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Abstract - This paper discusses optimization of
functions with uncertainty by means of Genetic Al-
gorithms (GAs). In practical application of such
GAs, possible number of fitness evaluation is quite
limited. The authors have proposed a GA utilizing
history of search (Memory-based Fitness Evaluation
GA: MFEGA) so as to reduce the number of fitness
evaluation for such applications of GAs. However, it
is also found that the MFEGA faces difficulty when
the optimum resides outside of the region where pop-
ulation covers because the MFEGA uses the history
of search for estimation of fitness values. In this pa-
per, the authors propose the tested-MFEGA, an ex-
tension of the MFEGA that tests validity of the esti-
mated fitness value so as to overcome aforesaid prob-
lem. Numerical experiments show that the proposed
method outperforms a conventional GA of sampling
fitness values several times even when the original
MFEGA fails.

I. Introduction

On-line optimization attracts attention as a means of
the system optimization in the real world. However,
there exist some difficulties in on-line optimization. That
is, (1) uncertainty of evaluation value, (2) limitation of
number of evaluation, (3) avoidance of extreme and dan-
gerous trials. Moreover, optimization through computer
simulation using random numbers also attract attention
as another technique for optimization of a complicated
real problem. This method shares similar difficulties (1)
and (2) with on-line optimization.
The genetic algorithms (GAs) are applied to various

optimization problems because of their broad applicabil-
ity, including optimization of the function accompanied
by uncertainty [1 - 4, 6, 8 - 10].
However if the usual GAs are applied to optimization

of fitness function accompanied by uncertainty, they face
problems of slow and unreliable convergence. Hence, for-
mulation of a problem that takes the system optimization
in the real world into consideration, and construction of
optimization techniques that have a good performance to
this problem are required.

Considering practical requirement of limitation on
number of fitness evaluations, we have proposed the
Memory-based Fitness Estimation GA: (MFEGA) a ge-
netic algorithm that reduces uncertainty by estimating
the fitness value with reference to the search history, and
performs more efficient and exact optimization [9][10].
However, since the MFEGA uses the information ac-
quired in the past, MFEGA faces a difficulty of prema-
ture convergence when the optimal solution locates the
outside of the region that population covers.
The cause of such premature convergence is that an

individual locating outside of region which population
covers is not selected properly because estimation of its
fitness value is inaccurate. In order to choose such in-
dividual properly, to use the sample fitness value of the
individual is rather effective than to use the estimated
fitness because the sample value may be more accurate
than the estimated value. In this paper, taking the above
point into consideration, we proposed a method of search
using the sampled value instead of the estimated value
when the between these two values is larger than a cer-
tain threshold.
This paper is organized as follows. Section 2 gives

mathematical definitions and discusses some conven-
tional methods for optimization of noisy fitness functions.
Section 3 states a drawback of MFEGA and describes a
new algorithm we propose. Section 4 shows the results
of computer simulations. Section 5 concludes this study
and suggests some perspectives.

II. Optimization of Noisy Fitness Functions

A. Formulation of Problem

In online optimization of real systems, the following three
points should be taken into consideration.

(1) Some uncertainty exists in the system.
(2) The number of fitness evaluation is restricted.
(3) Trial of extreme solution candidates should be
avoided.
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Also, in applications of GAs to optimization of system
through large-scale computer simulation using random
numbers, we have to take points (1) and (2) into con-
sideration. As for uncertainty of the system, it is cat-
egorized into the following three cases, 1) an uncertain
change invades into the input to a system, 2) an uncer-
tain fluctuation is involved in the observable output, and
3) system itself or its environment changes. In this pa-
per, we consider the case 2) where an uncertain change
follows on the output. GAs for search of robust solution
based on the formulation of case 1) in also discussed [5],
which is closely related the issue treated in this paper.
The problem is formulated as follows:

min
x∈R

〈F (x)〉, (1)

F (x) = f(x) + δ (2)

where R represent the search space, f and F are fit-
ness function and its observation. In the following, we
consider the search space R is continuous. δ is additive
random fluctuation whose mean is zero, and 〈〉 represents
expectation over δ. We call f(x) ‘the true fitness value’,
and F (x) ‘the sampled fitness value’, respectively.

