
Run Transferable Libraries — Learning
Functional Bias in Problem Domains

Maarten Keijzer1, Conor Ryan2, and Mike Cattolico3

1 Prognosys, Utrecht, The Netherlands mkeijzer@xs4all.nl
2 University of Limerick, Ireland conor.ryan@ul.ie

3 Tiger Mountain Scientific Inc., Kirkland, WA USA mike@tigerscience.com

Abstract. This paper introduces the notion of Run Transferable Li-
braries, a mechanism to pass knowledge acquired in one GP run to an-
other. We demonstrate that a system using these libraries can solve a
selection of standard benchmarks considerably more quickly than GP
with ADFs by building knowledge about a problem. Further, we demon-
strate that a GP system with these libraries can scale much better than
a standard ADF GP system when trained initially on simpler versions
of difficult problems.

1 Introduction

This paper introduces the concept of Run Transferable Libraries (RTLs) that
overturns the traditional notion of independent runs in GP. Instead of executing
a large number of independent runs, in each of which GP attempts to solve a
problem or learn a target function from scratch, a system using RTL accumulates
information from run to run, learning more about the problem area each time
it gets applied. The method is partly inspired by the use of libraries in conven-
tional programming, where they are used to capture common functionality for a
certain domain of functionality. Similarly, an RTL enabled search method uses
libraries that provide functionality that is valid in problem domains. However,
unlike standard programming libraries which tend to be static, RTL enabled
search methods evolve their libraries over time and update them based on past
experience. It is thought that by using Run Transferable Libraries it is possible
for a search strategy such as GP to become competent in solving more difficult
problems than can be tackled currently.

This approach can have major implications for the scalability of a system.
Not only is it possible for an RTL to learn from run to run on a single problem
instance, becoming more adept at solving the problem at hand, it can also be
trained on “simple” problem instances, in order to tackle more difficult problems
later on. A third use of RTLs is to train a library to become competent in a
problem domain where initial runs are unsuccessful, tackling same complexity
problems with more and more success as the RTL enabled system becomes more
experienced. In effect, by training a library on different problem instances, we
hope to learn the underlying bias that makes the set of problems a coherent

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 531–542, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

532 M. Keijzer, C. Ryan, and M. Cattolico

whole (a problem domain). The bias that an RTL method tries to learn is of a
functional nature, a set of functions that help in solving related problems faster.
It is hypothesised that to do this an RTL approach needs to have:

– the ability to learn to tackle a difficult problem by using information gathered
from previous, possibly unsuccessful attempts;

– the ability to apply information learned from a simple instance of a problem
set to a more difficult instance;

– the ability to learn how to efficiently solve problems taken from the same
problem domain.

We demonstrate that the current implementation of RTL, our system
Mnemosyne1, can, even when applied to a single instance of problems such as
4- and 5- parity and a small version of the Lawnmower problem, learn about
the problem so quickly that it outperforms GP (with ADFs enabled) in terms
of computational effort, especially on larger versions of the problem. It is also
demonstrated that we can unbias an initial function set used for logical functions
by training on randomly generated instances of logical functions. When apply-
ing a library trained in such a way to the parity problem, it shows a decrease in
computational effort, albeit not so large as when the library is trained on parity
problems themselves.

2 Scaling and Problem Domains in GP

Traditionally, AI has been divided into two fundamentally different approaches,
strong and weak. Strong AI usually involves capturing as much prior knowledge
as possible about a problem before attempting to solve it, while Weak AI is
concerned with the application of more general methods that can be used across
a wide spread of problems. This is possible because Weak AI methods do not
require prior knowledge of a problem.

GP (and Evolutionary Computation in general) has been described as a
strong-weak method [2] because of the way in which populations capture per-
tinent information about a problem and recombine it to produce more useful
solutions. The typical dynamic for an EC run is that the population starts out
with very poor performing individuals, and slowly accumulates knowledge about
the problem until a satisfactory solution is found.

