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Abstract- The underlying dynamics of algal species in
freshwater systems are a complex non-linear problem.
Process-based models have been previously developed to
describe the time varying behaviour of chlorophyll-a, a
measure of algal concentration, for these systems. This
paper describes the application of a genetic programming
equation discovery system to study various generalisa-
tions of a process-based model based on a time series dif-
ference equation.

1 Introduction

Developing models for predicting time-varying aspects of
freshwater systems is important both for understanding the
dynamics of these natural systems and as one component of
decision support and management software. The ability to ex-
plore the underlying processes driving a natural system help
the development of approaches to combat unwanted condi-
tions, such as algal blooms, and to better predict when the sys-
tem is moving towards conditions that are undesirable. Pre-
vious work has produced differential equations for describ-
ing dynamic systems [1, 2]. The differential components of
the equations were produced by creating additional variables
as part of the input based on calculating differences between
variables over a time window. The equations were discovered
by a systematic and exhaustive search of a limited part of the
equation space. The approach described here differs from this
work by allowing a larger search space to be investigated us-
ing an evolutionary search technique. Additionally, the equa-
tions produced allow difference expressions to be created that
have not been directly coded as part of the input.

The dynamics of freshwater systems have been studied
for many years, leading to the development of many forms
of process-based models to describe their behaviour. These
models are stated as partial differential equations describ-
ing how population dynamics change over time. Solutions
to these process-based models are often expressed as differ-
ence equations of the form F (t+ 1) = G(F (t); v1; : : : ; vn),
where F (t) represents the magnitude of the variable of in-
terest at time t,G is a function developed from the differential
equation, and v1; : : : ; vn are exogenous and endogenous vari-
ables.

This paper describes the application of a genetic
programming(GP)[3] system to study various generalisations

of a standard process-based model for predicting the time
varying composition of chlorophyll-a. The language repre-
senting the various models is denoted by a context-free gram-
mar, which imposes certain structure on the possible pro-
grams that may be evolved. A set of daily data for a five year
period, which describes water quality dynamics at Lake Ka-
sumigaura in the south-eastern part of Japan, is used for this
study. This data has been previously modeled using artificial
neural networks [4, 5] and a context-free grammar version of
GP[6].

The paper is structured as follows: section 2 describes
the basics of phytoplankton, the chlorophyll-a data is de-
scribed in section 3, the process-based model for predicting
chlorophyll-a is described in section 3.2, the genetic program-
ming system is described in section 4, the resulting evolved
models are described in section 4.4, modifications to the
process-based model are described in section 5 and conclu-
sions are drawn in section 6.

2 The Ecology of Phytoplankton

Figure 1: A Simple Model of Phytoplankton Dynamics

Phytoplankton are a community of microscopic plants
which exist in suspension in aquatic environments [7]. They
include representatives of several groups of algae and bacte-
ria and are usually distinguished by being freely floating and
dependent on water movement for maintenance and transport.
All algae species rely on light for photosynthesis and require
nutrients such as nitrogen and phosphorus for growth and
reproduction[8]. Other factors which determine their growth
include water temperature, thermal stratification of the water
column, grazing from zooplankton and competition. The re-
liance on light for growth produces a seasonal pattern to the
phytoplankton community, although this signal may be al-
tered by changes in any of the previously mentioned factors.



Variable Av � Std.Dev Units

Ortho Phosphate (p) 14:14� 25:71 Mg/l
Solar Radiation (l) 1281� 671 MJ/m2

Water Temperature (t) 16:36� 7:79 ÆC
Cladocera (cl) 169:87� 156:37 inds/l
Copepoda (co) 221:69� 83:67 inds/l

Chlorophyll-a (chla) 74:43� 42:51 Mg/l

Table 1: Lake Kasumigaura Water Quality Variables

The system displays a highly non-linear behaviour which de-
pends on climatic conditions, nutrient loads and the dynamics
of the aquatic food chain. A simple model of the dynamics
for the growth of phytoplankton is shown in Fig. 1. Pho-
tosynthesis and respiration, which control the growth of the
community, are driven by light, temperature and nutrients.
The population also increases by immigration (especially in
river systems). Decreases in the population occur from death
at the end of the life cycle, grazing from zooplankton, such as
Copepoda and Cladocera, and emigration from the neighbor-
hood.

