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Abstract- In this paper, we present a new method
for modeling the dynamics of a winding process
using genetic programming and compare it with
traditional modeling approaches. Data sets col-
lected from an actual industrial process was used
throughout the experiments. Three models were
developed to describe the dynamics of the wind-
ing process. Experimental results are presented
and discussed.

1 Introduction

Modeling of physical systems is a complex task repre-
sents a challenge for both system theory and applica-
tions. A typical example of physical nonlinear systems
is a winding processes. Winding systems are major com-
ponents in a wide variety of industrial plans. For exam-
ple, rolling mills in steel industry [1, 2], plants involving
web conveyance [3, 4, 5] including coating, paper mak-
ing and polymer film extrusion processes. In the last
few decades, researcher have studied how to reduce the
computational load associated with the design, analy-
sis and implementation of control techniques in the web
conveyance system [3], in sheet and film processes [5], in
aluminum industries [6], and in steel industries [7].

Currently there is a growing interest of using Evolu-
tionary Algorithms (EAs) to assist building a reasonable
model structure for physical nonlinear systems. Few of
these algorithms are Genetic Algorithms (GAs) [8, 9],
Evolutionary Strategies (ESs) [10] and Genetic Program-
ming (GP) [11, 12]. In [13, 14], Genetic Algorithms and
Evolutionary strategies have been used in the parameter
identification process of nonlinear systems with various
degrees of complexity. In [15], GAs have been success-
fully used to provide an automatic methodology for gen-
erating model structure for nonlinear systems based the
Volterra time-series and least-square estimation (LSE)
was used to identify the model parameters. Using this
methodology an efficient model structure was build to
model the dynamics of the automotive engine.

Evolutionary Algorithms (EA) have been used to
search complex spaces and exploit potential max-
ima/minima in a variety of industrial applications. In
this paper, we develop various model structures for a
winding machine using traditional model building tech-
niques. We also explore the advantages of using GP to

build a suitable model structure for a winding machine.
A comparison between traditional techniques and the
GP based approach using the error minimization crite-
rion is provided.

2 Process Description

Industrial winding processes can be described by contin-
uous differential equations with strong coupling between
the winding components and the strip. The main role
of a winding process is to control the web conveyance
to avoid the effects of friction and sliding, as well as the
problem of material distortion. Material distortion fail-
ure may slow down the production systems considerably,
thus reducing the system productivity and damaging the
quality of the final product.

The winding pilot plant introduced, in this study, rep-
resents a subsystem often met in several and different in-
dustrial processes as rolling mills in metallurgy and web
conveyance system in paper industry. Its main function
is to control the linear speed, the thickness or/and the
tension of a strip.

The machine consists of three sections. The first sec-
tion is the casting section, which casts the molten alu-
minum into a rod of square section area of 10× 10cm2.
The second section is the rolling section which rolls the
rod into a wire of a circular section area of 9mm diam-
eter through six rolling mills driven by a DC motor via
a gear reduction chain. The angular speed of the rolling
mill motor is measured by a taco-generator. The third
section is the winding section which winds the rolled wire
into alternative two vertical spools located in a turret.
Each spool is coupled with an AC induction motor via a
gear reduction. The turret is coupled by AC induction
motor and moves in two directions.

A Programmable Logic Controller (PLC) is used to
control both tension and position of the wire. The PLC
is used also to take measurements that helps in process
identification with a sampling frequency of 10ms.

3 System Equations

Several modeling studies have been proposed to describe
tension behavior in different winding process [1, 3, 4].
Most of those theoretical models are based on the
Hooke’s equation given as follows:
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where:
T tension of the wire (N)
Vw winding spool linear speed (m/s)
Vf feeding linear speed (m/s)
E Young’s modulus of the wire (N/mm2)
l distance between feeding

and winding sections (m)
A cross section of the wire (mm2)

In our winding system:
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2πwsm

60ns
Ri (2)

Vf =
2πwfm

60nf

Dml

2
(3)

where:
wfm feeding motor angular speed (rad/min)
wsm spool motor angular speed (rad/min)
Dlm dim. of last rolling mill (m)
Ri rad. of spool at later i (m)
nf feeding motor gear box ratio
ns spool motor gear box ratio

