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Complexity theory has become influential in recent models in social science. In the context of innovations and
new technologies, most applications have focused on technology adoption and technology diffusion, whereas the
topic of the innovation process has received less attention. This paper discusses three families of complexity models
of technological innovation: fitness landscape models, network models and percolation models. The models are
capable of analysing complex interaction structures (between components of technologies, between agents engaged
in collective invention) while avoiding ‘over-parameterisation’. The paper ends with discussing the methodological
challenges and critiques regarding the application of complexity theory that remain.
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1 INTRODUCTION

Formal modelling has always been an important part of research on technological innovation.
In particular, evolutionary economists developed a family of models addressing technology
adoption, diffusion and increasing returns (Fisher and Pry, 1971; Metcalfe, 1988;Arthur, 1989;
David, 1993; Bruckner et al., 1996; Dalle, 1997; Bikchandani et al., 1998) and the wider role
of technical change in industrial dynamics and economic growth (David, 1975; Nelson and
Winter, 1982; Winter, 1984; Silverberg et al., 1988; Silverberg and Verspagen, 1994; Klepper,
1996; Malerba et al., 1999; Fagiolo and Dosi, 2003). Though these models have been very
important in establishing an evolutionary understanding of technical change, their contribution
in terms of understanding the innovation process itself has been less important. Models deal
either with technology adoption given a set of technologies or with innovation as a simple
stochastic process. This research strategy is perfectly legitimate if the main interest is to
understand the role of technical change in the economy.

More recently, a new cohort of models focuses on technological innovation as a complex
phenomenon making use of new modelling techniques from complexity sciences. The use
of complexity theory in economics is an emerging field of research (Anderson et al., 1988;
Leydesdorff and van den Besselaar, 1994; Arthur et al., 1997; Foster and Hölzl, 2004). The
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important contribution of complexity theory is its ability to model more complex interaction
structures with less parameters. In this way, realism can be added to previous models without
sacrificing analytical rigour. Regarding the topic of technological innovation, two frames of
reference are relevant: (i) complexity can refer to complex interaction structures of components
in a technological system and (ii) complexity can refer to structures of interactions between
agents in innovation networks. Complexity theory proves to be applicable in both domains.

Here, we will not provide a review of complexity models in the rich field of the economics
of technical change. Reviews on subsets of complexity models have been numerous recently,
including Cowan (2004) on network models of innovation, Dawid (2004) and Pyka and Fagiolo
(2005) on agent-based models of innovation, Llerena and Lorentz (2004) on technical change
and evolutionary macroeconomics, Silverberg (2003) on long waves in technical change, and
Windrum (2004) on neo-Schumpeterian models of industrial dynamics. Rather, the goal of this
paper is to critically discuss complexity models of technological innovation (thus excluding
related topics of technology adoption, diffusion, industrial dynamics and economic growth).
To this end, we will first provide a definition of complexity that is useful in the context
of technological innovation in order to delineate our discussion from the wider and rapidly
expanding literature on complexity (Sec. 2). Then, we distinguish between three research
lines on technological innovation that make use of complexity theory being fitness landscape
models, complex network models and percolation models (Sec. 3). We end with a reflection
on challenging methodological issues, which have remained, and promising research avenues
ahead (Sec. 4).

2 DEFINITION AND DELINEATION

Complexity theory encompasses a wide range of theoretical contributions in most scientific
disciplines. Among the many definitions that have been proposed, a common one that we
deploy here, is that complexity theory deals with the study of complex systems that are
composed of many interacting elements that interact in complex ways (Simon 1969). Following
this definition, the structure of interactions between elements is of main interest. Complex
systems can be described as a graph with nodes (elements) and edges (interactions). The
structure of interactions is then given by the topology of a graph. One way to define complexity
is by the number of interactions that exist between elements. The maximum complexity of
a system can then be expressed as a function of the number of elements N. Assuming that
interactions are not necessarily mutual (a directed graph), the maximum number of interactions
is given by N(N − 1).

One can define complex systems more specifically as the class of graphs with a non-
trivial topology, that is, a topology that is neither completely empty (no elements interacts
with any other element) nor completely full (all elements interact with all other elements).
Empty graphs cannot really be considered systems because the elements have no relations with
other elements. Fully connected graphs, though seemingly ‘complex’, turn out to be easy to
understand mathematically as all elements have the same position vis-à-vis all other elements.

Another way to further define complex systems is to include the possibility of strong and
weak interactions. Instead of defining complex systems as consisting of elements with dichoto-
mous interactions (present or absent), one can describe interactions between elements along
a continuum. In the latter case, one can define complex systems as systems in which all ele-
ments interact with all other elements, thus fully connected, yet in which the interactions vary
in strings (e.g. as expressed as a value between 0 and 1).

