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Abstract— A novel cellular genetic algorithm is developed
to address the issues of good mate selection. This is accom-
plished through reinforcement learning where good mat-
ing individuals attract and poor mating individuals repel.
Adaptation of good mate choice occurs, thus, leading to
more efficient search. Results are presented for various test
cases.

I. Introduction

Cellular genetic algorithms (CGAs) were initially intro-
duced as a parallelized implementation of GAs that pro-
vided a more accurate model of evolution. In particular,
CGAs introduce the notion of a population topology in
which individuals can only interact in a local manner. As
implied by its name, CGA employs a cellular, typically
toroidal, topology. Mating and competition can only oc-
cur between individuals of adjacent cells, which leads to
restricted mating and competition. This is in direct con-
trast to canonical GAs that are randomly breeding with
no restrictions on possible mates. These randomly breed-
ing populations are known as panmictic populations. It
has been shown in both population genetics and evolu-
tionary computation theory that non-panmictic popula-
tions (i.e., restricted mating) have increased takeover times
when compared to equivalent panmictic populations. Thus,
CGAs are often more robust to premature convergence
than conventional GAs. Nonetheless, CGAs can still be
made to simulate natural evolutionary processes more real-
istically. Although restricting mating to local interactions
roughly approximates the topological structure of real pop-
ulations, there are additional behavioral aspects of mate se-
lection that can be implemented. In many instances, indi-
viduals are more likely to choose similar mates that should
produce more fit offspring. One approach to introducing
this concept is reinforcement learning of mate selection.

Here, reinforcement learning is implemented in the re-
production/selection phase of CGAs to emulate simple be-
havioral aspects of individuals in real populations. The
basic premise is to provide a mechanism that gravitates
individuals with good mating characteristics while simul-
taneously repelling individuals that produce non-viable off-
spring. Such a mechanism should ensure good mate selec-
tion characteristics, leading to segregation of population
members into somewhat isolated niches. Hence, it is be-
lieved that the addition of reinforcement learning will al-
low CGAs to more effectively handle multimodal searches
in which niching of the population is often necessary.

Prior to discussing reinforcement learning in CGAs, a
brief review of CGAs is provided. Subsequently, reinforce-
ment learning in CGAs is presented. Afterwards, results of

the modified CGA on a variety of test problems are shown.
The test problems cover a broad range of difficulties and
include simple unimodal search, more complex multimodal
search, and the one-dimensional Ising model, which has
been shown to require population niching [1]. For compar-
ison, a traditional CGA and canonical GA are also applied
to each test case. The paper concludes with a summary
and discussion of future work.

II. Cellular Genetic Algorithms

Cellular genetic algorithms, also known as fine-grained
and diffusion GAs, have an imposed structure on the types
of interactions that can occur between individuals. In most
cases, individuals occupy cells of a one or two-dimensional
toroidal grid. Typically, a radius parameter, ρ, describes
the neighborhood of interaction of each individual. For ex-
ample, ρ = 1 indicates that an individual can only mate
with an individual at most one cell away (i.e., an adjacent
cell). During reproduction, instead of choosing a mate at
random as in the canonical, panmictic case, each individ-
ual mates with the best performing individual within its
neighborhood. This approach has two benefits. Firstly, as
mentioned before, the non-panmictic structure leads to in-
creased takeover times that, in some instances, will reduce
the probability of premature convergence by maintaining
solution diversity. Secondly, the CGA framework lends it-
self directly to a parallel computing implementation. Much
literature is available on CGAs and the interested reader is
referred to a subset of early work found in [2]–[5].

III. Reinforcement Learning in CGAs

Restriction of mate selection to a local neighborhood can
be beneficial as seen by a variety of successful CGA appli-
cations. However, besides limiting mating to occur in a
local manner, one could also restrict mating to individuals
that will result in good offspring. By preventing matings
between incompatible individuals, the search can be made
more efficient. In most cases, a population niching ap-
proach is taken to achieve this type of mate selection [6]–[9].
No one has yet, to the authors’ knowledge, implemented
this type of mate selection in a CGA framework. In this
section, an approach for maintaining good mate selection
in CGAs is developed and presented.