B. Genetic Algorithms for Noisy Fitness Functions

In optimization of noisy fitness function with usual GAs,
a problematic situation occurs. That is, a good solu-
tion may not necessarily be survivor of selection since
it is evaluated by a sampled fitness value. Hence, we
need some devices of reducing influence of fluctuation for
optimization of noisy fitness function. Further, from the
viewpoint of practical use, limitation of number of fitness
evaluation should be also considered.
The following techniques have been proposed as ap-

proaches to this problem.

B.1 Using Mean of Several Samples for Each Individual

Fitzpatrick et al. have proposed the method that sam-
ples fitness value two or more times from the same indi-
vidual, and uses the average value as an estimated fitness
value [2]. It reduces the variance of fitness values with-
out particular additional assumption, and more accurate
search is achieved. However, in practical usage of GAs,
such the method is not a desirable because it requires
larger samples.
Branke has proposed a method that only the best in-

dividual is evaluated by the average of several samples
of fitness [3]. With this method, evaluations of unimpor-
tant solution are reduced. Stagge has used a technique
in which the number of samples is decided using t-test

so as to confirm significance of good solution [4]. How-
ever, even with these techniques, basically large number
of samples are required.

B.2 Referring to the Sample Value of Other Individuals

Tanooka et al. have used a method of referring to par-
ent’s sampled fitness values for search of the robust opti-
mal solution [5]. This technique can raise the accuracy of
a solution without increasing the number of evaluation.
However, since an individual with the apparently good
fitness survives by selection, there is a problem that bias
due to selection is included in the estimated value. More-
over, Branke has also proposed the technique of referring
to the sampled fitness values of the individuals which are
near the point of interest in the current and previous gen-
erations [3]. However, since referred samples are small in
number, there is a problem that sufficient accuracy is not
attained.

B.3 Using a Threshold Value

Markon et al. have proposed a technique that individ-
ual is not replaced unless the sampled fitness value of a
child is less than parent’s sampled values by the width
beyond a threshold [8]. With this technique, failure of
preservation of the best solution in the search can be
reduced. If sufficiently many numbers of sampling is al-
lowed, it is proved that this technique always finds the
optimal solution for the sphere fitness function. How-
ever, this method dose not pay attention to restriction of
possible fitness evaluation in practical applications.

B.4 Memory Based Fitness Estimation GA

Considering difficulties of other techniques in practical
applications having severe limitation of available num-
ber of fitness evaluation, we have proposed the Memory-
based Fitness Evaluation GA (MFEGA) [9]. MFEGA
estimates the true fitness value using a search history.
The composition of MFEGA is as follows.

1. A stochastic model about the uncertainty of the fit-
ness function is introduced. (See Appendix I).

2. The sampled value of fitness value are acquired dur-
ing search, and stored as the search history.

3. Fitness of an individual is estimated by a statisti-
cal technique referring the search history. (See Ap-
pendix II and III)

III. Problem of Using a Search History, and
Proposal of tested-MFEGA

A. Drawback of MFEGA

Estimation technique used in the MFEGA assumes that
points of interest locates inside the region covered by the
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individual in the history. If points of interest, i.e., can-
didates for further search, locate outside the region, esti-
mation used in MFEGA may become harmful, and cause
some premature convergence due to poor estimation of
fitness value of good solution outside the region.
In this paper, we assume that the variance of a noise

contained in the observable fitness value is constant in
the search space. Therefore, in the place where estima-
tion error becomes large rather than a noise, we should
use rather the sample values itself than the estimation.
In this paper, we propose the following method. If there
is sufficient difference between the sample values, we re-
move bad sampled individuals from the candidate of se-
lection.
Let yi, i ∈ {1, 2, · · · , F } be family individuals those

are candidates of selection, let F (yi) be sample values
of yi and let yBest = argminy

i
F (yi) be the best indi-

vidual in the family. We divide the family into Y Accept

and Y Reject by the following rule before selection by the
estimated value.