The preferred definition of complexity is dependent on the specific model and phenomenon
that the model intends to describe. However, what unites much of the complexity research,
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including the three applications to the topic of technological innovation discussed sub-
sequently, is that the degree of complexity of systems can be tuned with a single parameter.
Thus, although complexity models focus on the complex nature of interdependencies between
elements, ‘over-parameterisation’ can be avoided. This is of great importance because analyt-
ical solutions are more often than not impossible to obtain from complexity models due to
feedback loops and stochasticity. Instead, the model’s behaviour is usually analysed by simu-
lation, which is feasible with a limited number of parameters. Complexity modelling should
thus not be mistaken for complicated models with many parameters and possible behaviours
(Axelrod, 1997).1

The interdisciplinary nature of complexity theory can be readily understood from the fact
that complex systems exist in natural worlds (fluids, ecosystems and weather), social worlds
(organisations, markets and societies) and artificial worlds (technologies, institutions and lan-
guages). Considering the topic of technological innovation, two dominant frames of reference
are of relevance. First, there are models in which systems refer to technological systems con-
taining many components that interact in complex ways. For example, an aircraft consists
of many different components and subsystems that interact physically in complex ways. This
means that an innovation in one part of a technological system almost as a rule causes problems
elsewhere in the system. Innovation, in this view, is best viewed as a complex combinatorial
optimisation problem. Second, there are models in which systems refer to populations of agents
that interact in complex ways. This class of models deals with complex interaction structures
between agents that collectively contribute to innovation (via knowledge spillovers, trade,
collaboration). The precise structure of relationships in the network affects the performance
of a network, for example, in terms of the speed of innovation and diffusion. Both models of
complex technologies and models of interacting agents are discussed later. Fitness landscape
models (Sec. 3.1) are applicable to the evolution of complex technological systems, whereas
complex network models (Sec. 3.2) and percolation models (Sec. 3.3) are applicable to both
technological systems and population of agents.

A final distinction that is useful in our discussion of complexity models of technological
innovation is between exogenous complexity models and endogenous complexity models.
Exogenous complexity models are characterised by a topology of interactions between system
elements that is parameterised ex ante and remain unchanged over time (during the simula-
tion). The behaviours of the model can be analysed by tuning, as a modeller, the complexity
parameter from lowest values to highest value. In endogenous complexity models, in con-
trast, the topology of interactions evolves itself over time, which means that the degree of
complexity is no longer controlled by the modeller using a parameter. We will see that in all
three families of complexity models (fitness landscapes, networks and percolation), there are
examples of exogenous and endogenous complexity models of innovation, although it is fair
to say that, hitherto, most emphasis has been on exogenous complexity.

3 COMPLEXITY MODELS OF INNOVATION

3.1 Fitness landscapes

Understanding technologies as complex systems means that one has to define its elements and
their interactions. Let N be the number of elements in a system and i an index for each element

1 Some models of technological innovation in evolutionary economics suffer from over-parameterisation, which
means that the possible behaviours of the models for different parameters were not always properly understood. This
problem has become less urgent given the rapid increases in computing power; yet, even some recent contributions
do not systematically explore the whole parameter space (on this, see Windrum, 2004).
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(i = 1, . . . , N). For example, a car can be described by a number of elements including the
engine, brakes, transmission, steering device, etc. To design a technological system, there is
generally more than one option for each element. Assuming (without loss of generality) that
there are two options for each element, the total number of possible designs adds up to 2N .
Thus, even for systems with a small number of elements, the total number of possible designs
is large. The space (hypercube) of possible designs is called the design space of a technology.
Technological innovation can then be understood as a move of an agent (the designer) from
its current location in the design space to a new location. Formally, this representation is
equivalent to mutation in biological organisms, which involves a move from one string (say
00110) to another string (say 10110) in genotype space.

Technological innovation, generally, does not only involve a move in design space, but
also an improvement in performance. Thus, when a designer is searching the design space
of a technology, it is looking for strings with high performance or ‘fitness’. Trial-and-error
search can then be defined as an algorithm that randomly changes one or more elements
(from 0 to 1 or vice versa), evaluates whether the fitness of the newly found string exceeds
the fitness of the old string and moves to the new string if a fitness increase can indeed be
realised. If one assumes that a designer searches myopically (Atkinson and Stiglitz, 1969), it
means that innovation involves the mutation of only one element at the time. Put differently,
in myopic search a designer searches only in the direct neighbourhood of the present design,
where neighbourhood stands for the subset of strings that can be reached by mutation in one
element. Trial-and-error search will halt once a designer has found a string with fitness that
exceeds the value of all its neighbouring strings. Using the metaphor of a fitness landscape
that maps the fitness values onto the strings in the design space, myopic search halts at a peak
in the landscape, which may well be only locally optimal and not globally optimal, which
would require a string to have the highest fitness of all strings in the design space.2

3.1.1 The NK-model

The landscape of fitness values, defining local and global optima, is dependent on the inter-
actions between elements what is called ‘epistatic relations’. The set of epistatic relations
between elements make up a certain structure, which we call here a technology’s architecture.
Architectures range in complexity from fully decomposable architectures (no epistasis) to fully
epistatic architectures (each element affects all other elements). Kauffman (1993) restricted
his analysis to particular types of architectures, the complexity of which can be expressed
in a single parameter. In his model, he used only those architectures in which each element
is epistatically affected by the same number of other elements. The number of elements by
which each element is affected, is indicated by parameter K. These so-called ‘NK-systems’
are then defined as systems with N elements in which each element is affected by K other
elements.3

Kauffman’s (1993) NK-model simulates the effects of epistasis by constructing a fitness
landscape, a concept introduced by Wright (1932) in biological theory. In the context of
technology, fitness landscapes can be taken to refer to efficiency (for production processes) or
quality (for products). In a fitness landscape, each string in design space is assigned a fitness

2 Other approaches to fitness landscapes assuming a continuous design space are discussed by Hartmann-Sonntag
et al. (2004). See also Kwasnicki (1996).

