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Abstract- The cell formation problem is a classic
manufacturing optimisation problem associated with the
implementation of a cellular manufacturing system. A
variety of hierarchical clustering procedures have been
proposed for the solution of this problem. Essential for
the operation of a clustering procedure is the
determination of a form of similarity between the
objects that are going to be grouped. In this paper we
employ a Genetic Programming algorithm for the
evolution of new similarity coefficients for the solution of
simple cell formation problems. Evolved coefficients are
tested against the well-known Jaccard’s similarity
coefficient on a large number of problems taken from
the literature..

1 Introduction

The elimination of unnecessary costs is a significant issue in
the design of a modern manufacturing system. The concept
of Group Technology (GT) (Mitrovanov, 1966), (Burbidge,
1975) has been proposed as a guide for the implementation
of cost-effective manufacturing systems that do not require
heavy investment in new equipment. GT states that the
grouping of objects performing similar tasks within a
corporate structure can yield substantial benefits. On the
shop-floor level this proposition is translated as the
grouping of machines into a number of cells that process a
dedicated number of part families. The term ‘cellular
manufacturing’ is traditionally used to describe such a
system. It has been reported (Singh, 1993) that cellular
manufacturing systems reduce set-up costs, work-in-
progress inventories and throughput times while improving
the quality of products and the job satisfaction of workers..

The implementation of a cellular manufacturing system
is a multi-input, multi-stage procedure that requires human
expertise. A particular stage of this procedure, the cell
formation problem, has attracted considerable research
attention during the last thirty years due to its combinatorial
nature. Reviews of alternative solution methodologies that
have been proposed over the years are presented in Selim et
al. (1998) and Dimopoulos and Mort (1999).
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Evolutionary Algorithms (EA’s) have been extensively
used for the solution of manufacturing optimisation
problems (Dimopoulos and Zalzala, 1999). In this paper we
report a novel solution methodology based on Genetic
Programming (Koza, 1992) and a classic hierarchical
clustering procedure.

The remainder of the paper is organised as follows: In
section 2 Jaccard’s similarity coefficient and its relevance to
the solution of the cell formation problem is described. The
GP-SLCA framework for the evolution of new similarity
coefficients is presented in section 3. The performance of
evolved similarity coefficients is illustrated in section 4. The
conclusions of this report are drawn in section 5.

2 Jaccard’s similarity coefficient and the cell
formation problem

Finding the optimal grouping of machines is not an easy
task since the number of possible combinations is
astronomical even for small problem instances (Lee and
Garcia-Diaz, 1993). The use of similarity coefficients
focuses the search for an optimal solution to regions of the
search space where it is more likely to be found. More
specifically, Jaccard’s similarity coefficient, as used by
McAuley (1972) in his pioneering paper, defines the
similarity between a pair of machines as follows:

where:

S;; : similarity between machines i and j

a;; - number of parts processed by both machines i and j

b;; : number of parts processed by machine i but not by
machine j

¢, : number of parts processed by machine j but not by
machine i

Similarity information can be used by a clustering
procedure for the creation of potential machine-cells. In
McAuley’s paper the Single Linkage Cluster Analysis



(SLCA) (Sneath, 1957) procedure was employed for the
construction of a ‘dendrogram’ of potential solutions which
were distinguished by different levels of similarity (an
illustration of McAuley’s procedure is presented in the
Appendix of this paper, Tables A-E). After the machine-
cells were created, part families could be easily identified.
While Jaccard’s coefficient is quite simple and efficient, its
application is independent of the optimisation objective and
relies on the existence of natural groupings of machines. In
this paper we employ a GP platform for the evolution of a
similarity coefficient that will be competitive to Jaccard’s
similarity coefficient on the solution of simple -cell
formation problems.