The most commonly used biomass estimators for a com-
munity of phytoplankton are chlorophyll and carbon [9].
Chlorophyll-a represents the photosynthetic pigment, which
is directly correlated with the amount of phytoplankton in a
waterbody.

3 Lake Kasumigaura Data

Lake Kasumigaura is situated in the south-eastern part of
Japan. It is a large, shallow water body where no thermal
stratification occurs. Water temperatures vary widely, ranging
from 4Æ in winter to over 30Æ in summer. The lake has high
nutrient loadings and therefore phytoplankton abundance is
high for the majority of the year. Given the reliance on light
and temperature for growth there are clear seasonal patterns
in the data.

A description of the variables used for this study are shown
in Table 1. The data set is composed of five years of daily data
from 1989-1993 inclusive.

3.1 Training and Test Data

The data set has been divided into a 2 year training set
(1989� 1990) and a 3 year test set (1991� 1993), as shown
in Fig. 2. This division was selected based on the fact that
the later years exhibit a greater range of chlorophyll-a and
are therefore more difficult to model. A previous study us-
ing this data [6] developed models by using non-consecutive
years for testing. Because this study will evolve difference
equations that rely on the previous predicted value to predict
the current value it is necessary to use consecutive days when
training and testing the evolved models.

Chlorphyll-a Training and Test Data
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Figure 2: Training and Test Chlorophyll-a Data

3.2 A Process-Based Model for Chlorophyll-a

chlat+1 = chlat + chlat � (Phot�Resp) (1)

�chlat � (co+ cl) � 0:00008

Phot = (0:0667 � t) �
0:0206 � l

22:4 + 0:0299 � l
�

(

p

chlat

1:36

X
+ p

X
+ 1:36

chlat
+ p

chlat

)

X = 4:613 � chla0:328
t

Resp = (0:0018 � t) + 0:2638 � Phot

Process Equation for Chlorphyll-a
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Figure 3: Chlorophyll-a Prediction using Eqn. 1

Equation (1) was developed based on process understand-
ing of phytoplankton dynamics [10]. This equation includes a
growth component based on phytosynthesis and a decay term
based on grazing by the zooplankton species Copepoda and
Cladocera. Note that immigration and emigration are not in-
cluded in this equation, however for a lake environment these
terms may be assumed to be negligible. The constants of the



original equation were determined from laboratory measure-
ments in an idealised situation. For a particular freshwater
system these constants need to be calibrated. For this study
the constants of Equation (1) have been calibrated based on
the 2 years of training data, using a hill-climbing mutation
and constraining the original constant values to within�20%
of their experimentally determined values. The resulting dif-
ference equation had a root mean square error (RMSE) of
28:05 for the training data and 37:8 based on the unseen test
data for the years 1991-1993. The predicted chlorophyll-a
pattern is shown in Figure 3.

4 The Grammatical GP System

The context-free grammar GP system CFG-GP [11, 12] was
used to explore possible equations for this study. CFG-GP
extends the standard genetic programming approach by us-
ing a grammar to define the language of possible sentences
that may be expressed by the system. The grammar is used
to generate the initial random population of equations and to
control the structure of evolved equations in later generations.
Crossover and mutation are performed on the derivation trees
representing the equations, which ensure that these operators
do not produce strings outside the language defined by the
grammar. The grammar allows a declarative definition of the
language bias for the problem under consideration, and there-
fore is suitable for studying various structural constraints on
the form of evolved expressions.