Most applications of EC involve independent runs; that is, all the knowledge
accumulated by each run is discarded once it terminates. Furthermore, when one
attempts to apply GP to a more difficult problem, even a more difficult instance
of a problem already solved, all the effort spent in previous runs is lost, and
the system must start from scratch again, which has lead to concerns about the
scaling abilities of GP.

Another approach to the scaling issue is to exploit the inherent modularity
present in many problems, through the use of Automatically Defined Functions
1 Mnemosyne is the mother of the Muses. She is the personification of Memory.

Run Transferable Libraries — Learning Functional Bias in Problem Domains 533

(ADFs) [5] or some similar structures that permit GP to decompose the problem.
The following are examples are some of the more successful attempts to improve
the scaling abilities of GP using one of these methods.

ADFs. Automatically Defined Functions were introduced by Koza [5] ostensibly
as a method for decomposing problems. ADFs are essentially local functions that
individuals can call, which are also subject to evolution.

Prior to running ADF GP, one typically chooses the number of ADFs each
individual has, as well as their arity. Thus, each individual is made up of a result
producing branch (RPB) which is essentially a main program, and one or more
ADFs, each of which can be called by the RPBs.

Koza showed that, on decomposable problems, using ADFs appropriate for
the problem significantly improved the performance of GP. Indeed, while the
choice of number and structure of the ADFs effects the performance of the sys-
tem, Koza showed that, on these problems, using any kind of ADF yielded better
performance than without. Furthermore, it is possible to evolve the number and
arity of ADFs, although this can lead to considerably longer evolution times.

GLib. Another approach to the exploitation of modularity is Angeline’s [1]
Genetic Library Builder (GLiB). Unlike ADFs, GLiB relies upon subroutines as
its modularity mechanism. Subroutines in GLiB are referred to as modules.

Modules are created dynamically during a run, through the use of a compres-
sion mutation operator. Compression is probabilistically applied to a sub-tree
of an individual, and compresses it into a module, which is a node with the
same functionality. This has the dual effect of increasing the expressiveness of
the language and decreasing the average size of individuals in the population.

A newly created module can then be passed onto later generations in the
same way any other node is. The extent to which it is used by descendants
depends on a combination of the utility of the module and individuals’ successful
use of it. Unlike ADFs, however, due to the extraction process, GLiB modules
cannot reuse arguments in the modules. It has been argued that this impedes
performance in GLiB [4].

GLiB also has an expansion mutation operator, which expands a previously
compressed node. This was introduced to combat the loss of diversity that the
system experienced due to the presence of the modules.

ARL. The Adaptive Representation through Learning(ARL) [8] system is a
combination of the GLiB and ADFs. Unlike GLiB, ARL selected individuals to
compress based on how well their fitness improved upon that of their parents.

ARL was shown to perform well relative to the other methods, but has been
criticised [7] for requiring many control parameters, and has yet to find wide
acceptance in the field.

534 M. Keijzer, C. Ryan, and M. Cattolico

Subtree Encapsulation. Each of the above schemes is concerned with pro-
ducing modules and functions in parallel with the individuals that will use them.
Once a run is finished, all the effort involved in producing these modules must
be repeated for the next run. A different approach was taken by [7] with their
Subtree Encapsulation method. Instead of producing modules on the fly, they
harvest completed runs for useful modules which are then subsequently used to
augment the terminal set of another run.

To achieve this, a database of all subtrees generated during a run is main-
tained. The database maintains a count of the usage of each tree, which is then
used to decide which subtrees should be added to the terminal set; the most
frequently used ones being encapsulated as atoms.

It was shown that their method outperformed standard GP both in terms
of the speed to good solutions and to the overall quality of solution generated.
Perhaps somewhat surprisingly, they also showed that simply randomly choosing
the subtrees gave them better performance than the usage-based approach.

Sequential Runs. There have been several attempts to pass information from
run to run, although these have all been with a view to solving a single problem,
rather than training a system that can be applied to successively more difficult
problems. The most well known of these techniques is to simply seed a population
with the best-of-run individual from the previous run. This has been used with
mixed success by many researchers, as some have found that this can lead to
very premature convergence on that individual.