For the representation of the cell formation problem we
employ the traditional form of the machine-component
(m/c) matrix. The m/c matrix uses binary notation to
indicate the existence of a part operation on a particular
machine in the plant. An example of an m/c matrix is given
in Figure 1.

| pt__p2 p3 p4 ps
ml 0 1 1 0 1
m2 1 0 0 1 0
m3 0 1 1 0 1
m4 1 0 0 1 0
Figure 1: An example of an m/c matrix

The diagonalised m/c matrix is normally used for the
illustration of the created machine cells and the
corresponding part families (Figure 2).

p4 _pl__pS p3 p2
m2 1 1 0 0 0
m4 1 1 0 0 0
ml 0 0 1 1 1
m3 0 0 1 1 1

Figure 2: The diagonalised m/c matrix

3 The proposed methodology for the evolution
of new similarity coefficients

The framework for the evolution of similarity coefficients
utilises Sneath’s SLCA algorithm in the same way as it was
originally proposed by McAuley. However, instead of
Jaccard’s similarity coefficient, a Genetic Programming
evolutionary machine is employed for the construction of a
population of potential similarity coefficients. The
performance of each of the evolved coefficients is evaluated
on a set of cell formation test problems which are used as
fitness cases (see Figure F in the Appendix).

The aim is to create a new similarity coefficient that will
perform at least as good as the man-made Jaccard’s
coefficient on the solution of cell-formation optimisation

problems. The operation of the GP-SLCA procedure in
pseudo-code form is the following:

Procedure Main
initialise population of randomly generated similarity
coefficients
run procedure SLCA for each coefficient
loop
loop
select individuals for crossover or
mutation
apply genetic operators and form
new coefficients
until a new generation has been formed
run procedure SLCA for each coefficient
until termination criterion is true

Procedure SLCA
compute similarity matrix for each fitness case
construct dendrogram for each fitness case
loop for each fitness case
create machine cells for the highest level of
similarity coefficient
assign parts to machine cells
calculate the fitness value of the cell
configuration
if solution is the best recorded so far,
best=current solution
until a single cell has been formed
calculate the sum of best solutions and assign the sum
as the fitness of the individual

The characteristics of the GP algorithm used in this paper
are the following:

Functions: The four basic arithmetic operations (+, -, X, %
(protected division function)) were used for the
manipulation of input variables.

Terminals: The basic elements of Jaccard’s similarity
coefficient were included in the terminal set. In that way it
was hoped that the framework would at least be able to
evolve the formula of Jaccard’s coefficient. In addition, the
variable d; was included in the set. The definition of d, is the
following:
d,; : number of parts processed by neither machine j nor
machine {

Optimisation _objective: The maximisation of grouping
efficacy, /", (Kumar and Chandrasekharan, 1990) was used
as the quality measure for the evaluation of potential
solutions, since it has been employed by a considerable
number of researchers in the field. The value of the grouping
efficacy is calculated as follows:




where:
e: total number of non-zero entries in the m/c matrix

ep: total number of non-zero entries outside the diagonal
blocks (exceptional elements)

e,: total number of zero entries inside the diagonal blocks
(voids)

Fitness cases: The choice of cell formation problems that
will form the set of fitness cases is not straightforward. This
is due to the fact that the cell formation problem is not
parameterised, i.e. its difficulty and structure is usually
expressed qualitatively rather than quantitatively. In our
experiments we collected 27 different test problems from
the cell formation literature (Table 1) and used ten different
combinations of them as training sets.

No. Reference Size
1 Boctor (1991) 16x30
2 ? 16x30
3 ? 16x30
4 ? 16x30
5 ? 16x30
6 ? 16x30
7 ? 16x30
8 ? 16x30
9 Boe & Cheng (1991) 20x35
10 Burbidge (1975) 16x43
11 Carrie (1973) 20x35
12 Chan & Milner (1982) 10x15
13 Chandrasekharan & Rajagopalan (1987)  40x100
14 Chandrasekharan & Rajagopalan (1986) 8x20
15 Chandrasekharan & Rajagopalan (1986) 8x20
16 Chandrasekharan & Rajagopalan (1989) 24x40
17 ” 24x40
18 ” 24x40
19 ” 24x40
20 ” 24x40
21 ? 24x40
22 Kumar et al. (1986) 23%20
23 Kumar & Vannelli (1987) 30x41
24 Seifoddini (1989) 11x22
25 Stanfel (1985) 14x24
26 Stanfel (1985) 3050
27 Stanfel (1985) 3050

Table 1: Test problems used in our experimentation

Additional parameters: The values of the parameters that
are needed for the run of the GP algorithm are described in
Figure 3 (values as suggested in Koza (1992)).