A context-free grammar was used to define the space
of possible expressions that can be evolved to model
chlorophyll-a concentration. All grammars were allowed to
express equations using the input variables from Table 1.
Equation (1) uses the previous predicted value of chlorophyll-
a to predict the current value of chlorophyll-a. To allow the
comparison between the evolved and process equations the
evolved equations could also use the previous predicted value
as part of the current time step prediction. For all experi-
ments the population was set to 1000 and allowed to evolve
for 50 generations. The fitness measure used was the root
mean square error, which the evolving population attempted
to minimise over the 2 years of training data. Each setup was
run 30 times and the program with the lowest RMSE based
on the training data was selected as the best program. Further
details regarding the setup for each experiment are given in
the relevant section.

4.1 The Most General Grammar Ggeneral

Ggeneral =
fS;

N = fRES; Tg;P
= f+;�;�; =; pow; p; l; t; cl; co; chlat;<g;

P =
fS ! abs RES

RES ! T

T ! + T T j � T T j � T T j = T T

T ! pow T <[0:0� 1:0]
T ! p j l j t j cl j co j chlat j <[�50:0� 50:0]
g

g

The grammar Ggeneral does not impose any structure to
the possible form of the evolved equations, and therefore it is
possible for Equation (1) to be expressed as part of the lan-
guage. Note that for all examples the absolute value of the re-
sult is taken to ensure positive values for the prediction. This
bias is valid since chlorophyll-a measures are always � 0.
The pow function allows arbitrary expressions to be raised to
a power: xy, where y ranges between zero and one. Note that
real numbers in the inclusive range [x .. y] are represented
in the grammar as <[x � y]. For example, random real num-
bers in the range�50:0�50:0 are defined as part of the basic
terminals for the language, derived from the nonterminal T .
Crossover and mutation were applied to the nonterminal set
fTg with a probability of 90% and 5% respectively.

4.2 A Growth-Decay Grammar

Ggrowth�decay =
fS;

N = fRES;G;D;GT;DTg;P
= f+;�;�; =; abs; pow; p; l; t; cl; co; chlat;<g;

P =
fS ! abs RES

S ! � G D

G! abs GT

GT ! + GT GT j � GT GT

GT ! � GT GT j = GT GT

GT ! pow GT <[0:0� 1:0]
GT ! p j l j t j chlat j <[�50:0� 50:0]
D ! abs DT

DT ! + DT DT j �DT DT

DT ! � DT DT j = DT DT

DT ! pow DT <[0:0� 1:0]
DT ! co j cl j chlat j <[�50:0� 50:0]
g

g

The grammar Ggrowth�decay defines equations where
the resulting chlorophyll-a prediction is of the form
growth(p; l; t; chlat) � decay(cl; co; chlat). The growth
component is a function of phosphorus, light, temperature
and the previous predicted chlorophyll-a value, whereas the
decay component is a function of cladocera, copepoda and the
previous predicted chlorophyll-a value. This follows the basic
structure of Equation (1) however no internal structure is im-
posed on the form of either of these functions. Note that the
absolute value of both the growth and decay terms are used
so that the decay term is guaranteed to be subtracted from the
growth term. Crossover was applied to the nonterminal set
fG;D;GT;DTg with a probability of 90% and mutation to
the set fGT;DTg with a probability of 5%.



Technique Training (RMSE) Test (RMSE)

Process Equation 28:05 37:88
Ggeneral 19:44 32:79

Ggrowth�decay 17:86 33:0
Gdiff 14:13 32:18

Table 2: Resulting Errors for Training and Test Predictions

4.3 Generalised Difference Equation

Gdiff =
fS;

N = fRES;GD;ABSG;ABSD;G;D;GT;DTg;P
= f+;�;�; =; abs; pow; p; l; t; cl; co; chlat;<g;