3 For application of the NK-model to technological innovation, see Frenken et al. (1999), Auerswald et al. (2000),
Kauffman et al. (2000), McCarthy (2003, 2004), Frenken and Nuvolari (2004), Hovhannisian (2004), Hovhannisian
and Valente (2004), Sommer and Loch (2004) and Frenken (2005). For applications of the NK-model in organisation
theory, see Kauffman and Macready (1995), Levinthal (1997), Levinthal and Warglien (1999), Gavetti and Levinthal
(2000), Marengo et al. (2000), Rivkin (2000, 2001), Dosi et al. (2003) and Rivkin and Siggelkow (2003).
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FIGURE 1 (a) Architecture of epistatic relations (N = 3 and K = 2), (b) fitness table and, (c) fitness landscape
(from Kauffman, 1993: 42).

value. In the NK-model, the fitness value W of a string s is computed as the mean of the fitness
values wi of each element i:

W(s) = 1

N
·

N∑

i=1

wi(s) (1)

Due to epistasis a fitness value wi takes on a different value when element i is mutated or when
another element mutates that epistatically affects element i. Each time such a mutation takes
place the fitness value of this element is redrawn randomly from a uniform distribution [0, 1].
For K = 0, epistasis is absent and wi takes on only two random values dependent on state 0 or
1. For K = N − 1, in contrast, all elements affect each other, which means that any mutation
in an element will produce new fitness values for each element in a string. In that case, the
fitness value of an element wi has to be determined for each different string in design space.
Thus, one has to draw N times 2N a random value. The latter case of maximum complexity
(K = N − 1) is simulated for a system with three elements in Figure 1. As explained, for a
string to be a peak in the landscape its N neighbouring strings should have a lower fitness
value. In the simulation in Figure 1, there are two strings that correspond to peaks (1 0 0 and
1 1 1).

Two important properties of NK fitness landscapes are relevant in the context of
technological innovation (Kauffman, 1993):4

1. The number of local optima increases with increasing K and with increasing N . This means
that for systems with some N and higher complexity K , and for systems with some K and
higher N , it becomes increasingly more likely that myopic search leads to a local optimum
rather than the global optimum.

2. The mean fitness of local optima is highest for systems with a positive but moderate com-
plexity (around K = 2, K = 3 or K = 4 depending on N ). This can be understood as

4 For formal properties of NK landscapes, see Kauffman (1993) and the review chapter by Altenberg (1997).
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reflecting that small K-values create, on average, positive complementarities. When K-
values get larger, they pose increasingly more incompatible design constraints resulting in
poorer performance of local optima. For K and N are infinitely large, the expected fitness
tends towards the expected value of a random draw5, which equals 0.5. Kauffman (1993:
54) called this result the ‘complexity catastrophe’.

Result (1) means that the more complex a technology, the less effective local search will
be. This explains, at least in some general sense, that complex technologies (large K and N )
are typically developed by professional R&D labs with a science base that goes beyond local
search, whereas relatively simple technologies (small K and/or small N ) can, in principle,
be developed by individual inventors. Result (2) implies that systems of moderate com-
plexity produce, on average, the highest fitness values of local optima. Consequently, the
expected performance of a technology is highest when designers deal with moderately com-
plex systems, and not, as one would perhaps expect, when dealing with systems without any
epistasis (K = 0). The reason is that systems without epistasis leave no room for possible
complementarities between individual elements.

Many search strategies other than myopic search are possible, and the conclusions for
myopic search above do not necessarily carry over to models with different search algorithms.
One alternative algorithm, which has been analysed by Frenken et al. (1999) and Kauffman
et al. (2000), is a search strategy that allows multiple elements to be changed simultaneously.
In this context, search distance is defined as the number of elements an agent can change
simultaneously. Frenken et al. (1999) showed that the search distance that is required to find
the global optimum with full certainty is dependent on the decomposability of a system.6

More precisely, the search distance should equal the size of the largest of the subsystems in
which a system can be decomposed (called the cover size of a system, see Page 1996). In
addition, systems that are nearly-decomposable in that most epistatic relations are contained
in subsystems and only few epistatic relations exist between subsystems, can also be searched
effectively using a search distance that corresponds to the size of the largest subsystem (Frenken
et al. 1999; Simon, 2002). Note that search strategies with varying degrees of search distance
constitute only one out of many classes of search strategies that can be analysed systematically
on their performance using fitness landscape models.7

An important topic that can be explored with fitness landscapes is imitation. From the
literature on technological innovation, it is known that some fraction of firms relies on other
firms in that they imitate the innovative solutions found by other firms. Imitation can be
defined as an agent copying the exact string of another agent exploring the landscape. However,
imitation is failure-prone as it is generally difficult to copy the exact technology of another
firm, including the competencies and organisational structures that complement the technology
of a firm (Teece et al., 1997). As Rivkin (2000) showed, any error in copying the states of
elements of a string can result in a drastic fall in fitness due to epistatic relations between
elements. The fall in fitness due to inexact copying becomes larger the more complex the
system being imitated (the higher K). Therefore, imitation is not expected to be a successful
strategy in markets in which firms compete on designs of high complexity, while in markets
with designs of low complexity, imitation strategies are more successful, and thus more likely
to be observed.

