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Abstract-
Genetic programming (GP) was used in an experiment

to investigate the possibility of learning rules that trigger
adaptive mesh refinement. GP detected mesh cells that
required refinement by evolving a formula involving cell
quantities such as material densities. Various cell vari-
able combinations were investigated in order to identify
the optimal ones for indicating mesh refinement. The
problem studied was the high speed impact of a spheri-
cal ball on a metal plate.

1 The problem of optimal mesh refinement

It is sometimes impossible or too costly to carry out physical
experiments to investigate an engineering design. Instead,
fast computers can undertake a computational experiment,
or simulation of the Physics of a real experiment, which
implements a numerical method to approximate the solution
of the partial differential equations (PDEs) that describe the
physical situation.

Usually PDEs are numerically solved with the Weighted
Residuals Method (WRM) [3]. Examples of WRM are the
Finite Element Method (FEM) [1] and the Finite Difference
Method (FD) [2]. These divide the geometry of the exper-
iment into a number of points or cells that are collectively
known as a ‘grid’ or a ‘mesh’. Over these points the PDE
derivatives are defined and integrated using approximating
functions. The WRM approximation should converge to the
analytical solution of the PDE as the spacing between grid
points decreases and also as the order of the functions in-
creases (h-p method).

By definition the WRM requires a choice for its ‘test’ or
‘weighting’ function and a choice for its ‘trial’ or ‘shape’
functions. However, the most significant choice is whether
the test function itself is symmetric or skewed and this is
completely determined by the type of PDE that needs to be
solved.

The PDEs that describe structural engineering problems
are elliptic and contain even order derivative terms. With
these, WRMs with a symmetric test function possess a math-
ematical property that ensures that they converge in an ‘op-
timal’ fashion to the analytical solution. Examples of these
WRMs are the FD with central differencing and the Galerkin
FEM. Under some assumptions the Galerkin FEM can be

shown to be equivalent to the Ritz method [5]. The approxi-
mation is called ‘optimal’ as it equates to the minimization of
a quadratic functional - the Hessian matrix � in the system
of FEM equations ���� � � is positive definite, making the
FEM approximation � a global minimiser of the functional
� � �

��
���� ���� �.

The structural engineering PDEs tend to have smooth so-
lutions. And so consequently, the WRM that discretises the
domain into a number of equally spaced points, the ‘uniform
grid’ or ‘uniform mesh’, converges to an accurate result.

Uniform grids, however, are not appropriate for PDEs
that describe Fluid Dynamics, Heat Transfer, and Combus-
tion because these PDEs contain first order derivatives. The
equivalence of the Galerkin FEM and the Ritz method breaks
down for these problems as the Hessian � is no longer pos-
itive definite. Two strategies exist to alleviate this problem:
(a) refining the grid by reducing the distance between the
grid points in places where the solution gradient is large -
to reduce the contribution of the discrete advection terms to
� , and/or (b) skewing the test function along characteris-
tic directions, streak lines or streamlines, to recover a more
elliptic system. Failure to adopt either or sometimes both
strategies results in unstable and inaccurate solutions.

Strategy (b) presents mathematical difficulties. Though
we know how to construct the optimal test function for a
linear ODE case (1D), i.e. the Hemker function for the
steady-state convection-diffusion equation, an optimal test
function for the linear PDE case, i.e. 2D, 3D, is not a tensor
product of the 1D function. Nor in CFD, save for trivial
examples, is it is a function skewed along a streamline. As
showed by Morton [4], the optimal test function is extremely
complex. FD practicing engineers have never used it con-
fusing the issue with discussion of truncation error. FEM
schemes, e.g. SUPG [6], are equally sub-optimal in general.
Solving the PDEs with a sub-optimal test function means
solving the wrong PDE. Usually it gives a solution which is
deceptively smooth [8] losing the power of prediction, i.e. a
numerical result will not match an experimental result.

Strategy (a) refines the grid selectively and is usually im-
plemented iteratively. For example, the transport terms in the
Navier-Stokes equations are usually linearized via a Picard it-
eration or Newton method, and a grid refinement rule is eval-
uated at each iteration based on current gradients. In time-
transient PDEs - a pseudo time stepping explicit method, or



a time stepping implicit method - the mesh refinement rule
can be embedded in the time stepping.

Strategy (a) without strategy (b) requires excessive mesh
refinement to control sharp boundary layers. And for prob-
lems that involve shocks, strategy (b) must be in force if we
wish to get any result at all, and is popularly referred to as
an artificial viscosity scheme.

On some PDEs with certain boundary conditions the grid
may need to be refined gradually - the cell size should not
change abruptly - or may need to avoid distorting the shape
of the computational cells as this could promote wave re-
flections and introduce artificial numerical effects. It is also
usually required to design the grid for computational effi-
ciency, i.e. the implementation minimizes indirect memory
addressing, and/or inter process communication for solution
of the PDEs on parallel supercomputers.