Ri = (
Dmin

2
+ id) (4)

Dmin dim. of winding spool (m)
d wire dim. (m)

An important characteristic of the winding system
described above is the variation of the winding spool
radius. The radius variations results in a corresponding
variations in the moment of inertia of the winding spool
as follows:

Jw = Ms
RL

2

2
(5)

Jw winding spool inertia (kgm2)
Ms mass of winding spool (kg)

4 Experiments

In this section, we provide three types of models for a
winding machine. For each model a set of 500 input val-
ues was generated and saved, the values of which were a
pseudo random sequence. This input sequence was then
applied to the winding system to obtain the correspond-
ing system output values.

In system identification and parameter estimation we
used to have a test sequence different from that one used

for training. The test sequence is the sequence which the
system will deal with after training. This statement is
also true for different field of science. The difference in
system identification is, we need to use a training se-
quence have more excitation than the testing sequence
thus the values of the estimated system parameters be
robust in certain domain of operation. The robustness
is in the sense of accuracy.

Therefore, a second sequence of 500 input values is
generated from values of another pseudo random se-
quence and is applied to the winding system as well as
to the selected model to check the model performance.
This new sequence is not part of the training data.

The developed model set for each example was em-
ployed based on some priori knowledge that engineer can
gain from experiments. This knowledge may account for
the model order or the number of system states.

4.1 MA-Linear Winding Machine Model

Traditional modeling and identification approaches pro-
vide us with models that help in solving system iden-
tification problems. One of the famous models is the
Moving Average (MA) model. The MA model for a Two-
Input Single-Output (MISO) system can be described in
the following equation.

y(k) =
n∑

i=1

aiu1(k − τi) +
n∑

i=1

biu2(k − τi)

(6)

The system inputs are u1 and u2 respectively. The value
of n is referred to as the “truncation length” of the
model. The criterion of evaluation (i.e. performance)
was defined as the Mean Square Error (MSE) over the
training and testing data.

In the problem under consideration we developed a
moving average model with a truncation length of three
for the winding machine. The selected model structure
is given by the following equation:

ŷ(k) = a1u1(k) + a2u1(k − 1) + a3u1(k − 2)
+ b1u2(k) + b2u2(k − 1) + b3u2(k − 2) (7)

Figure 1(a) and 2(a) show the actual winding machine re-
sponse compared to the developed MA model estimated
response in both the training and testing cases. Figure
1(b) and 2(b) show the prediction error in both the train-
ing and testing cases. It can be seen that the error in
training case is much better than the one in the testing
case. The values of the model parameters computed us-
ing Least Square Estimation (LSE) are presented in Ta-
ble 1. The values of the calculated MSE in both training
and testing cases are given in Table 3.
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Figure 1: (a) Actual and estimated responses-Training
Case; (b) Error difference between the actual and esti-
mated responses
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Figure 2: (a) Actual and estimated responses-Testing
Case; (b) Error difference between the actual and esti-
mated responses

a1 -2.5169 a2 -0.2371 a3 0.9603
b1 -0.3284 b2 -0.5033 b3 -0.3229

Table 1: Values of the a’s and the b’s parameters of the
AR3 model

4.2 ARMA-Linear Winding Machine Model

In this section, we model the dynamics of the wind-
ing machine using the Auto-Regressive Moving Average
(ARMA) model. The ARMA model for a Two-Input
Single-Output (MISO) system can be described by the
following equation:

y(k) =
n∑

i=1

aiu1(k − τi) +
n∑

i=1

biu2(k − τi)

+
n∑

i=1

ciy(k − τi) (8)

y1(k − τi) represents system output response at instant
τi. i ∈ 1, 2, . . . n. The developed model structure is given
by the following equation:

ŷ(k) = a1u1(k) + a2u1(k − 1) + a3u1(k − 2)
+ b1u2(k) + b2u2(k − 1) + b3u2(k − 2)
+ c1y(k − 1) + c2y(k − 2) + c3y(k − 3)

(9)