5 Following the Central Limit Theorem (Kauffman, 1993: 53–54).
6 This also holds for genetic algorithms that recombine of substrings of two parent strings to create a string (Holland,

1975; Birchenhall, 1995).
7 Other search algorithms are greedy search (evaluating all N neighbouring strings and choosing the one with

highest fitness), extremal search (mutating the element with lowest fitness) and recombinant search (recombining of
substrings of two parent strings to create a new string).
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3.1.2 Constructional selection

Fitness landscape models are most often used to understand the pros and cons of different
search strategies in terms of the fitness of the optimum found (search benefits) and the time
required to find an optimum (search costs). Typically, one assumes a given landscape with a
particular architecture of epistatic relations (for example, using parameter K), which is kept
constant through time. However, the structure of interdependencies of technological systems
can also evolve over time, which has been called architectural innovation by Henderson and
Clark (1990). Little research has been done on such endogenously changing architectures
in fitness landscapes. One exception is a model of constructional selection developed by
Altenberg (1994; 1995). In a process of constructional selection fitness increases are realised
not only through myopic search but also through a growth in the design space by means of the
introduction of new elements in a system. This possibility should be regarded as an important
and integral part of the long-run evolution of complex systems, because, in biological and
artificial sciences alike, most systems grow in size. In the biological context, the growth of
a design space is associated with genome growth. In technological evolution, design spaces
also enlarge over time as the number of elements in technological artefact typically increases
as the technology progresses (Clark, 1985).

The addition of a new element to an existing design has a very similar effect as a mutation
in an extant element. Following the logic of fitness landscapes, the addition of a new element
(with a particular allele, say 0 or 1), will generate new fitness values wi for those elements
that are epistatically affected by the new element. The number of elements affected by a new
element is called the pleiotropy of the new element. Altenberg (1994; 1995) showed that the
probability of increasing the total fitness of a string by adding a new element is inversely
related to the pleiotropy of the new element. This can be understood from the disruptive effect
of a new element with high pleiotropy. The higher the pleiotropy of an element, the more
elements in the system will acquire a new fitness value by means of a random draw, and the
more likely the mean of the newly drawn fitness values will be close to the expected value of
0.5. As the fitness of the current string is always well above 0.5, since it is a local optimum,
the new total fitness value of the string with the new element will generally be lower than the
old total fitness value. To increase the fitness of a string requires the new element to have a
low pleiotropy, so that it becomes more likely to obtain a ‘lucky’ draw for new fitness values
so that the new total fitness value to exceed the old total fitness value.

The NK-model of constructional selection has important theoretical implications with regard
to the study of technological evolution (Frenken, 2005). It provides a theoretical understanding
of the observation that technologies growing in size develop a core of highly interdependent
elements developed early in time and a periphery with less interdependent elements added later
in time (Clark, 1985). Selection favours elements that have a low degree of interdependency
as to preserve the functioning of the core elements selected previously. For example, early car
design evolved towards a dominant design with standardised core elements including particular
variants of the engine, the transmission and steering. Safety belts, lights, airbags, air filters,
catalytic converters, navigation systems are all elements added at a later stage of evolution.
These elements greatly enhance the fitness of a car to its user environment in terms of safety,
ease-of-use, environmental performance, etc.Yet, as explained by the model of constructional
selection, and as emphasised by Clark (1985) and Saviotti (1996), the introduction of peripheral
elements with low pleiotropy (‘add-ons’) does not require a fundamental adaptation of high-
pleiotropy ‘core elements’ that are fixed early on, the engine, the transmission, steering. Thus,
Altenberg’s model of constructional selection provides a new theoretical understanding of
technological evolution that is compatible with earlier concepts of dominant design, which
lacked a formal operationalisation hitherto.
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3.2 Complex networks

A second body of recent literature addresses the question how and to what extent network
relations between innovating agents affect the rate of innovation and diffusion (for an extended
survey, see Cowan, 2004). As with fitness landscapes models, one can distinguish between
models of exogenous networks and models of endogenous formation of network structures.

More generally, the economics of networks has become an important topic of research
as it relaxes some of the crude assumptions underlying mainstream economics. In standard
economic theory, it is assumed that economic agents interact anonymously with all other
agents through the market via prices. However, in many contexts, both economic and social,
agents interact in networks where agents know each other’s identity (Wasserman and Faust,
1994; Weisbuch et al., 2000). In the context of technological innovation, for example, studies
have been done on coalitions, R&D alliances and innovation networks (Axelrod et al., 1995;
Duysters and Hagedoorn, 1996; Powell et al., 1996; Hagedoorn, 2002; Pyka and Kuppers,
2002; Breschi and Lissoni, 2003).

Apart from networks defined at the level of agents such as firms, the concept of networks
is also applicable to technologies. In this context, one speaks of network technologies, in
particular, information and transportation infrastructures (airports, railways, Internet, etc.). We
will discuss a model of complex network technologies when discussing endogenous network
formation.

3.2.1 Small worlds

Watts and Strogatz (1998) distinguish between three ideal-type of network structures: regular
graphs where agents interact with their nearest neighbours, small worlds where most agents
interact only with their nearest neighbours but some agents interact with agents that are not
neighbours, and random graphs where agents interact with a random subset of other agents.
Figure 2 shows all three network topologies, respectively. The three network topologies can
be tuned by means of a single parameter p, which stands for the rewiring probability. Starting
from a regular graph (p = 0), an increase in parameter p means that edges will be rewired
randomly with probability p. The small world is associated with a value of p = 0.1. Increasing

FIGURE 2 Network topologies as expressed by parameter p (from: Cowan and Jonard, 2004).