If F (yi)− F (yBest) < Z
then Y Accept = Y Accept ∪ yi

Else Y Reject = Y Reject ∪ yi

(3)

where Z is a threshold value using the view of Z-test,
Y accept are candidates for selection and Y reject are not.
As for the value of Z, we use the value which makes

probability of error of the first kind be 0.3 or less by
Z-test. We determined this level by preliminary exper-
iment. In practical application of on-line optimization
of the system, generally some preliminary experiment to
determine this value will be possible. This technique is
called the tested-MFEGA.

B. Algorithm of the tested-MFEGA

The fitness estimation method used in MFEGA can be
combined with any type of crossovers and generation al-
ternation models since it is independent of crossovers and
generation alternation models. We use the UNDX for
crossover proposed by Ono [6] and the generation alter-
nation model replacing an individual partially.
The algorithm of the tested-MFEGA is as follows.

1. Initialize the population ofM individuals x1, ..., xM

randomly.
2. Let evaluation counter e = 0. Set the maximal num-
ber of evaluations to E.

3. Let history H = ∅.
4. Choose two individuals xp1 and xp2 from the pop-
ulation and let them be family individuals y1, y2.

5. Produce C children y2+i, i = 1, 2, · · ·C by applying
the crossover to the parents y1 and y2.

6. Sample fitness values F (yi) for i = 1, ..., C+ 2.
7. Let e = e+C + 2.
8. Store the sampled values into the history H , i.e.,

H = H ∪ {(yi, F (yi))|i = 1, ..., C+ 2}.
9. Select the individual hmin having the smallest sam-
pled fitness value from H .

10. Estimate k′ by maximization of Eq. (13) in Ap-
pendix III using hmin.

11. Obtain estimation of the fitness values f̃(yi) by
Eq. (12) shown in Appendix II.

12. Let Y Reject = ∅ and Y Accept = ∅ and divide yi

into Y Accept and Y Reject by rule (3).
13. Substitute the parents individuals xp1 and xp2

with individual having two smallest f̃(yi) in
Y Accept.

14. If e ≤ E, go to Step 4, otherwise terminate the
algorithm.

IV. Experiment

A. Basic Behaviors of MFEGA and tested-MFEGA

First, we compare the basic performances of the MFEGA
and the tested-MFEGA with other conventional GAs.
We used the following fitness function:

FSphere(x) =
D∑

i=1

x2
i + δ (4)

δ ∼ N(0, σ2
N) (5)

where D is the dimension of search space, and δ is an
additive noise following the normal distribution with zero
mean and variance of σ2

N .
The following four algorithms are compared.

• MFEGA
• tested-MFEGA
• Standard GA: A GA using a single fitness sample
value for evaluation of each individual.

• Sample 10-GA: A GA using the mean of 10 fitness
value samples for evaluation of each individual.

So as to provide reference performance where a noise is
not contained, the result using Standard GA for fitness
function without noise is also shown as Noiseless GA.
In this paper, we used the UNDX for crossover in all

GAs and the generation alternation model replacing an
individual partially. Since the search ability of the UNDX
is sufficiently high, we didn’t employ mutation. Condi-
tions of experiments are shown in Table 1. The number
of fitness evaluation E is decided considering a practical
application of on-line adaptation [10].
For each method, 20 trials are performed, and we com-

pared the studied methods by the mean of the following
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TABLE I

Conditions of Experiment

Generation Size G = 100 (E = 700)
Population Size P = 30
Children Size C = 5
Dimension D = 10
Range of Initial Population [ −r/2 : r/2] r = 1.0
Variance of Noise σ2

N= 1.0

value.