Figure 3(a) and 4(a) show the actual winding machine
response compared to the developed ARMA model esti-
mated response in both training and testing cases. The
prediction errors in the training and testing cases of the
winding machine are shown in Figure 3(b) and 4(b).
The error in both training and testing cases were sig-
nificantly improved over the MA model. The values
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Figure 3: (a) Actual and Estimated responses-Training
Case; (b) Error difference between the actual and esti-
mated responses

of the model parameters computed using Least Square
Estimation (LSE) are presented in Table 2. The values
of the MSE in both training and testing cases are given
in Table 3.
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Figure 4: (a) Actual and Estimated responses-Testing
Case; (b) Error difference between the actual and esti-
mated responses

a1 -2.8675 a2 1.5076 a3 1.3136
b1 0.0012 b2 -0.0140 b3 -0.0142
c1 0.6774 c2 0.1703 c3 0.1244

Table 2: Values of the a’s, b’s and the c’s parameters of
the ARMA3 model

4.3 GP Winding Machine Model

In this section, GP is used to build a suitable model
structure of the winding machine. The terminal set
used in our case consists of nine input variables and one
ephemeral random constant

T = {u1(k), u1(k − 1), u1(k − 2),
u2(k), u2(k − 1), u2(k − 2),
y1(k − 1), y1(k − 2), y1(k − 3), R} (10)

The ephemeral random constant range was defined as
[-0.005,0.005]. The function set is defined as:

F = {+,−, ∗}
The initial population was generated using the

ramped half-and-half method. The maximum depth of
new individuals was set to be 6, while, the maximum
depth of an individual after crossover was 17. We used
the normal crossover and mutation operators. We ran
GP for 50 generations with a population size of 15000
and crossover and mutation probabilities of 0.7, 0.3, re-
spectively. The best model was found after 49 genera-
tion.

The best model that describes the dynamics of the
winding machine using GP is presented below:

ŷ(k) = −3u1(k) + 3u2(k) + 0.9953y1(k − 1) + 0.00013
(11)

In Figure 5(a) and 6(a), the actual winding machine out-
put and the generated output from equation (10) in pre-
sented in training and testing cases. In Figure 5(b) and
6(b), the error differences between the actual and esti-
mated responses are shown. The mean square error in
both the training and testing cases is given in Table 3.

From the developed models, we can see, the ARMA
model provided a less modeling error than other models.
The GP based model is the simplest developed model
structure. The modeling error in the case of GP is still
acceptable. In this type of application, we are more likely
to prefer simpler model structure to reduce the complex-
ity and the cost of design.
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Figure 5: (a) Actual and Estimated responses-Training
Case; (b) Error difference between the actual and esti-
mated responses
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Figure 6: (a) Actual and Estimated responses-Testing
Case; (b) Error difference between the actual and esti-
mated responses



AR3 Case MSE
Training 436.3556
Testing 2315.20

ARMA3 Case MSE
Training 44.8663
Testing 48.2155

GP Case MSE
Training 56.6132
Testing 60.4261

Table 3: Mean square error using three different models

5 Discussion

In this paper, we have presented three methods for mod-
eling a wire winding machine. These models include tra-
ditional statistical techniques like MA and ARMA mod-
els, and also an EA-based technique, GP. Based upon
the training and testing results of these models, we can
conclude the following:

• The ARMA model provided the least modeling
error as compared to the other models. This is
predictable since the ARMA technique uses both
previous input and output values to predict new
outputs. Thus, it has the capability of building a
model that is likely to perform quite well.

• The GP based model is the simplest developed
model structure with an acceptable performance.
It should be noted that, in this type of applica-
tions, we are more interested in a simpler model
structure with some acceptable error to reduce the
complexity and the cost of the design.

Thus, our first observations about using GP for mod-
eling nonlinear systems are very promising, and we feel
that, with the proper evaluation function and tuning of
the GP system, we can get better results.

6 Conclusions and Future Work

In this paper, we presented the results of applying three
modeling techniques to the wire winding problem. The
ARMA model produced the least MSE. GP was capable
of discovering a simple model structure with acceptable
MSE. From our point of view, GP has an advantage over
ARMA since the evaluation function of the GP controls
the features of the discovered models. Thus, simpler and
accurate models can be discovered using GP by adapting
the evaluation function to the needs of the application.
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