TECHNOLOGICAL INNOVATION AND COMPLEXITY THEORY 145

the parameter to the maximum value of p = 1.0 leads us to the random network, because all
edges get rewired in a random manner.

The properties of different network topologies can be analysed using two measures. The
first is a measure of local density or ‘cliquishness’, which measures the extent to which an
agent’s neighbours are also neighbours (triangle relationships). Cliquishness is defined by:

C = 1

N

∑

i

∑

(j,l∈�i)

X(j, l)

‖�i‖(‖�i‖ − 1)/2
(2)

where �i is the set of neighbours of agent i and ‖�i‖ is the size of the neighbourhood, and X

is either 0 (absent) or 1 (present). A second measure commonly used in average path length
between any two agents:

L = 1

N

∑

i

∑

j �=1

d(i, j)

N − 1
(3)

where d(i, j) is the shortest path between i and j (i.e. the average number of steps separating
two randomly chosen agents). Figure 3 shows the cliquishness and average path length for
networks with different values of parameter p. Regular graphs (p = 0) have a high degree of
cliquishness and a very long path length, whereas random graphs (p = 1) have a small degree
of cliquishness and a very short path length. Interestingly, small worlds (p = 0.09) combine
the two features, which explains why in small world networks (as the world social network
is one) most people live in cliques yet information can still travel fast among these cliques
as average path lengths are short. The combination of the two properties is made possible by
the few agents who cut across cliques and hereby drastically shorten the average path length
between any two agents in the network.

Even though many real networks have empirical small world properties of high cliquish-
ness and short path length (Watts, 2003), the topic of small worlds has received relatively little

FIGURE 3 Properties of networks with different p-value (from Cowan and Jonard, 2004).
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attention of innovation economists so far. In the context of innovation, empirical studies on
small world properties have been in co-authorship networks (Putsch, 2003) and on strategic
technology alliances (Verspagen and Duysters, 2004). Theoretical contributions have come
mainly from Cowan and Jonard (2003; 2004) who developed models of knowledge creation
in networks. The main contribution of their work is to show that small world networks are,
generally, very supportive of knowledge production because of the combination of cliquish-
ness and short path lengths. Cliques are supportive for knowledge creation as specialised
knowledge production requires agents to form a community of practice sharing a common
knowledge base. This is evident from the tightly connected networks of researchers (in collab-
oration networks) and tightly connected journals (in citation networks). However, too much
cliquishness as in regular networks would hamper the diffusion of knowledge among spe-
cialised communities. Thus, the few agents connecting different cliques in small worlds make
sure that interdisciplinary knowledge exchange can take place relatively easily. Cowan and
Jonard (2003; 2004) have elaborated on this idea in a series of models, which mainly differ in
the nature of knowledge exchange (distinguishing between barter and broadcasting).

3.2.2 Endogenous networks

The model of small worlds, though empirically important, still lacks a proper theoretical foun-
dation.8 One can speak of networks having the small world properties of high cliquishness and
short path length, yet the question remains how these network structures emerge in the first
place. In economics, most models of network formation follow a game-theoretical approach
building on a seminal work by Jackson and Wolinsky (1996), who developed game-theoretical
equilibrium concepts for agents interacting in networks. These papers are beyond the scope
of the present paper, as these contributions are not primarily interested in technological
innovation.

Another class of models of network formation follows an already seminal paper by Barabási
and Albert (1999). The important difference between the Barabási–Albert model with the
game-theoretical literature holds that not only the structure of interactions in the network
evolves over time, but also the number of nodes participating in the network increases over
time. Nodes enter sequentially to the network and have to decide to which of the nodes, which
are already part of a network, to link. If their decision would be random, one would end up
with a graph in which the degree of a node is proportional to time of entry of a node. Instead,
Barabási and Albert (1999) proposed a different mechanism called preferential attachment to
capture the bias of new nodes to connect with nodes with a high degree. The bias of new nodes
to link to highly connected nodes follows from the benefits of short path length: establishing
a connection to a node with many more connections means that many nodes can be reached
quickly within two steps only.

The mechanism of preferential attachment implies that the probability of a new node to
become connected to a node already present is proportional to the degree of latter node.
Highly connected nodes thus tend to become even better connected over time.9 As a result, the
network structure will evolve towards a very skewed distribution with few nodes capturing most
links and most nodes having few links. Mathematically, these distributions follow a power-
law, which implies that small occurrences are extremely common, whereas large instances
are extremely rare. These distributions are scale free, which means that the network lacks a
‘characteristic scale’ so that, like fractals, smaller bits resemble the structure of the whole.

8 In fact, it is more accurate to speak of small worlds properties than of small world models.
9 This mechanism introduces a self-reinforcing rich-get-richer dynamics similar to the Arthur-model of increasing

returns (Arthur, 1989).
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Albert and Barabási (2002) summarise empirical evidence on many networks exhibiting
these features ranging from business networks, hyper-links on the web, and citation networks
between scientists. The empirical evidence on scale free networks with a highly skewed distri-
bution of links among nodes seems to be at odds with the empirical evidence on small worlds
where nodes have similar degree. However, it is relatively simple to explain how small worlds
can emerge in networks with preferential attachment by means of introducing geography,
which often plays a role in networks because the costs of creating and maintaining a link
increase with geographical distance. Human agents, for example, find it easier to maintain
friendships when both agents live nearby (e.g. in a town), or see each other face-to-face on
a regular basis (e.g. at work). Thus, geography counteracts preferential attachment in that it
will cause the degree distribution to be less skewed.