fBest =




f(arg miny F (y));
for Standard GA and Noiseless GA

f(arg miny f̃(y));
for Sample 10-GA,
tested-MFEGA and MFEGA

Figure 1 shows evolution of the means of 20 trials of
the performance index fBest. For Standard GA, fBest is
improved until around 1000 evaluations, but it stagnated
around 0.2 after. The convergence of Sample 10-GA is
very slow while steady improvement continued. Contrary
to this, the MFEGA converges quickly and finds more ac-
curate solutions than the other two methods. As for the
tested-MFEGA, although its convergence speed from 400
evaluations to 1000 evaluations is inferior to the MFEGA,
it is quite high as compared with the Standard GA and
the Sample 10-GA. Moreover, the tested-MFEGA shows
steady improvement even after 1000 evaluation while the
search of the MFEGA stagnates. Finally, more accu-
rate solution is found by the tested-MFEGA than the
MFEGA.
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Fig. 1. Search precision for FSphere

B. Influence of Offset of the Optimum

The MFEGA estimates a fitness value as a weighted sum
of the sampled fitness values in the search history. There-

fore estimation will be poor for the point outside the re-
gion that covered by the history, and the performance of
the MFEGA will be degraded. In this section, we show
the degradation of the performance for optimization of
fitness function whose optimal value has some offset:

FOffset(x) =
D∑
i

(xi − o)2 + δ (6)

δ ∼ N(0, σ2
N) (7)

where o ∈ {0.3, 0.5, 0.7, 1.0, 1.3} is a parameter of offset.
When o = 0.3, the optimum resides inside of region cov-
ered by the initial populationwhen o = 0.7 ∼ 1.3 the
optimum resides outside, and o = 0.5, it locates at the
boundary.
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Fig. 2 is the search performance with o = 0.5. The
Sample 10-GA shows convergence like previous experi-
ment. The MFEGA achieves quick convergence up to
1000 evaluation. However stagnation is shown afterward.
On the other hand the Standard GA achieves continuous
improvement, and finally it outperforms the MFEGA.
As for the tested-MFEGA, although convergence speed
in early stages of search is slower than the MFEGA, the
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tested-MFEGA shows always better performance than
the Standard GA. After 900 evaluations, it outperforms
the MFEGA.
Fig. 3 shows the result with o = 1.0. The perfor-

mance of the Sample 10-GA is quite poor also in this
case. The MFEGA converges in early stage. The perfor-
mance of the tested-MFEGA is almost same with that of
the Standard GA. This is because almost all the samples
are rejected by the Z-test.
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Fig. 4. Comparison of a search performance

Fig. 4 shows the comparison of performance fBest of all
the methods against to the parameter o. The difference
of the performance between each method and that of
Standard GA is plotted. It is shown that the Sample
10-GA is always the worst. The MFEGA is the best
method for o = 0.3 and 0.5, and it is outperformed by the
Standard GA for o = 0.7, 1.0, 1.3. Performance of tested-
MFEGA shows good performance for all the parameter
values.
From these results, we can confirm that tested-

MFEGA shows robustness in search ability.

V. Conclusion

The Memory-based Fitness Evaluation GA (MFEGA)
proposed by the authors is a genetic algorithm for opti-
mization of noisy fitness function considering limitation
of number of fitness evaluation in practical applications.
While the MFEGA shows good performance in general,
it is also observed that the MFEGA shows some prema-
ture convergence due to poor estimation of fitness value.
This paper discusses a typical situation of such phenom-
ena, and propose an improved method called the tested-
MFEGA. Numerical simulation shows that the tested-
MFEGA works well even in the situation where the orig-
inal MFEGA faces difficulties.
Our subjects of future study are development for the

technique of further improvement of convergence of the
MFEGA, and to show effectiveness of the tested-MFEGA

in practical problems. Development of a genetic algo-
rithm for optimization of fitness function using the search
history for the problem of optimum changes randomly is
another line of future study [11].
Finally, the authors would like to acknowledge helpful

discussions by Prof. Shigenobu Kobayasi of Tokyo Insti-
tute of Technology and Mr. Jürgen Branke of University
of Karlsruhe.
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Appendix

