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Abstract. In this paper, we compare the performance of hierarchical
GP methods (Automatically Defined Functions, Module Acquisition,
Adaptive Representation through Learning) with the canonical GP Im-
plementation and with a linear genome GP system in the domain of
evolving robotic controllers for a simulated Khepera miniature robot.
We successfully evolve robotic controllers to accomplish obstacle avoid-
ance, wall following, and light avoidance tasks.

1 Introduction

Genetic programming (GP) is a powerful evolutionary search algorithm to evolve
computer programs. However, its main drawback is that it tries to solve the entire
problem at once. While canonical GP is suitable for smaller problems, it is often
not powerful enough to solve difficult real world problems. Hierarchical genetic
programming (HGP) tries to overcome the weakness of GP by introducing a
divide-and-conquer approach to problems. Instead of solving a complex problem
entirely, the method breaks the problem into smaller parts, generates solutions to
the parts, and integrates the solutions into the solution to the overall problem.
This modularization approach is based on what humans do to solve complex
tasks.

Several hierarchical genetic programming methods have been proposed in the
literature, each with its own advantages and disadvantages. In our research, we
examine the methods of Automatically Defined Functions (ADFs) [4], Module
Acquisition (MA) [2], and Adaptive Representation through Learning (ARL) [8].

We study the application of genetic programming techniques to the evolution
of control programs for an autonomous miniature robot. We are interested in the
evolution of robotic controllers for the obstacle avoidance, wall following, and
light avoidance tasks. Nordin and Banzhaf [6] have studied the use of linear
genome GP [5] for real time control of a miniature robot. Our research extends
the analysis of [6] by carrying out experiments with the ADF, MA, and ARL
hierarchical GP methods, the canonical tree-based GP implementation [3], and
a variation of the linear genome GP system. Our results enable us to compare
the performance of the studied method in the domain of robotic control.
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2 Robotic Controllers

Nordin and Banzhaf [6] have experimented with a simulated and real Khepera
miniature robot to evolve control programs with genetic programming. They
used the Compiling Genetic Programming System (CGPS) [5] which worked
with a variable length linear genome composed of machine code instructions.
The system evolved machine code that was directly run on the robot without
the need of an interpreter.

The initial experiments of Nordin and Banzhaf were based on a memory-
less genetic programming system with reactive control of the robot. The system
performed a type of function regression to evolve a control program that would
provide the robot with 2 motor (actuator) values from an input of 8 (or more)
sensor values. GP successfully evolved control programs for simple control tasks
of obstacle avoidance, wall following, and light-seeking. The work was extended
[6,7] to include memory of previous actions and a two-fold system architecture
composed of a planning process and a learning process. Speed improvements
over the memory-less system were observed in the memory-based system and
the robots exhibited more complex behaviours [6].

The GP system in the robotic controller evolves control programs that best
approximate a desired solution to a pre-defined problem. This procedure of in-
ducing a symbolic function to fit a specified set of data is called Symbolic Re-
gression [6]. The goal of the system is to approximate the function: f(s0, s1, s2,
s3, s4, s5, s6, s7) = {m1, m2} where the input is comprised of 8 robotic sen-
sors (s0-s7) and the output is the speed of two motors controlling the motion of
the robot (m1-m2). The control program code of each individual constitutes the
body of the function. The results are compared with a behaviour-based fitness
function that measures the accuracy of the approximation by the deviation from
desired behavior of the robot.

In our research, we evolve a population of control programs for the Khepera
robot. The GP variants studied here are steady-state tournament selection sys-
tems with tournament size of 7. Experiments are performed with populations
of size 50 to 200. The algorithm executes until desired behaviour is learned or
until 300 generations elapse. We use our simulator - Khepera GP Simulator for
Microsoft Windows r© - for all our experiments. The simulator contains a user
friendly interface and allows run-time modification of all simulation parameters,
fitness functions, and robotic controllers. The simulator and its C++ source code
are available free-of-charge for academic research purposes 1.

2.1 Linear Genome GP

The linear genome GP system with binary machine code was introduced in
[5] as Compiling Genetic Programming System (CGPS). The method was used
to evolve a robotic controller for Khepera robots [6]. The structure of our lin-
ear genome GP controller closely resembles the controller used by Nordin and
Banzhaf.
1 Khepera GP Simulator home page is available at http://www.pilat.org/khepgpsim.
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The controller by Nordin and Banzhaf [6] used variable length strings of 32
bit instructions for a register machine performing arithmetic operations on a
small set of registers. We represent each instruction as a text string and pro-
cess it by a Genome Interpreter prior to evaluation. A loss in performance is
noticed since processing of the string based instructions is more time intensive
than for numerical representations. However, the performance of the text-based
representation is sufficient for the purpose of the research and provides greater
readability.