Beasley described the use of derating functions for the discovery of all peaks in
a multi-modal function [3]. His system attempted to discover one or two peaks
with each run, and to then modify the fitness function of subsequent runs to
penalise individuals that revisited that part of the search space. He discovered
that his algorithms substantially outperformed standard niching techniques on
these problems, mainly because they made the problem easier. Each run was
presented with fewer and fewer peaks until they were all discovered.

A similar approach was taken by Streeter et all [9] with a system that it-
eratively refined a circuit across several runs. This work was concerned with
generating an electric circuit which produces an output that is an approxima-
tion to the error function of an existing circuit, which may or may not have
been generated using GP. The generated circuit can be added to the existing
one to produce a new one which performs its task with greater accuracy. These
iterations can be repeated as many times as necessary, or until the benefit of the
improvements gained is outweighed by the cost of an extra run.

3 Mnemosyne

The Mnemosyne system implements RTL by keeping a library that is divided
into segments, each segment containing functions of a certain arity. A segment
has a function and terminal set defined for it. Typically the function set for a
segment contains the primitive functions defined for the problem (domain), while

Run Transferable Libraries — Learning Functional Bias in Problem Domains 535

InitLibrary;
for each library iteration do

RunGP;
UpdateLibrary;

end

Algorithm 1: Overall Algorithm

X1

DL’

X2 X3

DL

DL’’

X2 X3

Arity 0 Segment

Arity 1 Segment

Arity 2 Segment

Arity 3 Segment

LibraryIndividual

Fig. 1. An overview of Mnemosyne. Each DL-node consists of a floating point label
which will be used to is used to look up the appropriate library segment, according to
the arity of the function.

the terminal set contains the arguments for the function. Functions in segments
have a floating point value associated with them, these are called tags. The
tags are the main means for linking to library elements. Therefore the library
elements are referred to as Tag Addressable Functions (TAFs).

A general overview of the Mnemosyne training algorithm is provided in Al-
gorithm 1. It defines an individual GP run (RunGP) as a basic sub-routine
that is used to collect statistics about the use of library elements. After each in-
dividual run, the library is updated using these statistics. Details on the update
mechanism are provided in Section 3.1.

Individual runs use the library by virtue of the presence of a special function
in the function set: a Dynamically Linked Node (DL-node). Such a node is
fully specified by an arity and a tag value. The arity defines which segment the
node links to, while the tag value defines which particular function is used, by
searching for the nearest tag value in the segment. An overview of the contents
of the library and how an individual links to the library is depicted in Figure 1.
In the experiments below, the function set in the individual runs is limited to
DL-nodes only, this in order to force the run to use the library and identify
important elements, and to avoid using the bias inherently present in this set of
primitive functions.

At the initialization phase of the individual runs, the DL-nodes are initialized
with a uniformly chosen arity, and a tag value that is chosen uniformly from the

536 M. Keijzer, C. Ryan, and M. Cattolico

available tags. Thus, each TAF has an equal chance of being present in the initial
population. During a run, a tag-mutation operator is used, which will mutate the
tags in the DL-nodes, leading to the node being linked to (possibly) a different
TAF. This mutation operator operates in conjunction with a regular subtree
crossover and reproduction operator.

3.1 Updating the Library

TAFs consist of a tuple 〈t, w, v, f〉, where t denotes the tree (usually a function
with one or more arguments), w the multiple run worth, v the floating point tag
value and f the per run usage (frequency). A library consists of multiple TAFs,
and is usually sorted on the tag value for quick O(logN) lookup. The library is
initialized with randomly generated TAFs using a library specific function and
terminal set using the ramped-half-and-half method. Initially, after loading or
creating the library, the per-run frequency count f is set to 0. During the run,
whenever TAF i is linked to a tree of size s, the frequency is updated by:

fi ← fi + 1/s

Normalisation by the size of the calling tree is performed to avoid a situation
where the larger individuals in the population have the deciding vote on which
tafs will propagate. After the run, the frequencies are normalised to sum to one,
and added to the long-term worth of the library element:

wi ← (wi + fi/
∑

j

fj)× d

The library update mechanism attempts to ensure that the frequency of
occurrence of library elements is proportional to their long-term usage infor-
mation. First the mean usage w̄ for library elements is calculated. Then, each
library element for which wi ≥ 2w̄, is selected for reproduction/variation. To
keep a constant library size, an individual j to replace is chosen that has the
lowest worth w. The chosen TAF i will either be reproduced (50% of the time)
or crossed over with a randomly chosen TAF and copied over individual j. Sub-
sequently, the w values of both i and j will be shared between the parent and
the offspring, keeping the sum of w constant.

wj ← wj + wi

2
wi ← wj

And the tag value of the offspring is mutated by adding a normal distributed
random number

Run Transferable Libraries — Learning Functional Bias in Problem Domains 537

4 Experiments

We tested the system on two classes of problems often associated with ADFs,
namely the Boolean even n-parity and the Lawnmower problems. The even-n-
parity problem takes n Boolean arguments and returns true if an even number
of the arguments are true, and otherwise returns false. The Mnemosyne system
was implemented using ECJ [6].

The difficulty of these parity problems is easily scaled by increasing the num-
ber of inputs, and have proved a very tough benchmark for standard GP. Koza
used these problems to illustrate the utility of employing ADFs, and showed
that ADF GP could solve a selection of them with far less computational cost
and a much smaller population (4,000 vs. 16,000). Koza examined problems up
to and including the even-11-parity problem, and reported that the sheer time
involved in running these experiments prohibited him from going any further,
as the number of test cases increase exponentially with the number of inputs.

The Lawnmower problem was specifically designed as a test bed for ADFs [5].
It is a difficult enough problem to exhibit hierarchical decompositions and ex-
ploitable regularities, the characteristics upon which ADFs thrive. The Lawn-
mower problem is also such that it can be scaled with much more granularity
than the Boolean even-k-parity problems.

In the Lawnmower problem, the aim is to produce a program that controls
the movement of a lawn mower such that the mower cuts all the grass on a
particular lawn. The lawn is laid out as a toroidal grid, and the lawn mower
can occupy one grid location at a time. Koza examined problems from 32 up
to 96 squares and demonstrated that, while ADFs aren’t necessary to solve the
problem, they do so much more quickly, and scale much better.

To tackle these problems, the usual syntactic distinction between terminals
(leaf nodes) and functions (internal nodes) is abandoned and a more functional
distinction of variables and functions is used: variables are considered to be
problem dependent entities that are not transferable between different problem
instances, while functions are a set of operations that are valid throughout a
problem domain. This distinction allows for functions of arity 0 (e.g., sensors)
to be considered different entities from variables (also of arity 0) as found in the
parity problems. In the experiments, functions will be placed in the library, while
variables (that are not supposed to be transferable) are used in the individual
GP runs. The library will only use functions, while the evolving population will
be constrained to use the library and the variables.

All experiments were done with the same set of parameters: libraries and indi-
vidual runs are initialised using the ramped-half-and-half method (ramp varying
between 2 and 6), population and library segment size is set to 500, the indi-
vidual runs run for 50 generations, the decay factor in the library is set to 0.9,
crossover probability in the library equals 0.5 (meaning that half of the variation
events inside the library are straight reproduction events), the individual runs
use 10% reproduction, 45% crossover and 45% tag mutation. The parameters
have been set using a few initial runs, and are possibly not very optimal.