P =
fS ! abs RES

RES ! + chlat GD

GD ! � ABSG ABSD

ABSG! abs G

ABSD ! abs D

G! � chlat GT

GT ! + GT GT j � GT GT

GT ! � GT GT j = GT GT

GT ! pow GT <[0:0� 1:0]
GT ! p j l j t j chlat j <[�50:0� 50:0]
D ! � chlat DT

DT ! + DT DT j �DT DT

DT ! � DT DT j = DT DT

DT ! pow DT <[0:0� 1:0]
DT ! co j cl j <[�50:0� 50:0]
g

g

The grammar Gdiff generalises Equation (1) by con-
straining equations to the structure:

chlat+1 = chlat+chlat�f�(chlat; p; l; t)�'(cl; co)g (2)

where � and ' represent functions based on the given argu-
ments. Note that ' is not a function of chlat, to be consistent
with Equation (1). Crossover was applied to the nonterminal
set fG;D;GT;DTg with a probability of 90% and mutation
to the set fGT;DTg with a probability of 5%.

4.4 Results

The resulting errors for each technique are summarised in Ta-
ble 2. The three evolved equations are significantly better at
the 90% level (based on RMSE) than the original difference
equation, however they are all similar in performance to each
other. By examining Figs. 4,5 and 6 it is clear that each equa-
tion performs worse for the test years. Interestingly, although
Gdiff has the lowest test RMSE, when Figs.4,5 and 6 are
compared, Gdiff does not appear to predict the test years as
well as Ggeneral or Ggrowth�decay. This is partially a prod-
uct of the fact that the RMSE is not always the best measure

of similarity for a time series, given that similarity is a sub-
jective concept [13]. In fact, this is a good example where our
intuitive notion of a good fit to a time series and the measure
produced using RMSE do not coincide. Note that all of the
equations described in this paper failed to predict the peak
value at the end of 1992. Further work is required to deter-
mine whether the variables used in this study are adequate for
representing this peak in the data. Equation 3 was the best
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Figure 4: Chlorophyll-a Prediction using Ggeneral

Growth-Decay Equation Training/Test for Chlorphyll-a
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Figure 5: Chlorophyll-a Prediction using Ggrowth�decay

evolved solution using Ggeneral, based on the training data.
The equation is a function of water temperature, phosphorus,
copepoda and the previous chlorophyll-a prediction value.

chlat+1 = abs[chlat � f
t0:32 + 4t

t2p
g+

co0:789

t0:0081
+ t1:358] (3)

The attraction of this solution lies in its simplicity. The sur-
prising result for this solution is that the previous value for
chlorophyll-a has been used as one of the variables in the
equation. Since it is very easy to construct equations that



create very poor predictions when using chla t, due to posi-
tive feedback, most equations which use chlat are not passed
to future generations and become scarce in the population.
It would be interesting to study the lineage of this type of
program creation to see how these terms survive. It is likely
that the mutation operator has introduced the term later in
the evolution of the population although this would have to
be tested. Equation 4 was the best evolved solution using
Ggrowth�decay, based on the training data. The equation is
a function of all variables except for solar radiation, and is
dominated by water temperature.

chlat+1 = abs[t+ 2chla0:719
t

�
chla0:517

t

t0:517
(4)

+f
34:92

(p+ 17:19)
+

t

p
+ 2tg0:719]

�abs[
chlat + 6cl� 12co� 61:477

co
]

The exclusion of solar radiation may be due to the fact that
water temperature is largely determined by radiation and wa-
ter depth. Equation 4 is more complex than the generalised
equation, due to the language bias that was imposed.

Evolved Difference Equation for Chlorphyll-a
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Figure 6: Chlorophyll-a Prediction using Gdiff

Equation 5 was the best evolved solution from the 30 test
runs using Gdiff , based on the training data.

chlat+1 = abs[chlat + chlat � f�(chlat; p; l; t)� '(cl; co)g] (5)

�(chlat; p; t) = abs[
t2

chla2
t

�
(p� chlat)

31:77
�

1

(chlat � 2t� 5:31)
]

'(cl; co) = abs[0:0056 �
cl

co
]

Although Equation 5 had the lowest RMSE compared with
all other equations, the shape of the predicted chlorophyll-a
does not appear to capture the variation in concentration as
well as the previous equations.