Each individual is composed of a series of instructions (genes). The in-
structions are of the form: resvar = var1 op {var2|const} where resvar is
the result variable and op is a binary operator working on either two vari-
ables (var1 and var2) or a variable and a constant (var1 and const). Val-
ues of instruction parts are selected randomly from a set of primitive values.
Valid variable values are 8 robotic infrared proximity sensors (s0 − s7), 8 am-
bient light sensors (l0 − l7) and intermediate variables (a − f). The operator
set consists of: add, subtract, multiply, leftshift, rightshift, XOR, OR, AND.
Constants are randomly chosen from the range 0 − 8191.

The linear genome GP method employs three genetic operators: reproduc-
tion, crossover and mutation. Variable length 2-point crossover is applied to the
two fittest individuals of a tournament, according to a given probability. Genes
are treated as atomic units by the crossover operator and are not internally
modified. If crossover is not selected, reproduction occurs and copies of fittest
individuals are inserted into the new population. Simulated bit-wise mutation
modifies the contents of a gene. We use crossover probability of 0.9 and mutation
probability of 0.05.

2.2 Tree-Based GP

The tree-based GP system works with the canonical tree representation of chro-
mosomes. Program trees for the tree-based GP method and all HGP methods
are created randomly with the ”full” method [3] to generate the initial random
population. Maximum tree height at creation is 6 and maximum overall tree
height is 10. The standard function set is composed of functions: Add, Sub,
Mul, Div, AND, OR, XOR, <<, >>, IFLTE. The terminal set consists of
variables denoting the robotic sensors (s0 − s7 and l0 − l7) and constants in
range 0 − 8192.

Reproduction and crossover are the genetic operators for this method. Single
subtree switching crossover is applied to the two fittest individuals in a tour-
nament, with a given probability. For the tree-based GP method and all HGP
methods, we use crossover probability of 0.9 in our experiments and no mutation.

2.3 Automatically Defined Functions HGP

The Automatically Defined Function (ADF) method in our research is based on
the method proposed by Koza [4]. The method automatically evolves function
definitions while evolving the main GP program.
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The result producing branch is built with the standard terminal set and the
standard function set augmented with the ADFs contained in the same chro-
mosome. Separate terminal and function sets are used by the function defining
branches to define the ADFs. These secondary sets contain dummy variables
to denote the arguments to function calls. All ADFs defined in an individual
are only available locally to the program tree of the same individual. We study
ADF program trees with one, two, and three ADF definitions and two ADF
arguments.

As in the tree-based method, reproduction and crossover operators are used
in the ADF chromosomes. To preserve the structure of valid ADF chromosomes,
the crossover operator is only allowed to swap non-invariant nodes and nodes of
similar type using branch typing.

2.4 Module Acquisition HGP

The Module Acquisition (MA) method of Angeline and Pollack [2] uses two
extra operators of compression and expansion to modularize the program code
into subroutines. The program tree structure is identical to the structure of the
tree-based representation. The function set of each chromosome is extended by
parameterized subroutines called modules. Modules are local to a chromosome
and are only propagated through the population by reproduction and crossover.

The Module Acquisition method employs four genetic operators: reproduc-
tion, crossover, and two mutation operators of compression and expansion. The
reproduction and crossover operators are similar to those used by the canonical
tree-based representation.

The compression operator creates a new subroutine from a randomly selected
subtree of an individual in the population using depth compression [1] of max-
imum depth range 2 − 5. A subroutine call replaces the chosen subtree in the
program tree and the new module extends the function set of the chromosome.
If the chosen subtree is beyond the maximum depth value, a parameterized sub-
routine is created. The expansion operator is complementary to the compression
operator and restores a single module call to its original subtree. We use com-
pression probability of 0.1 and expansion probability of 0.01.

2.5 Adaptive Representation HGP

The Adaptive Representation through Learning (ARL) method by Rosca and
Ballard [8] extends the canonical tree-based GP system by introducing param-
eterized blocks (i.e. functions). Unlike in the ADF approach, the functions are
discovered automatically and without human-imposed structure. The method
differs from the MA approach by the algorithms for function discovery and the
management of function libraries.

