1. 

 

 

Figure 1 - Schema of the fuel oil and asphast area  

 

During the time interval of production scheduling, 
asphaltic residue (RASF) is produced continuously by 

desasphalting unit (UDASF). This RASF is diluted with 
decanted  oil (OCC) and/or light cocking oil (LCO) to 
produce four types of fuel oil (OC-1A/B, OC-2A/B, OC-
3A/B and OC-Bunker) and two types of ultraviscous fuel oil 
(OC-7A/B and OC-9A/B), diluted with high gasoil (HG) 
and QUEROCAP to produce CM-30 or then dilute with HG 
to produce asphalt (CAP-07 and CAP20). 

Operational constrains that must be considered in this 
problem, are: 

§ No tank can ever be loaded and unloaded 
simultaneously; 

§ Production must be continuous, because RASF 
never stop to flow to the mixer; 

§ Demand must be provided at a pre-fixed schedule, 
i.e., it isn’t the scheduler’s task to fix the best 
demand’s schedule; 

§ There is a minimum volume that must rest at final 
product and intermediate product tanks; 

§ There is a preparation period for the final products 
(period of 12 hours to mix final products) and a 
quality control period (16 hours to asphalt, 16 
hours to CM -30 and 8 hours to the others). 

4.2 Experimental Results 

To analyze the experimental results obtained by GA, we 
used data from Table 1 as  problem starting values. Table 2 
presents the GA parameters. We tested 4 scenarios with 
different starting values for the final product tanks (Table 1) 
and one real demand scenario that represents 165,32 hours 
or 98,4 percent of production with maximum operation 
capacity. 

Throughout the genetic algoritm, each scheduling is 
simulated and has its performance estimated by some key  
value drivers, namely: non-provided demand, production 
that can’t be allocated in the tanks, number of operational 
mode changes and average inventory. The tests were done 
in two stages. In the first stage, the targets for the tests were 
four: minimize non-provided demand, minimize production 
that can’t be allocated in the tanks, minimize number of 
operational mode changes and minimize average inventory. 
And, in the second stage, only the first three targets were 
attended. 

 

Tanks Scenario 
1 

Scenario 
2 

Scenario 
3 

Scenario 
4 

Percents from  
operation maximum 
volume of the sum 

of  every tanks 

51% 35% 24% 19% 

Table 1 – Starting values scenarios of final products tanks. 
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The motivation  for the different scenarios of starting 
values in final product tanks is to find, experimentally, the 
best inventory level, attending the other key values drivers 
targets safely. 

 

Solution method order 
Chromosome Representation list of tasks 

Population 80 
Generation 125 
Crossover 80% - 50% 
Mutation 10% - 50%  

Linear normalization yes 
Steady State without duplicates yes 

GAP 0,8 
Interval of weight’s actualization 3 generations 

Numbers of experiments 6 

Table 2 – GA parameters 

 

Table 3 presents the average result obtained in the last 
generations of each scenario in 6 experiments. As expected, 
tests results from the second stage are, in general, better than 
the results from the first stage. In fact, the minimization of 
average inventory gives always better results in the tests 
from the first stage. Nevertheless, all the other key values 
drivers worsen their performance in this situation. 

 

 
S 
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R 
I 
O 
S 
 

O 
B 
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T 
I 
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Number of 
operational 

mode 
changes 

Average 
inventory 

(m3) 

Non-
provided 
demand 

(m3) 

Production 
that can’t be 
allocated in 

the tanks (m3) 

4 26,17 140700 585,67 158,67 
1 

3 23,67 142190 338 39,67 

4 24 104570 512,67 0 
2 

3 23 105640 0 0 

4 27,67 78466 192 79,33 3 
3 25,17 80310 89,67 39,67 

4 24,33 67563 833,33 146 
4 

3 28 68920 612,67 0 

Table 3 – Average results obtained in the last generation of each 
scenario in 6 experiments. 

 
The next figures show GA evolution, during 125 

generations of individuals, at every scenarios, in 6 

experiments. The Figure 2, Figure 3, Figure 4 and Figure 5 
present the GA evolution graphics for the tests from the first 
stage. The Figure 6, Figure 7, Figure 8 and Figure 9 present 
the GA evolution graphics for the tests from the second 
stage. The Figure 10 presents in detail (its same curves 
shows up at Figure 5 and Figure 9) the evolution’s 
behaviour of minimization of average inventory in Scenario 
2 for the first and second stage of tests. 
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Figure 2 - Non-provided demand / 4 Objectives  
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Figure 3 - Production that can’t be allocated in the tanks / 4 
Objectives  
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Figure 4 - Number of operational mode changes / 4 Objectives 
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Figure 5 - Average inventory / 4 objectives  
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Figure 6 - Non-provided demand / 3 Objectives  
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Figure 7 - Production that can’t be allocated in the tanks / 3 

objectives  
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Figure 8 - Number of operational mode changes / 3 Objectives  
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Figure 9 - Average inventory / 3 objectives 
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Figure 10 – Average inventory from scenario 2 with 3 and 4 

objectives  

5 Conclusions 
In this paper we have presented a multiobjective 
optimization technique, used with genetics algoritms, to 
solve a production scheduling integrating a lot-sizing and 
sequencing of production in a real plant of the fuel oil and 
asphalt area of  a petroleum refinery. 

After analyzing the experimental results, it can be 
conclued that approach used had a positive effect on the 
algorithm as a whole. The GA had excellent performance 
(many times near from the optimum1 ) to non-provided 
demand objective and production that can’t be allocated in 
the tanks objective; provided satisfactory results (in 
agreement with real scheduling of refinery) to numbers of 
operational mode changes objective and had insignificantly 
results in practical terms to average inventory objective for 
each scenario. However, the performance is satisfactory 
between scenarios, i.e., it’s possible to find a operation level 
for inventories, that for same time, has zero penalty to non-
provided demand and production that can’t be allocated in 
the tanks and minimize the numbers of operational mode 
changes objectives. 

We can conclude throughout the tests realized by 
Jonathan et al (2000) and the tests realized in this paper that 
the modified energy minimization method increase the 
genetic algoritm capacity  to find better solutions at 
problems envolving multiobjectives. 
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