Parameters Values

Objective: evolution of a similarity coefficient
that maximises grouping efficacy in
binary cell formation problems when
SLCA is used as the clustering
procedure

Terminal set: ab,c,d

Function set: + -, %X, %

Population size: 500

Subtree crossover

probability: 9

Subtree mutation

probability: 1

Selection: Tournament selection, size 7

Number of generations: | 50

Maximum depth for

crossover: 17

Initialisation method.: Ramped half and half

Figure 3. Koza tableau for the GP-SLCA methodology

4 Evolution of general-purpose similarity
coefficients

4.1 Results

Twenty runs of the GP-SLCA algorithm were conducted for
each experimental training set. The cumulative results of the
best coefficients evolved are presented in Table 2. For
comparison purposes, the performance of Jaccard’s
similarity coefficient on the same set of problems is also
given. Note that the outlined problems in each column were
used as fitness cases for the evolution of the corresponding
similarity coefficient. The rest of the problems in the same
column formed the validation set.

Results from Table 2 indicate that the GP-SLCA
framework was able to evolve coefficients that generalised
over the entire set of problems. As a measure of the quality
of the generalisation, the mean value of grouping efficacy
was calculated and compared with the same value achieved
by Jaccard’s coefficient (Table 3).

The mean value of grouping efficacy produced by all
evolved coefficients was similar to the one produced by
Jaccard’s coefficient. Coefficient SET10 performed
particularly well on the entire set of problems, producing an
increase 2.6% on average grouping efficacy in comparison
to Jaccard’s coefficient. Since the difference in performance
is relatively small, further research is needed in order to see
if SET10 can be distinguished from Jaccard’s coefficient. A
winner-takes-all comparison of their relative performance
on the test problems is presented in Table 4.




il g &g g &2 g & 2 2 & G

|82 2 & g &g 7 8 2 8§ 7 Z
1 0.5 0471 | 0451 | 0471 0.5 0.467 | 0.438 | 0.438 | 0.490 | 0.467 | 0.471
2 0.615 | 0583 | 0.586 | 0.586 | 0.618 | 0.571 | 0.588 | 0.586 | 0.611 | 0.601 | 0.571

3 0.7 0.698 | 0.698 0.7 0.7 0.7 0.7 0.7 0.7 07, 07
4 0.474 | 0.459 | 0.240 | 0.455 | 0.489 | 0.470 | 0.409 | 0.231 | 0.467 | 0.475 | 0.474
5 0.727 | 0.727 | 0.727 | 0.727 | 0.727 | 0.727 | 0.727 | 0.727 | 0.727 | 0.727 | 0.727
6 0.752 | 0.752 | 0.752 | 0.752 | 0.752 | 0.752 | 0.752 | 0.752 | 0.752 | 0.742 | 0.752
7 0.579 | 0.579 | 0.579 | 0.579 | 0.570 | 0.579 | 0.579 | 0.238 | 0.579 | 0.568 | 0.579
8 0.773 | 0.773 | 0.773 | 0.773 | 0.773 | 0.773 | 0.748 | 0.748 | 0.774 | 0.774 | 0.774
9 0.568 | 0.412 | 0.554 | 0.568 | 0.520 | 0.562 | 0.568 | 0.568 | 0.568 | 0.568 | 0.568
10 0.544 | 0.556 | 0.367 | 0.568 | 0.545 | 0.383 | 0.543 | 0.552 | 0.568 | 0.545 | 0.544
11 0.760 | 0.757 | 0.760 | 0.760 | 0.757 | 0.757 | 0.760 | 0.760 | 0.767 | 0.757 | 0.757
12 092 | 092 092 | 092 0.92 092 | 092 | 0.92 0.92 092 | 092
13 0.840 | 0.840 | 0.840 | 0.840 | 0.840 | 0.840 | 0.840 | 0.840 | 0.840 0.84 | 0.840
14 0.569 | 0.569 | 0.569 | 0.587 | 0.569 | 0.587 | 0.587 | 0.569 | 0.587 | 0.587 | 0.569
15 0.852 | 0.852 | 0.852 | 0.852 | 0.639 | 0.852 | 0.852 | 0.852 | 0.852 | 0.852 | 0.852