5 Learning Modifications to the Process-based
Model

The previous sections have evolved difference equations to
predict chlorophyll-a concentration by following various con-
straints based on the process-based model described in sec-
tion 3.2. Although the functional relationships for the pro-
cess model were followed by various generalisations of the
grammar defining the program, the models that have been
produced have not helped to produce a better theory of
chlorophyll-a modelling. This section will consider other
approaches to extending the process-based model by search-
ing for new representations of one component of the process
model, a single component at a time. For example, the pho-
tosynthesis, respiration or grazing terms could be evolved
within the original process-based model framework, while
keeping the other factors in the model constant.

To demonstrate this concept, the grazing term from Equa-
tion 1 will be evolved within the original model. The purpose
is to search for a better representation of the grazing term in
relation to the experimentally determined process model. The
original grazing term was �chlat � (co+ cl) � 0:00008. Two
approaches will be described; the first will evolve a grazing
term of the form chlat � �(co; cl); the second will allow the
chlat variable to be used more then once in the grazing term,
in other words, the grazing term is a function of all three vari-
ables: �(chlat; co; cl). Note that both equations do not allow
the use of the � operator, to ensure that the grazing term is
always positive and therefore, when substracted, always low-
ers the predicted chlat+1 concentration. The following gram-
mars represent the two grazing equations that will be evolved.

Ggrazing1 =
fS;

N = fGTg;P
= fchlat;+;�;�; =; sinh; cosh; exp; cl; co;<g;

P =
fS ! � chlat GT

GT ! + GT GT j � GT GT

GT ! = GT GT j exp GT

GT ! sinh GT j cosh GT

GT ! <[0:0� 0:0001] j <[0:0� 10:0]
GT ! co j cl

g

g

Ggrazing2 =
fS;

N = fGTg;P
= fchlat;+;�;�; =; sinh; cosh; exp; cl; co;<g;

P =
fS ! GT

GT ! + GT GT j � GT GT

GT ! = GT GT j exp GT

GT ! sinh GT j cosh GT

GT ! <[0:0� 0:0001] j <[0:0� 10:0]
GT ! co j cl j chlat



g

g

Both equations were evolved using a population size of
1000 and evolved for 50 generations. Crossover was set to
90% and mutation 5% over the nonterminal fGTg. Each
setup was run 20 times, and the best result based on the train-
ing example selected as the solution.

5.1 Resulting Grazing Equations

The best solution for Ggrazing1 had a training error of 28:5
and a test error of 35:42. Note from Table 2 that these results
are comparable with the original difference equation. Since it
was not possible to significantly improve on the original equa-
tion, when constrained to only use co and cl as variables, it
is possible to conclude that this form of equation is an appro-
priate formalisation of the model. The grazing term produced
using Ggrazing1 was:

chlat � 0:000048 � [2co+ cl + 0:000069+ (6)

(0:000069cl+ 0:000069co)cosh(
cl

co
)]

Evolved Grazing(1) Equation for Chlorphyll-a
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Figure 7: Chlorophyll-a Prediction using Ggrazing1

Equation 6 is basically the same form as the original graz-
ing term and can be simplified to chlat�0:000048�(2co+cl),
since the cosh terms are multiplied by a factor of 10�10 and
therefore can be ignored. The resulting prediction is shown
in Figure 7. The main difference compared with the orig-
inal definition is the increased dominance of the Copepoda
term. Note that the constant 0:000069 appears a number of
times in Equation 6. This is a result of the crossover operator
propagating useful sub-expressions, which contain this con-
stant, through a number of generations to construct the solu-
tion. Because the constant was associated with good partial
solutions it has spread throughout the population. In terms of
producing process equations this is a useful side effect of the
technique, since it allows the possibility of general constants
in an equation to be discovered.