Before continuing, it is important to define what is meant
by good mate selection. The idea here is either only to
allow matings between individuals that produce good off-
spring (i.e., having a fitness better than its parents’) or to
choose these matings with a much higher probability than
those matings that result in non-viable, or less fit, offspring.

0-7803-7282-4/02/$10.00 ©2002 IEEE



Thus, the problem is to determine which individuals have
good mating characteristics and to group these individuals
in such a manner that they choose one another as mates
with high probability (aka, niching).

The problem is solved in the following manner by in-
troducing reinforcement learning into CGAs. A steady-
state algorithm is used in which only a single individual
is replaced every generation. Reproduction occurs by first
selecting a single individual, p, then choosing its mating
partners, mi. Rather than choosing mates deterministi-
cally, typical of most CGAs, mates are selected stochasti-
cally. The location of each mating partner is determined
from a Gaussian random variable with zero mean and σ
variance. σ is chosen empricially to be 8% of the popula-
tion size. Since individuals are not allowed to mate with
themselves, the absolute distance is modified to be greater
than or equal to 1. This mating scheme ensures that, on
average, the most common mating partners will be the ad-
jacent cells. Moreover, individuals closer to p have a higher
probability of being chosen as a mate. In order to take ad-
vantage of this selection scheme, some mechanism for ag-
gregating individuals with good mating characteristics is
required. Conversely, one could disperse individuals with
poor mating characteristics to achieve similar niching of
the population.

A simple approach is taken in which mates with good
offspring are rewarded by moving them closer to p. At
the same time, mates with poor offspring are punished by
moving them away from p. One option for achieving this
type of reinforcement learning is to evaluate the offspring
of an individual and move it closer to p if the offspring
is better than both parents, further from p if it is worse
than both parents, or nowhere if it is better than just one
parent. Two potential difficulties of this approach are how
to determine the magnitude of the move and how to prevent
the displacement of previously well adapted individuals. A
tournament like system is developed to circumvent these
problems.

Two or more mates are selected using the previously de-
scribed mechanism. The locations of each mate are placed
in an array, D, and sorted according to their Manhattan
distance from p. The mates are subsequently relocated
along D according to their offsprings’ fitness values. So, for
example, the mate with the best offspring will be moved to
the closest location in D, the worst to the furthest location
in D, etc. Hence, it is expected that good mating com-
binations will tend to gravitate together and poor mating
combinations will tend to repel one another.

Figure 1 illustrates the reinforcement learning mecha-
nism for the case of two mates. First, a parent is chosen,
as indicated, then two mates are chosen randomly from a
Gaussian centered around the parent’s location. In this
case, Mate 1 is further away from the Parent than Mate 2.
After crossover, the offspring are evaluated and it is seen
that the offspring of Mate 1, Offspring 1, has the highest
fitness. So, since Mate 1 produced a better offspring than
Mate 2, it should be moved closer to Parent. This is ac-
complished by swapping the positions of Mate 1 and Mate

2 as shown. Finally, due to its good fitness value, Offspring
1 replaces Parent in the next generation.

Fig. 1. Diagram of RLCGA in action.

IV. GA Details

Three different GAs are used to determine the utility
of reinforcement learning CGAs (RLCGAs in the sequel).
These are the just developed RLCGA, a standard CGA,
and a canonical, panmictic GA (henceforth referred to as
PGA). To ensure commensurate results, all three GAs have
the following characteristics. Chromosomes encode solu-
tions as bit strings. Mutation is the standard bit flip op-
eration and crossover is of the two point variety. Muta-
tion probability is fixed at 1/# bits and crossover prob-
ability is fixed at 1. Population size is set to 250. For
both RLCGA and CGA, the populations are embedded in
one-dimensional rings. A steady-state reproduction mech-
anism is adopted in which a single individual is replaced
every generation. The interested reader is referred to [10]
for more information on steady-state GAs. A more detailed
description of each GA follows.