16 1 1 1 1 1 1 1 1 1 1 1
17 0.851 | 0.851 | 0.851 | 0.851 | 0.851 | 0.851 | 0.851 | 0.581 | 0.851 | 0.851 | 0.851
18 0.735 | 0.735 |1 0.735 | 0.735 | 0.735 | 0.735 | 0.735 | 0.735 | 0.735 | 0.735 | 0.735
19 0.443 | 0.532 | 0.149 | 0.465 | 0.503 | 0.523 | 0.522 | 0.136 | 0.513 | 0.507 | 0.517
20 0.454 | 0.472 | 0.194 | 0.466 | 0.458 | 0.477 | 0.309 | 0.136 | 0.295 | 0.453 | 0.199
21 0.410 | 0.429 | 0.330 | 0.429 | 0.41 | 0.431 | 0.203 | 0.41 | 0.203 | 0.429 | 0.232
22 0.283 | 0.246 | 0.430 | 0.246 | 0.246 | 0.246 | 0.479 | 0.246 | 0.385 | 0.337 | 0.246
23 0.520 | 0.525 0.6 0.528 | 0.558 | 0.530 | 0.6 | 0.543 | 0.516 | 0.585 ] 0.552
24 0.709 | 0.677 | 0.731 | 0.682 | 0.682 | 0.650 | 0.731 | 0.731 | 0.720 | 0.682 | 0.682
25 0.671 0.7 0.718 | 0.671 | 0.699 | 0.710 | 0.710 | 0.706 | 0.666 | 0.696 | 0.671
26 0.558 | 0.570 | 0.571 | 0.567 | 0.558 | 0.482 | 0.468 | 0.573 | 0.521 | 0.561 | 0.565
27 0.176 | 0.298 | 0.484 | 0.244 | 0.161 | 0.224 | 0.165 | 0.479 | 0.147 | 0.479 | 0.389

Table 2: Cumulative results on test problems

- =

= = = = - = = = 2 = 5

2 82 2 8 8 &8 7 8 2 g
r 0.629 | 0.629 | 0.610 | 0.630 | 0.621 | 0.622 | 0.622 | 0.584 | 0.621 | 0.646 | 0.620

Table 3: Mean value of grouping efficacy
Jaccard’s coefficient better Jaccard’s coefficient worse Jaccard’s coefficient equal
SET10 5 10 12

Table 4: Jaccard’s coefficient vs. SET10 in terms of non-dominated solutions




It is obvious that there is a large number of problems where
the same level of grouping efficacy has been achieved by
both coefficients, thus we cannot safely reject the
hypothesis that the two coefficients are the same. The
Analysis Of Variance (ANOVA) between the two sets of
values confirms this statement (Table 5).

SUMMARY
Groups Count Sum Average Variance
SET10 27 17.438 0.645852 0.027259
JACCARD 27 16.737  0.619889 0.041745
ANOVA
F P-value F crit

0.263753 0.609729 4.026631

Table 5: ANOVA for SET10 and Jaccard’s coefficient
(0=0.05)

From the F-value it is obvious that we cannot reject the null
hypothesis. From the above results we can safely conclude
that the GP-SLCA algorithm was able to evolve similarity
coefficients that performed at least as good as the similarity
coefficient devised by human intuition. It will be interesting
to take a closer look at the structure of the evolved
similarity coefficients. Coefficient SET4 is calculated using
the following formula:

Notice that GP evolves structures that do not follow the
elegant form of Jaccard’s coefficient, but are just as
effective. From the above formula it is clear that the value
of the coefficient is proportional to the values of a and d.
This is expected since these values are indicative of the
similarity of parts processed between a pair of machines.
The structure of coefficient SET10 is much more
complicated, as the following formula depicts:

4d+3bib27ab+ad+|:[FACT0R—d—h—(d+h)ch+hz‘+ab]:|7(c—c ]7[ ad +d +b ]

d(a+b) d+b | \b*c?—a-b*

where FACTOR :

a

(211—3b)(a—b)+ab+db—rlc—a+c+[a—d]
a ad

L+
a [a—b ]/abzt'
d-a

—a+(bc—db—cd—2a+b)d—

The size and the complexity of this particular coefficient
makes the task of explaining its operation quite difficult. It

is still evident that the value of the -coefficient is
proportional to the values of a and d, however, a number of
control terms are also present which seem to fine tune its
value in particular fitness cases. Note that there are two
terms that according to common algebra should have been

simplified:
d
and [a_ )
a

However, due to the operation of the protected division
function, these expressions will evaluate to ‘1’ if the
denominator is equal to ‘0’, which is not an unlikely case.
Thus, they should be considered in this form during the
calculation of the coefficient value.

The generalisation of this coefficient is quite good.
While other coefficients failed to generalise in specific test
problems, SET10 seems to have captured information that is
relevant to the solution of the problem. In problems 19-21,
where the m/c matrices have been custom designed to be
difficult for grouping, Jaccard’s coefficient failed to find fit
partitions. On the same problems SET10 created cell
configurations with much higher levels of grouping
efficacy. On the notorious problem 27, where evolved
coefficients either completely failed to generalise, or their
good performance was not mirrored on the set of validation
problems, SET10 produced an excellent level of grouping
efficacy. While the difference in performance between
SET10 and Jaccard’s coefficient could not be
mathematically confirmed, results on specific test problems
indicate that SET10 was able to handle ill-structured
matrices in a more efficient way.

c—cC

d+b

5 Conclusions

In this paper we investigated the possibility of evolving new
similarity coefficients for the solution of simple cell
formation problems, when SLCA is used as the clustering
procedure.

The proposed methodology employed a GP algorithm
for the creation of potential similarity coefficients. A variety
of test problems comprised the training sets that were used
for the evolution of the coefficients. The GP-SLCA
procedure was able to evolve a number of coefficients that
were competitive to a coefficient devised by human
intuition (Jaccard’s coefficient). While one of the evolved
coefficients seemed to generalise better on ill-structured test
problems than Jaccard’s coefficient, their performance
could not be distinguished statistically. However, there is
potential for the evolution of better coefficients since the GP
system used in this paper can be enhanced in terms of the
population size, if more computational power becomes
available. In addition, the introduction of parsimony
penalties and modularization procedures, like Automatic



Defined Functions (ADF’s) (Koza, 1994) can reduce the
size of evolved coefficients and increase our understanding
of their operation.

Acknowledgments

The authors would like to thank the reviewers for their
helpful comments. The first author is sponsored by the
Greek State Fund (I.K.Y.).

Bibliography

Boctor, F.F. (1991), “A linear formulation of the machine-
part cell formation problem”, Int.J. of Production Research,
vol.29, no.2, pp.343-356.

Boe, W.J., and Cheng, C.H. (1991), “A close neighbour
algorithm for designing cellular manufacturing systems”,
Int.J. of Production Research, vol.29, no.10, pp.2097-2116.

Burbidge, J.L. (1975), The Introduction of Group
Technology, Halste Press, John Wiley, New York, U.S.A.

Carrie, A.S., (1973), “Numerical taxonomy applied to group
technology and plant layout”, Int.J. of Production Research,
vol.11, no.4, pp.399-416.

Chan, H.M., and Milner, D.A. (1982), “Direct clustering
algorithm for group formation in cellular manufacture”,
Journal of Manufacturing Systems, vol.1, no.1, pp.65-75.

Chandrasekharan, M.P., and Rajagopalan, R. (1986),
“MODROC: An extension of rank order clustering for
group technology”, Int.J. of Production Research, vol.24,
no.5, pp.1221-1233.

Chandrasekharan, M.P., and Rajagopalan, R. (1987),
“ZODIAC - an algorithm for concurrent formation of part
families and machine-cells”, Int.J. of Production Research,
vol.25, no.6, pp.835-850.