The structure of the ARL chromosome program trees is identical to the
tree structure of the tree-based GP method. The ARL functions are stored in
a global library and are accessible to all the chromosomes in the population.
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The function library is dynamically grown by the execution of the evolutionary
algorithm. Standard tree reproduction and crossover operators are used.

The implementation relies on differential fitness [8] for function discovery. We
do not use the concept of block activation [8] because of the large performance
overhead on the system. We employ a simple measure of subroutine utility [8] by
assigning to each subroutine an integer utility value. This value is decremented
each generation the subroutine is not used until the subroutine is removed from
the library.

Population entropy provides a measure of the state of a dynamic system
represented by the population and is calculated by using Shannon’s information
entropy formula [9] on groupings of individuals based on their phenotype. Our
entropy calculation is not based on raw fitness values because of the dynamic
nature of our fitness calculation. We implement a standardized classification
measure to calculate a value for individual classification. The value is calculated
using an average of motor output values obtained from three test cases with fixed
input sensor values. Individuals are partitioned into 20 categories based on the
value of their standardized classification measures. Population entropy value is
then calculated by Shannon’s formula applied to the categorized chromosomes.

The measure of population entropy is important since it correlates to the
state of diversity in the population during a GP run [9]. We use a static entropy
threshold value of 1.5 to decide on the initiation of a new epoch and discovery of
new subroutines. Candidate blocks of height 3 are selected from most promising
individuals. Discovered functions are automatically inserted into the function
set. To counteract the drops in population entropy, the ARL method generates
random individuals using the new function set. The new individuals are placed
into the existing population. The number of new individuals to create is specified
by the replacement fraction parameter which is set to 0.2 in our experiments.

3 Results

3.1 Obstacle Avoidance

The task of obstacle avoidance is very important for many real-world robotic
applications. Any robotic exploratory behavior requires some degree of obstacle
avoidance to detect and manoeuver around obstacles in the environment. We
define obstacle avoidance as the behavior to steer the robot away from obstacles.
For the Khepera robot, this task is equivalent to minimizing the values of the
proximity sensors while moving around the environment.

Our fitness function for obstacle avoidance is based on the work of Nordin and
Banzhaf [6]. The pleasure part of the fitness function is computed from motor
values and encourages the robot to move around the environment using straight
motion. The pain part is composed of sensor values and punishes the robot for
object proximity. The fitness function can be expressed as the equation: fitness
= α (|m1|+|m2|-|m1 −m2|) - β

∑7
i=0 si where mx are motor values (in range -10

to 10) and sx are proximity sensor values (in range 0-1023). In our experiments,
scale parameters are set to α = 10 and β = 1.
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Various robotic behaviours are observed while learning the obstacle avoidance
task and are summarized in Figure 1. We subdivide the learned behaviours into
groups based on the complexity and success rate of each behavior. The simplest
Type 1 behaviours (straight, curved) are solely based on the simple movement
of the robot with no sensory information. The second level of behaviour, Type 2,
is composed of circling, bouncing, and forward-backup behaviours. The highest
level of behaviour, Type 3, is called sniffing and it involves processing sensor data
to detect and avoid obstacles. Avoidance is learned either by circling away from
an obstacle or by backup behaviour. The perfect sniffing behaviour produces
smooth obstacle avoidance motion around the entire testing environment.

straight curved backup

circling bouncing sniffing

Fig. 1. Summary of learned behaviours.

We used the measures of entropy stability and average chromosome size sta-
bility to compare the studied methods. We define stability by a gradual change
of measured values and lack of large abrupt changes. For the obstacle avoidance
task, the ARL method provides the most stable entropy values. The MA and
tree-based methods provide the worst stability with large drops of entropy val-
ues. Best chromosome size stability is seen with the linear genome method and
worst with the MA method. Among the HGP methods, the most stable method
is the ARL method.

The results with Type 2 and 3 behaviours are processed to calculate average
generation values of first occurrence of the stated behaviour. Summary of the
results of our behaviour calculation can be found in Figure 2. The method with
best initial behaviour occurrence values is the ARL HGP method and with the
worst is the linear genome GP method. Overall, the HGP methods perform
comparable with the tree-based GP method. A sample experimental trace of
evolved perfect obstacle avoidance behaviour can be seen in Figure 3.