538 M. Keijzer, C. Ryan, and M. Cattolico

To compare the results of the library against results taken from the liter-
ature, the concept of conditional effort is introduced. The calculation of the
conditional effort is the same as the normal effort, the difference being that it
is conditional on the library iterations that have already been performed. Af-
ter training a library, it will be tested on a new set of problems; and only this
new set of problems is used to calculate the effort. To recognise the effort that
has already been put in the library, the number of iterations the library has
been trained is reported as well. This was necessary as the normal number of
individuals processed statistic has not enough granularity to make distinctions
between solving problems of varying difficulty. Also, in practice, we view the
creation of a library not as an event that needs to be done for every problem we
encounter, but advocate re-use of libraries to tackle new problems. Therefore,
we view the effort to create the library to be on the same footing as changing
other parameters, particularly tuning function sets to a particular domain.

4.1 Boolean Even-n-parity Experiments

The central thesis of this paper is that RTLs permit GP runs to transfer knowl-
edge in the form of functions, not only from run to run, but also to transfer
knowledge across increasingly difficult problems in the same domain. Thus, our
baseline experiments involve comparing Mnemosyne to ADF GP on a single
problem instance. A second set of experiments was designed to test the ability
of the system to transfer knowledge from run to run. To this end, an RTL was
generated (“trained”) on one instance of the problem, and subsequently applied
to problems of increasing difficulty. Two sets of experiments were carried out
in this case; one for an RTL initially trained on the even-4-parity problem, and
subsequently applied to 5- onto 10-parity, and another in which the RTL was
initially trained on the even-5-parity problem, and subsequently applied to 6- to
10-parity problems.

For the boolean parity problems, the function set {AND,OR,NAND,NOR}
is used. It is known that this function set is very biased against parity problems.
Overcoming this bias and converging to the optimal set of either XOR or EQ,
combined with negation could be a winning strategy. The library consists of
3 segments, for functions of arities 1,2 and 3. The primitive function set that
is used inside the library consists of the aforementioned four primitive logical
functions. The solutions evolving in the separate runs use the DL-nodes that
refer to the elements of the library in the function set; the terminal set consists
of the problem-dependent variables. In this setup, it is impossible to encode
solutions for individual problems in the library. The library needs to evolve in
such a way that it helps the individual runs to solve the problems.

4.2 Lawnmower Problems

A similar experimental set up was used for the Lawnmower problem. An initial
library was trained on an 8x8 lawn, and then tested on progressively larger lawns,
up to 8x12, the largest size reported on by Koza in [5]. The library consisted

Run Transferable Libraries — Learning Functional Bias in Problem Domains 539

of the the standard functions for this problem, that is { LEFT,MOW,V8A,
PROGN2, FROG } while the evolving population was made up of DL-nodes.
Also for this problem, the library consists of three segments, here of arity 0,1,
and 2. The library and GP parameters were the same as for the parity problem.

5 Results

Figure 2 shows the results for training the library on the parity 4 and 5 problems
and subsequently testing them on higher parities. Fifty independent libraries
were trained on the lower parity problems for 95 iterations. The end-of-run
libraries thus consisted of feedback obtained from 95 dependent runs, i.e., runs
that use updated libraries. The libraries produced after every fifth iteration were
saved and tested against the higher parity problems. Libraries with 0 iterations
are randomly initialised. Thus, a test-run at library iteration 15, tests a library
that was trained using 15 different runs of the smaller parity problem. Figure 2
shows a clear improvement, where the conditional effort of solving the parity
problems decreases with library iterations. It is also clear that the library is
capable of generalising: libraries trained on parity 4 have a better expected
performance on the higher parities than untrained libraries. When comparing
the libraries trained on parity 4 with those trained on 5, it is interesting to
note that the libraries trained on the simpler problem apparently generalise
better. It seems that the simpler problem allows the library to focus on the
characteristics of this problem domain better. After 95 iterations of training
on parity 4, applying this library on a parity 10 problem apparently seems to
outperform standard GP using ADFs on parity 4 itself! Considering that parity 4
problems consist of a factor 64 less fitness cases than parity 10, it seems that the
Mnemosyne RTL approach provides good scaling characteristics on this type of
problem.