Recent geographical extensions of the Barabási–Albert model proposed to model the prob-
ability of a new node linking to an existing node as being dependent both on the latter’s degree
and inversely on the geographical distance between the two nodes. Provided that the costs
of distance are substantial, it means that the geography effect takes over the effect of prefer-
ential attachment. Though early entrants will make connections over long distance because
nearby agents are still non-existent, nodes entering later in the network will typically connect
with the nearest neighbours. In this way, the small world topology can be reproduced by the
combination of the concept of preferential attachment and geography (Ozik et al., 2004).

Applications of the Barabási–Albert model to the topic of technological innovation lie
primarily in the domain of network technologies. Most research has concentrated on explain-
ing the growth dynamics of the Internet in terms of evolving complex network models. For
example, the structure of hyperlinks between websites can be studied as an evolving net-
work (Albert and Barabási, 2002). The physical infrastructure of network technologies can
also be studied as an evolving network even though the time-scales are much longer than
that of websites and links. In this context, the role of geography becomes an important para-
meter to explain the distribution of links. For example, a recent study (Guimera and Amaral,
2004) on the evolution of the airport network showed the applicability and extendibility of the
Barabási–Albert framework by modelling the airport network as an evolving network with
costs of distance thus reproducing a small worlds topology.

3.3 Percolation

Percolation models from physics are useful to model the dynamics of adoption (Stauffer and
Aharony, 1994; Grebel, 2004) and of the role of spillovers in innovation (Silverberg and
Verspagen, 2005). Although our focus here is on models of technological innovation, we will
first discuss the basic percolation model as a model of technology adoption.

3.3.1 Phase transitions

Assume a simple case in which all agents have four nearest neighbours and that the neighbour-
hood relations are mutual. In terms of a graph, we assume a two-dimensional regular graph
(lattice). Further assume that agents have different preferences, uniformly distributed between
from 0 to 1, for the product in question. The behavioural rules are specified as follows: if an
agent gets informed about the existence of the new product, it evaluates whether the product’s
quality q is equal or above its preference. If so, it adopts and informs its four nearest neigh-
bours about the existence and quality of the product. If not, it does not adopt the product and
does not inform its four nearest neighbours.

One can easily understand that the share of agents that will adopt a new product of quality
q (a value between 0 and 1), is at most q because agents with a preference higher than q will
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never adopt. However, since the information about the product needs to percolate through the
network, there are conditions in which the actual share of agents adopting the product is lower
than q, because some agents may prefer the product, but are never informed about it. It turns
out that the critical value of q above which the share of agents adopting the technology equals
q, is q∗ 0.593 (for a lattice). Below this value, many agents, who would have adopted the
product provided that they knew about the product’s existence, do not adopt because they are
not informed about the product’s existence.

Solomon et al. (2000) developed an interesting extension of this model. They assume that
producers of a technology that is widely adopted (q > 0.593) have an incentive to lower the
quality (to save on costs). They also assume that consumers having consumed a product with a
certain quality will become more demanding in the future. A typical example of such dynamic
are movies where producers exploit successful movies by making cheaper sequels, whereas
consumers get more demanding as they learn to appreciate good movies. The authors show
that under certain conditions, the market automatically evolves to products and preferences
close to the critical threshold of 0.593 (a case of self-organisation). This model thus explains
why many cultural products are just below or above the critical threshold, and, thus, are almost
equally likely to become hits as to become flops.

A different application of percolation theory in the realm of technological innovation is the
model by Silverberg and Verspagen (2005). They start from a lattice, which is bounded in
the horizontal dimension, but unbounded in the vertical dimension. The horizontal dimension
stands for technology neighbourhood (in principle, one could replace this simple neighbour-
hood structure with a Hamming space as in NK-models). The horizontal dimension is also
anchored on a baseline with all technologies having zero performance (pre-technological age).
The vertical dimension stands for technological performance. Using this two-dimensional
space, one can model the dynamics of technological development using percolation principles.
At each moment in time, each lattice site is in one out of four possible states: 0 (technologically
impossible), 1 (possible but not yet discovered), 2 (discovered but not yet viable) and 3 (dis-
covered and viable). The share of sites with value 0, indicating impossible technologies, can
also be introduced as a parameter to tune the difficulty of search. Note here that the presence
of sites with value 0 comes close to the idea of valleys of low fitness in fitness landscape
models.