3.2 Wall Following

The task of wall following allows the robot to perform more difficult and inter-
esting behaviours such as maze navigation. The purpose of the task is to teach
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Obstacle Avoidance - Initial Behaviour Occurrence
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Fig. 2. Graphs of minimum, maximum, and average generations of first detection
of Type 2 and 3 obstacle avoidance behaviour for each chromosome representation
method.

Fig. 3. Trace runs of perfect evolved obstacle avoidance behaviour in various testing
environments.

the robot to move around the environment with a certain desirable distance
away from obstacles. The learned task should include some obstacle avoidance
behaviour; however, that is not the main requirement of the experiments.

The wall following fitness function is composed of sensor and motor parts.
The sensor part is computed from a subset of the robotic sensor values and
the motor part is defined as the absolute motor value sum minus the absolute
value of the difference. The fitness function can be summarized as: Fitness = α·
MotorPart + β· SensorPart. The calculated sensor part value acts as either
pleasure or pain depending on the values of the sensors. Thus, the robot is
punished when it is either too far away from an obstacle or too close to it.

Summary of the behaviours obtained is provided in Figure 1. We categorize
the behaviours based on their relative performance and success. The first Type 1
category is of poor wall following behaviour and consists of simple wall-bouncing
and circling behaviours. The Type 2 category of good wall following behaviour
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consists of wall-sniffing and some maze following. The best behaviour category,
Type 3, consists of perfect maze following without wall touching and usually
taking both sensor sides of the robot into consideration.

The most stable entropy behaviour is noticed in experiments using the ARL
method whereas the least stable is observed using the ADF method. Most sta-
bility of average size values is seen in the linear genome and ARL methods. The
largest drops in average chromosome size are noticed with the MA method.

Type 2 and 3 behaviour category results are processed to calculate average
generation values of first occurrence of the stated behaviour. Summary of the
results can be found in Figure 4. The ARL method produces the best overall
results with the smallest deviation. The worst performance and largest deviation
is seen with the MA method. A sample experimental trace of evolved perfect
maze following behaviour can be seen in Figure 5.

Wall Following - Initial Behaviour Occurrence
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Fig. 4. Graphs of minimum, maximum, and average generations of first detection of
Type 2 and 3 wall following behaviour for each chromosome representation method.

Fig. 5. Trace run of perfect evolved maze-following behaviour.
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3.3 Light Avoidance

The light avoidance task is similar to the obstacle avoidance task but uses the
ambient light sensors of the robot instead of the proximity sensors. Light sources
in the training and testing environments are overhead lamps that cannot be
touched by the robot. The robot must learn to stay inside an unlit section of the
world environment while moving as much as possible.

The fitness function for light avoidance is similar to the fitness function used
for obstacle avoidance. The function contains a pleasure part computed from the
motor values of the robot and a pain part computed from the light sensors. The
function can be expressed as: Fitness = α (|m1|+|m2|-|m1 − m2|) - β (4000 -
∑7

i=0 li) where mx are motor values and lx are ambient light sensor values (in
range 0-500). In our experiments, scale parameters are set to α = 10 and β = 1.
The constant 4000 denotes the highest possible sensor sum and transforms the
fitness function to behave similar to the fitness function of the obstacle avoidance
task.

We subdivide the learned behaviours into two categories. The Type 2 cate-
gory consists of behaviours with some degree of light detection and avoidance.
The Type 3 behaviour category consists of behaviours with definite light detec-
tion and avoidance. Perfect behaviour usually consists of movement around the
boundary of the dark area in the testing environment.

The most stable entropy behaviour is noticed with the linear genome method
and worst stable with the ADF method. Most stable average size values are ob-
served using the ARL and tree-based methods. The worst average size behaviour
is seen with the MA method.

Type 2 and 3 categories are processed to calculate average generation values
of first occurrence of the stated behaviour. Summary of the results can be found
in Figure 6. The best results come from experiments with the ARL method
and the worst from linear genome experiments. The HGP methods perform
comparable to the tree-based method. A sample experimental trace of perfect
evolved light avoidance behaviour can be seen in Figure 7.

Light Avoidance - Initial Behaviour Occurrence
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Fig. 6. Graphs of minimum, maximum, and average generations of first detection of
Type 2 and 3 light avoidance behaviour for each chromosome representation method.
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Fig. 7. Trace runs of perfect evolved light avoidance behaviour in different testing
environments.