I. Stochastic Model of Fitness Functions

The MFEGA has adopted a simple stochastic model
that fitness values of individuals distribute randomly
around the fitness value of the individual of interest, and
have assumed that the variance of the fitness value de-
pends only on the distance from the individual of inter-
est. Let x be an individual we want to estimate its fitness
value, and let h be an individual in the history of search,
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whose distance from x is d and sampled fitness value is
F (h). We assume the following model:

f(h) ∼ N(f(x), kd) (8)
F (h) = f(h) + δ ∼ N(f(x), kd+ σ2) (9)

where f(h) is the true fitness of individual x, and k is
a positive parameter. The additive noise δ is assumed
to follow N(0, σ2). As shown in Fig.5, Eqs. (8) and
(9) mean that the true fitness f(h) distributed randomly
around the f(x) following normal distribution of a vari-
ance proportional to the distance d, and hence observa-
tion of the fitness F (h) follows the normal distribution of
a variance kd + σ2 considering the additive observation
noise.

F(h)

F(x)

x
d

kd kd+σ

h
2

Fig. 5. A Stochustic Model of Fitness Functions

II. Estimation of Fitness by the Maximum
Likelihood Method

If the parameters k and σ2 in Eqs. (8) and (9) are
known in advance, the fitness value f(x) can be es-
timated by the maximum likelihood method using the
search history based on the above model. Let hl, l =
1, ..., H be the H individuals in the search history and
F (hl) and dl, l = 1, 2, ..., H be their sampled fitness val-
ues and distances from the individual of interest x, re-
spectively. The probability of obtaining F (h1), ..., F (hH)
is represented by

H∏
l=1

p(F (hl), dl) (10)

where p(F (hl), dl) is the probability density function of
F (hl) given by the normal distribution:

p(F (hl), dl)

=
1√

2π(kdl + σ2)
exp

(
−1
2
(F (hl)− f(x))2

kdl + σ2

)
(11)

Treating Eq. (10) as the likelihood w.r.t. f(x), esti-
mation of f(x), say f̃(x), can be obtained by maximizing

Eq. (10) for f(x) as a weighted average of the sampled
fitness values:

f̃(x) =

H∑
l=1

F (hl)
k′dl + 1

H∑
l=1

1
k′dl + 1

=

F (x) +
H∑

l=2

1
k′dl + 1

F (hl)

1 +
H∑

l=2

1
k′dl + 1

(12)

where k′ = k/σ2.

III. Estimation of the Model Parameters

In actual situation, the parameters k (or k′) and σ2 in
the Eq. (12) of MFEGA are unknown in advance, and
it is needed to estimate these parameters. We employ
the maximum likelihood technique for estimation of k′ .
Taking Eq. (10) as the likelihood of the parameters k′,
and a logarithm likelihood of the parameters is calculated
from Eq. (10) as follows:

logL = −1
2

(
H log 2π +

H∑
l=1

log σ2(k′dl + 1)

+
H∑
l

(F (hl)− f(x))2

σ2(k′dl + 1)

)
(13)

Differentiating logL by σ2, we obtain the following equa-
tion.

∂

∂σ2
logL = −1

2

(
H

σ2
−

H∑
l=1

(F (hl) − f(x))2

σ4(k′dl + 1)

)
(14)

Let the RHS of Eq. (14) be 0 and solving it for σ2, the
optimal σ2 is represented as follows:

σ2 =
H∑

l=1

(F (hl)− f(x))2

H(k′dl + 1)
(15)

Substituting σ2 in Eq. (13) with Eq. (15), the logarithm
likelihood of k′ is obtained. Since this equation includes
unknown variables f(x) and dl, we set x at the indi-
vidual having the minimum sampled fitness considering
that the usage of the model is optimization of f(x). The
fitness value of f(x) is simply estimated by the average
of the sampled fitness values of five individuals near by.
Distance dl is easily calculated if x is decided. For maxi-
mization of the likelihood, a numerical hill climb method
w.r.t. the logarithm of k′ is used, considering positive-
ness of k′
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