The central idea in the Silverberg–Verspagen model holds that a site turns from 2 into
3 if and only if there exists a contiguous path of cells in state 2 or 3 connecting it to the
baseline. Thus, a technology can become operational ‘when it can draw on an unbroken
chain of supporting technologies already in use’. Using the set-up, the dynamics of techno-
logical innovation can now be modelled as a local search process on the two-dimensional
lattice. Sites that are 0 will always remain 0, whereas sites that are 1 become 2 when they
are discovered by local search and become 3 when there exists a contiguous path of cells
in state 2 or 3 connecting it to the baseline. Because of the percolation properties of the
model, local search will occasionally produce avalanches of many sudden innovations, as
certain sites cause chain reactions of other sites becoming viable. In addition, because of the
neighbour topology between technologies, such an avalanche will typically involve related
technologies or a ‘cluster’ of technologies. These two properties, innovation avalanches in
time and in clustering in technology space, reproduce two stylised facts from long wave
research (Silverberg, 2003). In addition, the model provides an explanation for skewed dis-
tributions found in the citation impact of patents with only few patents getting almost all
citations and most patents being cited only seldom (Jaffe and Trajtenberg, 2002). The highly
cited patents would correspond to the sites that set in motion an avalanche of innovation in the
neighbourhood.
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3.3.2 Self-organised criticality

As it is the case for NK landscapes and network models, one can again distinguish between
percolation models with exogenous complexity and endogenous complexity. A model by
Plouraboue et al. (1998) can be regarded as an example of the use of endogenous complexity
in the context of technology adoption. They developed a model of technology adoption where
an agent’s neighbours affect the decisions of each agent. The endogenous component in the
model concerns the weights that an agent assigns to the decision of each of its neighbours.
These weights change over time according to past influence: a neighbour that successfully
influenced an individual to adopt a particular technology in the past, becomes a more important
neighbour in the future in terms of the weight assigned to this neighbour (as in neural network
models). The type of reinforcement learning is evolutionary in nature in that decisions are based
according the past experiences rather than strategic interaction, and decisions are myopic in
nature in that agents lack foresights of future payoffs.10

The important contribution of their model has been to show that a small number of agents
adopting the new technology will not lead to percolation of the technology throughout the
population. As the network evolves in terms of the weights each agent assigns to each neigh-
bour, a structure emerges spontaneously in which some agents heavily influence the decision
of its neighbours, which also influence their neighbours, etc. As a result, giving the new
technology to these ‘high-influence’ agents can then set in motion an avalanche of adoption
decisions, which lead to the percolation of the new technology throughout the population. The
endogenous formation of a network that is capable of efficiently distributing information is
an example of self-organised criticality in which the phase transition is not pre-determined
by a parameter setting, as in the standard percolation case, but emerges from the dynamics
of the network itself. Although this model deals with adoption and diffusion, rather than with
technological innovation, the principle underlying self-reinforcing criticality and avalanches
can also be applied to the domain, for example, in the context of technological paradigm shifts.

4 PROSPECTS AND CHALLENGE

Complexity theory can be regarded as an emerging paradigm for understanding the complex
dynamics underlying processes of technological innovation.11 Technology is a complex system
par excellence: technologies are complex systems made out of many interacting parts. In
addition, technological innovation is more often than not a collective process in which agents
are engaged in a process of mutual learning. The precise topology of the network inter-
actions between agents thus bears important implications for the efficiency and effectiveness
of collective learning processes.

Complexity models have the advantage of capturing more realistic features of the innovation
process, while avoiding the danger of over-parameterisation. Typically, complexity models
start from a specification with only one critical parameter (the K-parameter in NK-models,

10 Also known as neural networks (Plouraboue et al., 1998).
11 There have been important recent advances in the establishment of complexity science in the social sciences as a

field of scientific investigation.A number of complexity-minded journals started recently including free electronic jour-
nals like JASSS (http://jasss.soc.surrey.ac.uk/JASSS.html) and e-JEMED (http://beagle.u-bordeaux4.fr/jemed/).
Web portals are available on agent-based modelling (http://www.econ.iastate.edu/tesfatsi/atechevo.htm) and net-
works (http://www.econ.iastate.edu/tesfatsi/anetwork.htm). A simulation platform is available from SWARM
(http://www.swarm.org/). More specifically tailored to the community of evolutionary economics is a more recent
initiative called the Laboratory for Simulation Development (http://www.business.auc.dk/lsd/). See also Valente
and Andersen (2002).
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the q-parameter in percolation models or the p-parameter in network models). As analytical
solutions are more often than not impossible to obtain due to non-linearity and stochasticity,
a small number of parameters still allow one to understand a model’s behaviour well by
simulation. Complexity modelling should thus not be mistaken for complicated models with
many parameters and possible behaviours (Axelrod, 1997).

4.1 Research avenues

Applications of complexity theory to the topic of technological innovation lie in three ‘core’
approaches: fitness landscape models, complex network models and percolation models. Given
these core approaches, research avenues can be developed in at least four directions:

1. Applying core models on topics other than yet related to technological innovation. Promis-
ing new topics include economic geography (Arthur, 1990; Andersson et al., 2003; 2005),
evolutionary economics of demand (Cowan et al., 1997; Aversi et al., 1999), the evolution-
ary theory of the firm (Levinthal, 1997; Marengo et al., 2000), econometrics (Foster and
Wild, 1999; Foster, 2004), evolutionary macroeconomics (Llerena and Lorentz, 2004) and
environmental economics (van den Bergh, 2004).

2. Recombining the three core approaches. An example is a model in which agents search
a fitness landscape in a decentralised way with different agents responsible for design-
ing different parts of a technological system (Kauffman and Macready, 1995; Rivkin and
Siggelkow, 2003; Frenken and Valente, 2004) or a model in which agents form networks
while searching on complex fitness landscapes (Fagiolo et al., 2005). A possibility yet to
be explored is a model that addresses percolation in complex rather than nearest-neighbour
networks.