Chandrasekharan, M.P., and Rajagopalan, R. (1989),
“GROUPABILITY: an analysis of the properties of binary
data matrices for group technology”, Int.J. of Production
Research, vol.27, no.6, pp.1035-1052.

Dimopoulos, C., and Mort, N. (1999), “A genetic
programming methodology for the solution of the cell
formation problem”, Research Report no.759, Department
of Automatic Control & Systems Engineering, University of
Sheffield.

Dimopoulos, C., and Zalzala AMS. (1999), “Recent
developments in  evolutionary = computation  for
manufacturing optimisation: problems, solutions and
comparisons”’, IEEE Transactions in Evolutionary
Computation, in print.

Koza, JR. (1992), Genetic Programming: On the
programming of computers by means of natural selection,
MIT Press, Cambridge.

Koza, J.R, (1994), Genetic Programming Il: Automatic
Discovery of reusable programs, MIT Press, Cambridge,
1994.

Kumar, C.S., and Chandrasekharan, M.P. (1990),
“Grouping efficacy: a quantitative criterion for goodness of
block diagonal forms of binary matrices in group
technology”, Int.J. of Production Research, vol.28, no.2,
pp.603-612.

Kumar, K.R., and Vannelli, A. (1987), “Strategic
subcontracting for efficient disaggregated manufacturing”,
Int.J. of Production Research, vol.25, no.12, pp.1715-1728.

Kumar, K.R., Kusiak, A., and Vannelli, A. (1986),
“Grouping of parts and components in flexible
manufacturing systems”, European Journal of Operational
research, vol.24, pp.387-397.

Lee, H., and Garcia-Diaz, A. (1993), “A network flow
approach to solve clustering problems” Int.J. of Production
Research, vol.31, no.3, pp.603-612.

McAuley, J. (1972), “Machine grouping for -efficient
production”, Production Engineer, vol.51, no.2, pp.53-57.

Mitrovanov, S.P. (1966), The Scientific Principles of Group
Technology, National Lending Library Translation, Boston
Spa, Yorkshire, U.K.

Sarker, B.R., and Mondal, S. (1999), “Grouping efficiency
measures in cellular manufacturing: a survey and critical
review”, Int.J. of Production Research, vol.37, no.2, pp.385-
314.

Seifoddini, H (1989), “Single linkage vs. average linkage
clustering in machine cells formation application”,
Computers & Industrial Engineering, vol.16, pp.419-426.

Selim, M.H., Askin, R.G., and Vakharia, A.J. (1998), “Cell
formation in group technology: review, evaluation and
directions for future research”, Computers & Industrial
Engineering, vol.34, no.1, pp.3-20.

Singh, N. (1993), “Cellular manufacturing systems: an
invited review”, FEuropean Journal of Operational
Research, vol.69, pp.284-291.

Sneath, P.H.A, (1957), “The application of computers to
taxonomy”’, J.of Gen.Microb., vol.17, pp.201-206.

Stanfel, L.E. (1985), “Machine clustering for economic
production”, Engineering Costs & Production Economics,
vol.9, pp.73-81.



APPENDIX

McAuleys clustering algorithm

| pt_p2 p3 p4 ps
mi| 1 0 1 0 0
m2|lo 1 o 1 1
m3|1 o 1 o o
mé| 1 1 0o 1 o

Figure A: Example m/c matrix for the illustration of SLCA

1
S13: 2 :1 Sl4= =O.25 S12: O :0
’ 2+0+0 ’ 1+1+2 ’ 0+2+3
2 1 0
S, 4= =0.5 S.4= =0.25 S,5= =
A Y P M k142 204342

Figure B: Calculation of similarities using Jaccard’s similarity coefficient

| ml m2 m3
m2 0 * *
m3 1 0 *
m4 | 025 05 025

Figure C: Similarity matrix for the example problem
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Figure D: Dendrogram of solutions for the example problem
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Figure E: Potential solutions
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Figure F: Illustration of the GP-SLCA procedure for the evolution of similarity coefficients