The reinforcement learning CGA has N = 2, i.e. two
mates are selected each generation. The offspring are eval-
uated and the mates are re-sorted as described previously.
An elitist approach is taken in which the best offspring sur-
vives to the next generation only if its fitness is better than
p’s. If this is the case, the offspring replaces p.

A steady-state CGA is developed for comparison with
the RLCGA. The neighborhood radius of the CGA is 1, so
individuals can only mate with their nearest neighbors. To
keep the number of fitness evaluations per generation com-
mensurate with the RLCGA implementation, both neigh-
bors are mated with p and the best offspring replaces p if
its fitness is greater than p’s.

The PGA is the canonical GA implementation with un-
restricted mating partners that are chosen uniformly at
random from the entire population. Again, to keep fit-
ness evaluations per generation commensurate, two mates
per parent are chosen and elitist selection of offspring is
maintained.

V. Test Problems

Three problems are used to test RLCGA and to deter-
mine whether the hypothesis of improved performance in
environments requiring niching is true.
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The first function is a simple unimodal function as shown
in Figure 2. The function can be written as

y = G(50)

where G(µ) is the Gaussian with µ mean and a variance of
12. For all the GAs, chromosomes are 25 bits in length and
are decoded into the range 0–100. This function serves as
a quick gauge of RLCGA effectiveness.
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Fig. 2. Test function 1: unimodal function.

The second test function is a multimodal function com-
posed of Gaussians similar to those found in the first test
function. This function is shown in Figure 3 and is similar
to Beasley’s F2 function [7]. Like the first test function,
chromosomes are 25 bits long and are decoded into the
range 0–100. Due to the multimodal nature of this func-
tion, if the RLCGA can take appropriate advantage of its
mate selection, it should perform better than both CGA
and PGA. The function can be written as

y = G(10) + .9G(30) + .75G(50) + .6G(70) + .5G(90)

where the notation is the same as for the first test function.
The third problem is the one-dimensional Ising model as

found in [11]. Van Hoyweghen showed that niching was
required to find one of the globally optimal solutions of
the Ising model [1]. The one-dimensional Ising model is a
nearest-neighbor interaction function and can be written
as

f : {0, 1}l → IR : x 7→
l∑

i=1

δ(xi, xi+1)

where l is the length of the bit string, xl+1 ≡ x1, and

δ(xi, xj) =
{

1 if xi = xj ;
−1 otherwise.

The two global optima of the one-dimensional Ising model
are a string of either all zeroes or all ones. It has spin-flip
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Fig. 3. Test function 2: multimodal.

symmetry (i.e., if each bit is flipped the fitness remains the
same) that makes it a difficult problem for conventional
GAs without niching. A 100 bit Ising model is used in this
paper.

VI. Results and Discussion

For each test problem, both the steady-state CGA and
RLCGA were run 200 times to obtain statistically signifi-
cant results. Additionally, results for a canonical, panmic-
tic, steady-state GA (PGA) are presented for comparison.

Table I shows the number of generations required to find
the optimum for the unimodal test function. It is appar-
ent that RLCGA outperforms the CGA even when tak-
ing into account the modest standard deviations. Not sur-
prisingly, because niching is unnecessary for the unimodal
test function, PGA outperforms both of the cellular imple-
mentations; though the performance gain over RLCGA is
marginal.

Mean σ Min Median Max
CGA 808.7 363.0 14 809.5 1719
PGA 564.6 242.8 5 592.5 1158

RLCGA 643.3 252.7 4 658 1217

TABLE I

Generations to convergence for test function 1.