3. Recombining core models from complexity sciences with earlier evolutionary models of
industry dynamics (Nelson and Winter, 1982; Klepper, 1996). For example, one could use
a standard Nelson-and-Winter set-up and introduce an NK fitness landscape instead of the
traditional smooth search space in capital-labour space.

4. Empirical testing of core models. Confronting complexity models with empirical data,
however, can be done in more than one way. In some applications, hypotheses can be derived
deductively as outcomes of the model. For example, Fleming and Sorenson (2001) specified
hypotheses based on the NK-model regarding the success rate of patents with varying
degrees of complexity. In most instances, however, empirical validation of complexity
models follows a different methodology based on a model’s capacity to replicate stylised
facts. Some of the methodological issues related to empirical verification of complexity
models in more detail are discussed subsequently.

4.2 Empirical verification

A topic that deserves attention is the interplay between simulation modelling and empirical
research (Pyka and Fagiolo, 2005; Valente, 2005). There are many possible interfaces between
the two types of research ranging from calibration, to econometric hypothesis testing, to the
reproduction of stylised facts (typically done in evolutionary economics), to the improvement
of the empirical foundations for agents’ behaviour. Note that calibration also comes in at least
two forms: one can calibrate a model with initial conditions or one can calibrate parameters.
Also note that simulation models can be used for policy design as well: one can create an
artificial world in which policy experiments can take place to evaluate, for a large range of
behavioural rules, the effectiveness and robustness of new policy (e.g., anti-trust policies,
environmental policies, traffic rules, etc.).
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In complexity research scholars, most use empirical data in the form of ‘stylised facts’,
which are rather well-established empirical regularities found in many different industries,
countries, or periods in time and which require a theoretical explanation. Some examples
are skewed firm-size distributions, clustering of innovative activity in time and space, the
concentration of firms in particular regions etc. Complexity models are important tools to
understand the processes that give rise to such regularities. However, stylised facts are often
over identified: ‘the facts can be generated by a wide range of distinct models’ (Pumain, 2004,
p. 1). Scaling laws, for example, can be reproduced by many different models with more or less
equal accuracy. In such cases, one needs additional criteria to select among possible candidate
models. ‘It is essential to select specifications that integrate in the model a significant part of
the existing knowledge’ about the topic in question (Pumain, 2004, p. 1). A complementary
strategy is to build models with the intention to replicate multiple stylised facts in a single
model for a wide range or probable range of parameter values (e.g. Aversi et al., 1999; Fagiolo
et al., 2004). A ‘good’ model in this view in a model that performs well in the replication of
the largest number of stylised facts. In addition, when a new stylised fact becomes established,
one can then evaluate to what extent existing models are able to account for this new stylised
fact to evaluate the ‘robustness’ of models vis-à-vis new facts. We can head all these criteria
under the label of replication-of-stylised-facts (ROSF) criterion.

A second criterion often used by evolutionary economists to distinguish a ‘good’ model
from a ‘bad’ one is the realism of the assumptions (ROAS) that underlie the model (Mäki,
1994). In this view, modelling assumptions, such as behavioural ones, should not contradict
widely accepted empirical evidence about agents’behaviour. In this respect, simulation models
differ from neoclassical economics, in which the plausibility of assumptions is less important.
Most neoclassical economists adhere, implicitly or explicitly, an instrumentalist philosophy
of science advocated by Friedman (1953), according to which the prime quality criterion of
models is to predict accurately.

A third methodological quality criterion can be labelled KISS. The KISS principle stands for
‘Keep it Simple, Stupid’. This principle is primarily a modelling recommendation to start from
a simple model that can be well understood by simulation and/or through analytical solutions,
and only then develop the model in more specific directions.12 The KISS principle can also be
judged ex post to see whether a model adhered to the principle by asking oneself whether this
model is really the simplest model possible that is capable of producing the desired outcomes
(and given the criteria of ROSF and ROAS)? One may argue that, in principle, simpler models
with few parameters, are better amenable to be confronted with empirical data than more
complicated models, even though the latter are often motivated by the wish to capture more
aspects of reality.

A fourth criterion can be called TAPAS which stands for ‘Take A Previous model and Add
Something’. Put differently, incremental strategies in modelling are often most successful. As
for the KISS principle, the TAPAS principle is primarily meant as a modelling heuristic, yet it
can also be regarded as an ex post evaluation criterion. One would prefer a modelling approach
that builds on existing models and assumptions as to maximise diffusion and cumulativeness
of knowledge. Too often, models start from scratch with many ‘idiosyncratic’ elements, which
take a lot of time to construct and which are hard to communicate. In contrast, models that
extend existing ‘core models’ are faster to build and more easily understood by other people.
This should, of course, not be taken to mean that experimentation with new models is to be

12 The KISS principle has recently been challenged by the KIDS principle (Edmonds and Moss 2004), referring
to ‘Keep it Descriptive Stupid’. The KIDS approach simulates phenomena in the most straightforward way possible,
taking into account the widest possible range of evidence. Simplification is only applied when and if the model and
evidence justify this. In contrast, the Kiss principle advocates that one should start with the simplest possible model
and later extended in necessary.
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discouraged, but rather that one can take advantage of existing core models to formulate a new
robust model in a relatively short amount of time and with a larger degree of understanding by
others. The principles of KISS and TAPAS combined indeed suggest that an important part of
modelling should be devoted to building core KISS-type models that can be easily extended
along the TAPAS principle.
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