Evolved Grazing(2) Equation for Chlorphyll-a
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Figure 8: Chlorophyll-a Prediction using Ggrazing2

The best solution for Ggrazing2 had a training error of
22:26 and a test error of 29:63. The resulting predicted curve
is shown in Figure 8. These results were a significant im-
provement over the original process model at the 90% level.
The grazing term produced using Ggrazing2 was:

exp( chlat

18:0312
)

co
� (

18:0312

chlat
+ cl

co
+ cl + co

28:8591

chlat
+ chlat

) (7)

Note that the constant 18:0312 is repeated in this equation,
and an interesting question appears as to whether 28:8591
should also be replaced by 18:0312. This would indicate a
general constant in the grazing term that could be given some
meaning related to how the system is functioning. These con-
siderations, however, are beyond the scope of this prelimi-
nary work. The form of Equation 7 is reminiscent of hyper-
bolic/inverse hyperbolic relationships that are quite common
in resource dependent dynamics. This is a promising outcome
of the work and shows that it may be possible to use this data-
driven approach to reconstruct and extend theories regarding
freshwater system dynamics.

6 Discussion and Conclusion

Each of the evolved difference equations have produced
significantly better predictors of chlorophyll-a, based on a
RMSE measure, compared with the original process-based
model. Future work will use this approach to explore and
develop new physical interpretations of chlorophyll-a mod-
els and to determine whether they represent any underlying
process knowledge. The main contribution of this paper is in
demonstrating that difference equations may be evolved using
the genetic programming framework. The use of a grammar
to declaratively represent language bias has also been demon-
strated as a useful tool when exploring forms of language and
the structure of solutions.

One important conclusion of this work is that for each type



of equation the previous predicted value of chlorophyll-a was
found to be useful in predicting the current value. This is par-
ticularly interesting in relation to the equation created using
Ggeneral, given that this language did not require chla t to be
included as part of the solution. This form of equation follows
the standard approach to developing process-based models
and therefore supports the general framework currently used
by ecologists when describing population changes. The use
of previous values in time series to predict the current value
for a model also suggests that this approach can be extended
to explore the time dependent nature of a system. By allow-
ing all independent variables to express previous as well as
current values the time lags for a system should be able to be
explored.

The preliminary work described in Section 5 shows some
promise. Equation 6 supports the current linear representa-
tion of grazing based on the original process-based equation.
The more general expression of Equation 7, with the subse-
quent improvement in prediction, suggests that the grazing
term is not a linear function of the current chlorophyll-a con-
centration. The similarities with resource dependent dynam-
ics indicates that the work has the possibility of extending
current process understanding, which will agree with the the-
ory of general non-linear systems. However, further work is
required before any conclusive results can be stated.

Reducing the overall search space is a desirable goal for
any problem domain when applying an evolutionary learn-
ing system. Research is currently underway to consider how
knowledge of the units (see Table 3) required by an equation
can be used to reduce the possible legal combinations of vari-
ables, and therefore reduce the search space of the problem.
For example, the form of Equation 7 should produce a result-
ing value in terms of Mg=l, however the resulting grazing
term has units Mg:l

l2+Mg2
. Logically this is not a valid expres-

sion, even though the resulting grazing equation does produce
significant results. Limiting equations that satisfy the con-
straint imposed by the units definition is a requirement that
will be explored in the near future.

The use of RMSE for measuring the fitness of individuals
has been mentioned in Section 4.4. Since this measure does
not directly incorporate any shape information, in the form
of slope or shape measures between data points, it is possible
for an equation with a low RMSE to be selected which does
not satisfy our subjective concept of similarity. Work is cur-
rently underway to produce a set of classifications to assist in
the selection of appropriate fitness measures when using time
series data.
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