A cursory inspection of the content of the libraries for the segments for arity
2 shows that the library tends to converge to a majority of either the XOR
or the EQ function, accompanied with low but persistent numbers of auxiliary
functions. The library thus learned to remove the initial bias induced by the four
primitives, and induced a bias more appropriate to this type of problem.

Figure 3 shows the computational effort needed to solve Lawnmower prob-
lems of increasing difficulty. Also here it can be seen that the computational
effort decreases after longer periods of training, while the more difficult (larger)
problems benefit from this increased training effort. Again, the benchmarks are
easily surpassed. The second graph in Figure 3 shows a comparison of effort
between a library trained on a lawn of 64 cells, and tested on a lawn of 256 cells,
against a library trained on such a lawn of 256 cells. Although there is a fair
amount of variability in the graph (this is caused by using 50 runs for calculating
the effort), it is clear that at the very least the library that is trained on a smaller
lawn does not have a worse performance than the library trained on the bigger
lawn. Starting out with training on small and fast instances of a problem, seems
to be helpful in solving the more difficult problem.

540 M. Keijzer, C. Ryan, and M. Cattolico

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90 100

E
ffo

rt

Library Iterations

train4
test5
test6
test7
test8
test9

test10
koza4
koza5
koza6

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 20 30 40 50 60 70 80 90 100

E
ffo

rt

Library Iterations

train5
test6
test7
test8
test9

test10
koza4
koza5
koza6

Fig. 2. Number of individuals needed to be processed to obtain a solution with 99%
probability on the parity problems. Training was done using 50 independently trained
libraries on 95 iterations, while testing was done on each library taken from every fifth
iteration. The graphs show the results for libraries trained on parity 4 and 5. Also
shown are the computational efforts as published by Koza using ADFs [5]. Runs that
did not produce any solutions are not plotted. Note the log scale.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 10 20 30 40 50 60 70 80 90 100

E
ffo

rt

Library Iterations

Train8x8
Test8x10
Test8x11
Test8x12
Koza8x8

Koza8x10
Koza8x12

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90 100

E
ffo

rt

Library Iterations

Test16x16
Train16x16

Fig. 3. Number of individuals needed to be processed to obtain a solution with 99%
probability on the parity problems. Training was done using 50 independently trained
libraries on 95 iterations, while testing was done on each library taken from every fifth
iteration. The graphs show the results for libraries trained on lawns of size 8x8. Also
shown are the computational efforts as published by Koza using ADFs [5].

Finally, a set of runs are performed where libraries are trained on random
boolean problems of 5 inputs and an equal number of ones and zeros in the target
output. The libraries were subsequently tested on the parity problems from 5
upwards to 10 inputs. The problem domain thus consists of a large subset of
all logical problems, and the best the library should be able to do is to find
an as unbiased set of functions as possible. Surprisingly, even in this setting,
the library approach was able to get good performance: the conditional effort
for parity 5 after training is 21,000 individuals; for parity 6, 42,000; parity 7,
111,000; parity 8, 240,000; parity 9, 388,000; and, finally, parity 10 1,056,000.
Also here the effort is significantly lower than when trying to overcome the initial
bias from scratch as is done using ADFs.

Run Transferable Libraries — Learning Functional Bias in Problem Domains 541

The results strongly suggest that the concept of Run Transferable Libraries is
sound: it is possible to capture significant functionality from one or more training
problems in a library and use it to solve related and/or more difficult problems
more easily. The results also show that the approach of iteratively re-solving
the problem significantly improves GP’s ability to scale on these problems. On
both problems there is an indication that solving simple ‘toy’ versions of a more
difficult problem helps better in solving the larger problem than to try more
difficult versions. It seems that the feedback received in these simpler versions
leads more directly to the induction of the right functional bias.

6 Future Work

The current research is still in an early stage, yet a myriad of questions and
possible avenues present themselves. What learning regime do we need to use to
obtain a library that is optimal for a certain problem domain? Does the system
reach a stage where it overfits, i.e., when is a library too focused on a problem
instance that the library is no longer transferable to different problems and, if so,
when does this happen? How can this be overcome? Does the locality enforced
in Mnemosyne help in evolving a library? Does it make sense to cross/mutate
libraries?