Table II shows the number of generations required to find
the optimum for the multimodal test function. The mean
time to convergence for all implementations is greater than
that for the unimodal case, providing evidence of the more
deceptive behavior of the search space. However, PGA
convergence time does not rise as much as those for RL-
CGA and CGA. Moreover, PGA significantly outperforms
both RLCGA and CGA. These two observations seem to
indicate that the need for niching in the multimodal test
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problem is not a requisite. Nevertheless, the performance
of RLCGA compared to CGA indicates that RLCGA is
a promising alternative to CGA. The Ising model results
should shed more light on the utility of RLCGA in niching
environments.

Mean σ Min Median Max
CGA 1504.5 925.9 21 1359.5 6040
PGA 622.7 291.7 10 624.5 1388

RLCGA 844.7 453.0 9 789.5 2658

TABLE II

Generations to convergence for test function 2.

As mentioned previously, the Ising model has been shown
to require niching for efficient solving [1]. Since convergence
to one of the global optima often required more than 20,000
generations, an arbitrary cutoff point of 7,500 generations
was chosen to compare convergence characteristics of the
disparate GA implementations. Table III shows the best
fitnesses at the 7,500th generation for each GA implemen-
tation. RLCGA outperforms the other GAs, but does not
seem to significantly outperform PGA. This is somewhat
troubling because it implies that RLCGA, even in a search
that has provable niching requirements, is only slightly bet-
ter than a canonical PGA. Figures 4 and 5 show the ac-
tual distribution of fitnesses for PGA and RLCGA runs
on the Ising model. These figures indicate that RLCGA
is clearly superior to PGA. However, in studying the Ising
model, Van Hoyweghen showed that if the population size
was large enough, then a canonical panmictic GA can find
an optimal solution to the Ising model in a similar amount
of time as a niching GA [1]. This is a result of the ability of
large populations to maintain solution diversity. So, an ex-
tra set of experiments was run with a considerably smaller
population size of 100. The results of these experiments
are shown in Table IV.

The RLCGA with reduced population size exceeds the
performance of the other two GA implementations. As ex-
pected, PGA performs much worse with the reduced pop-
ulation size as a result of the inability to maintain solution
diversity. These results imply that RLCGA is able to ef-
fectively manipulate mate selection to form good niching
characteristics.

Interestingly, the performance of the CGA drastically
improves when the population size is reduced from 250 to
100. This is most likely a manifestation of the exploitation
versus exploration trade-off in which, with excessively large
populations, the steady-state CGA is unable to converge
quickly because of a prediliction for exploration. With
the smaller population, a more comfortable balance be-
tween exploitation and exploration can be struck, leading
to greatly improved performance.

VII. Conclusion

A novel cellular genetic algorithm is developed in this
paper to more clearly address the issues of mate selection.

Mean σ Min Median Max
CGA 77.2 3.1 68 76 88
PGA 90.8 3.2 80 92 100

RLCGA 93.2 2.5 88 92 100

TABLE III

Fitness after 7500 generations for the Ising model.

Population size 250.

Mean σ Min Median Max
CGA 90.8 3.0 84 92 96
PGA 85.0 4.2 72 84 96

RLCGA 91.9 3.3 80 92 100

TABLE IV

Fitness after 7500 generations for the Ising model.

Population size 100.

This is accomplished by using a reinforcement learning al-
gorithm to attract individuals with good mating character-
istics while simultaneously repelling individuals with poor
mating characteristics. Initial results are promising, as the
reinforcement learning cellular genetic algorithm outper-
forms standard GA implementations on the Ising model,
which has been shown to require niching [1]. Furthermore,
RLCGA converges more quickly than a standard, albeit
steady-state, CGA in all of the test cases. This indicates
that RLCGA may be a good alternative to CGA in a vari-
ety of applications.

Nonetheless, much work remains to be done, particularly
with application of RLCGA to more challenging, real-world
problems. Also of interest are population sizing studies
to determine the optimal settings for RLCGA, if they ex-
ist. Furthermore, the behavior of the RLCGA paradigm
in more complex topologies (i.e., two-dimensional toroidal
grids) needs to be studied. The effects of increasing the
number of mates would also be of great intellectual inter-
est.
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