4 Conclusion

Our research is concerned with the evolution of robotic controllers for the Khep-
era robot to perform tasks. The reactive robotic control problem provides a
challenge to the genetic programming paradigm. With the lack of test cases for
fitness function evaluation, the fitness of an individual can differ greatly depend-
ing on the immediate neighbourhood of the robot. From tuning experiments, we
notice that the definition of the fitness function can greatly influence the pop-
ulation contents and thus the resulting behaviours. Because of the constantly
changing local environment, even good performing behaviour can eventually be
replaced by worse behaviours. We feel that more testing of fitness functions and
their parameters should be done to identify the optimal fitness function defini-
tion for each learning task.

We have noticed that the robotic controllers often over-adapt to the train-
ing environment. This problem of overfitting is a common problem in genetic
programming. We notice that sharp corners of the environment form an area of
difficulty for the robotic controller. This difficulty is probably due to the corner
fitting between the fields of view of the proximity sensors.

The entropy value is an important indicator of population diversity in our
experiments. We notice that best behaviours are observed in populations with
relatively high entropy value (above 0.6). Low entropy value signifies convergence
in the population which usually accompanies a convergence to a low average
chromosome size. Populations of suboptimal individuals with low chromosome
size do not contain enough information to successfully search for a good solution.

We study three HGP learning methods: Automatically Defined Functions,
Module Acquisition, and Adaptive Representation through Learning. Robotic
controllers using each method are able to evolve some degree of proper behaviour
for each learning task. Summary of method performance is available in Table 1.
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The ADF method uses a predefined, constant function set containing one or
more ADFs. The only method of function call acquisition is through crossover
with another individual of the population. The ADFs inside individuals showing
nice behaviour are usually quite large and complex with no noticeable patterns.
It is possible that in our experiments, the ADFs have not much purpose other
than to provide few extra tree levels of instructions. In our experiments, the
ADF method performance was usually below that of the tree-based method. We
notice that the ADF trees do not shrink enough before the population prema-
turely converges. We think that it would be best to specify a smaller initial and
maximum size of the ADF trees so that the functions require less time to find
optimal configurations.

Table 1. Summary of results from our experiments for each of the studied methods.
Behavioural performance was based on first occurrence of good behaviour. Performance
of each method is scored relative to performance of other methods.

Method Entropy Stability Size Stability Behavioural Performance
Linear GP excellent excellent poor
Tree GP average average average
ADF HGP poor average average
MA HGP average poor average
ARL HGP excellent excellent excellent

The slowest function set growth is observed with the MA method. Most of
the individuals in the populations with good behaviour do not use any of the
functions in the module set. The creation of functions produces program size
loss which in turn often lowers the entropy of the population. The behavioural
performance of the MA method is usually worse than that of the tree-based
method. Since no strong mechanism exists to counteract the loss of program size
and accompanying loss of entropy, the population often converges prematurely
to suboptimal solutions. Probability-based compression and expansion operator
invocation might be replaced by need-based operator invocation similar to those
found in the ARL method. This new operator invocation should lead to bet-
ter behaviour through adjustments of operator frequencies based on population
needs.

The ARL method displays the most stable entropy and average chromosome
size behaviour in most experiments. This behaviour is observed only when func-
tion creation occurs, thus we think that the function creation and new individual
creation processes are responsible for the stability. The method also achieves the
best time and smallest deviation to reach good behaviour in most experiments.
The size of the function set of the ARL method is very dynamic through the runs
of the algorithm. Many of the functions from populations with good behaviour
seem to calculate some form of ratio of the function parameters, thus, we think
that some of the evolved functions were of benefit to the individuals. Influx of
random individuals to the population during evolution can lead to problems
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since too many random individuals would destabilize good solutions present in
individuals of the previous population. We think that a low replacement fraction
used with elitism of best individuals should produce the optimal evolutionary
balance. Elitist individuals would always be copied into the population and would
ensure the fittest individuals are not lost between generations.

Our results indicate that reactive memoryless controllers can be trained to
exhibit some level of proper behaviour for the studied tasks. An extension to
this research would be to study memory-based robotic controllers that can store
previous actions and use them to decide future behaviour. Such controllers using
the linear genome method have been shown in [6] to successfully and quickly
evolve more complex behaviours than a memoryless controller.

We would also like to use a real Khepera robot to verify our results. Physical
robots train in a noisy and sometimes unpredictable environment and would
provide a real world test case for our research.
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