It is envisioned that there is ample opportunity for using Run Transferable
Libraries to solve problems: in most circumstances, a practitioner of GP is inter-
ested in solving a set of related, yet different problems. By training on simpler
instances and learning the underlying functional bias of the problem domain,
it is expected that the performance of the basic search can be enhanced. As
an example, consider the subject of image classification: although every prob-
lem instance will need to find an appropriate way to classify the particular set
of images at hand, detecting particular features in an image is a process that
transcends problem instances. By evolving feature detectors on various problems
using an RTL, a general purpose image classification program could be build up
and used for new problem instances.

The definition of Run Transferable Libraries thus presents a possibility to give
an operational (yet circular) definition of a problem domain: A problem domain is
a set of problems such that the necessary abstractions to tackle problem instances
can be encoded in the form of a library of functions. The circle is completed
by noting that an RTL is defined as a system that helps in tackling problem
domains.

7 Conclusion

The concept of Run Transferable Libraries is introduced and its worth is tested
using a concrete implementation on two well-known benchmark functions for
testing functional abstraction. It is shown that transferring an evolving library
of functions from one run to the next helps not only in solving the same problem
faster, but enables scaling in at least two ways: the ability to solve difficult

542 M. Keijzer, C. Ryan, and M. Cattolico

problems faster by first solving simpler but related problems; and the ability to
solve similar problems faster. It is hypothesised that a library is a good method
to learn and encode the functional bias of a problem domain, i.e., that set of
functionality that helps in solving problem instances taken from that domain
faster.

Acknowledgements. The authors would like to thank Clearwire Corporation
for the use of their servers for some of the runs.

References

1. P. J. Angeline and J. B. Pollack. The evolutionary induction of subroutines. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
Bloomington, Indiana, USA, 1992. Lawrence Erlbaum.

2. Peter John Angeline. Evolutionary Algorithms and Emergent Intelligence. PhD
thesis, Ohio State University, 1993.

3. David Beasley, David R. Bull, and Ralph R. Martin. A sequential niche technique for
multimodal function optimization. Evolutionary Computation, 1(2):101–125, 1993.

4. Kenneth E. Kinnear, Jr. Alternatives in automatic function definition: A com-
parison of performance. In Kenneth E. Kinnear, Jr., editor, Advances in Genetic
Programming, chapter 6, pages 119–141. MIT Press, 1994.

5. John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, May 1994.

6. Sean Luke. ECJ 10 : An Evolutionary Computation research system in Java. Avail-
able at http://cs.gmu.edu/ eclab/projects/ecj/, 2003.

7. Simon C. Roberts, Daniel Howard, and John R. Koza. Evolving modules in ge-
netic programming by subtree encapsulation. In Julian F. Miller, Marco Tomassini,
Pier Luca Lanzi, Conor Ryan, Andrea G. B. Tettamanzi, and William B. Langdon,
editors, Genetic Programming, Proceedings of EuroGP’2001, volume 2038 of LNCS,
pages 160–175, Lake Como, Italy, 18-20 April 2001. Springer-Verlag.

8. Justinian P. Rosca and Dana H. Ballard. Discovery of subroutines in genetic pro-
gramming. In Peter J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic
Programming 2, chapter 9, pages 177–202. MIT Press, Cambridge, MA, USA, 1996.

9. Matthew J. Streeter, Martin A. Keane, and John R. Koza. Iterative refine-
ment of computational circuits using genetic programming. In W. B. Langdon,
E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar,
G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke,
and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic and Evolution-
ary Computation Conference, pages 877–884, New York, 9-13 July 2002. Morgan
Kaufmann Publishers.

	Introduction
	Scaling and Problem Domains in GP
	Mnemosyne
	Updating the Library

	Experiments
	Boolean Even-n-parity Experiments
	Lawnmower Problems

	Results
	Future Work
	Conclusion