2 Discovery of mesh refinement rule with Ge-
netic Programming

A grid refinement rule [9] compares the magnitude of the
gradients in the current solution to the local grid spacing
and decides how and where to refine the mesh: either in the
next iterative step, or perhaps refine the grid and re-compute
the current step. It may also de-refine a grid, i.e. remove
grid points or move them farther apart.

The grid is called ‘structured’ when grid cells are of the
same geometry (e.g. quadrilateral, triangular) and each cell
is always surrounded by the same number of neighbouring
cells. And a grid is ‘unstructured’ when cells have various
numbers of neighbouring cells. However, a structured grid
of square cells can be locally refined in a nested fashion by
sub-dividing square cells into internal square cells, and the
resulting mesh is ‘unstructured’ as described in reference [9].

Popular grid refinement rules are not sophisticated. They
compare the current localised solution gradient in a cell to a
threshold to decide whether to refine or de-refine. Grid re-
finement rules are ideal candidates for optimisation with an
evolutionary method. Rules need to be more sophisticated
to address the following list which is not exhaustive: (a)
computational efficiency, (b) non-linear continuation and ac-
curacy. In the rest of the paper Genetic Programming (GP)
is used to discover a rule that satisfies a modest example
objective from this list.

3 Test Problem

Numerical solution of a system of non-linear time-transient
and axi-symmetric PDEs, simulates the experiment whereby
a tungsten ball impacts on a steel plate at great speed. Its
solution for a number of time steps was approximated on
the Cray supercomputer using a FD WRM with a uniform
mesh of 60 by 60 square cells. The time integration scheme
produced visual output after each time-frame, i.e. a time-
frame is a plot of results on the 3600 cells in the mesh after

a given number of time steps, see Fig. 6.
We explored the idea of asking the investigator (physicist,

engineer) to judge the suitability of the grid at a given time
step, i.e. to produce a ‘truth’ of grid cells that merit further
refinement for the numerical solution at the following time
frame. These cells lie in areas where important physical phe-
nomena, e.g. shocks or tensile waves, are recognised by the
expert, as opposed to areas where numerical phenomena, e.g.
internal wave reflections at cell interfaces or noisy boundary
conditions creating numerical waves, are evident.

The experiments discussed in the rest of the paper re-
quired that Genetic Programming reverse engineer a grid re-
finement rule that should be more elaborate than the usual
grid refinement rule based on a local density gradient [9], as
it accounts for the bias of a human expert.

The PDE system of momentum and energy equations is
described in reference [9] and involves a quantity set, �� for
the three materials corresponding to air, ball, and plate. For
example, densities for the three materials are denoted by the
symbols ��, �� and ��.

The pressure plots for the first six time-frames were
shown to our expert who quickly identified a number of
physical phenomena, e.g. shocks and tensile waves, together
with other features that amounted to numerical noise. Our
expert helped us to label the areas of the mesh, the cells,
where the interesting physical phenomena occured for each
of the six time-frames. We considered whether a general pur-
pose evolutionary technique such as GP could discover the
rule or relationship between gradients of the nodal values of
density, velocity and internal energy that could mark the cells
containing the interesting features as candidate cells for mesh
refinement, as had been indicated by our expert. The rule as
evolved with training data from a ‘training’ time-stage would
also need to be general enough to predict the marked cells
at a ‘test’ time-frame as explained in section 3.2.

3.1 Parameters for Genetic Programming

Details of our steady-state GP implementation are summa-
rized in Table 1. Tournament selection was used to select
an individual with a relatively low fitness for replacement
(a kill), and to select one or two individuals with relatively
high fitness for regeneration (breeding). The regeneration
operators were randomly selected as prescribed by set prob-
abilistic odds. Cross-over involved combining two randomly
selected sub-trees, one from each parent individual. Mu-
tation involved randomly selecting a constant terminal in a
single parent and randomly resetting its value.

Two types of terminal input were devised in order to en-
able GP trees to process time-frame data directly: half-radial
gradients (HRGs) and full-radial gradients (FRGs). An HRG
was the absolute difference between a quantity in a cell and
the same quantity in an adjacent or diagonal neighbour. An
FRG was the absolute difference between a quantity in a
cell neighbouring a given cell and the same quantity in the
neighbour on the opposite side of the given cell, thus be-



Parameter Description
Terminals integers (-128 to 127);

+ve reals (0.005 to 1.0 in 0.005 steps);
-ve reals (-1.0 to -0.005 in 0.005 steps).

Functions �	
, ���, +, -, *, protected division.
Regeneration 95% cross-over; 5% mutation of cons.
Fitness figure of merit (FOM - see text).
Population 5000
Max nodes 1000
Kill tour. size 2: for steady-state GP,
Breed tour. size 4: for steady-state GP.
Max gens. 20

Table 1: GP parameters.

ing similar to an HRG but involving a distance of two cells.
Therefore, a cell was associated with 8 HRGs and 4 FRGs.
However, these gradients were not used directly as terminal
inputs in order to avoid problems regarding rotation invari-
ance. Instead, the statistics for each type of gradient shown
in Table 2 were defined as terminal inputs.

Gradient type Statistic Symbol
HRG average ��
HRG standard deviation �

HRG minimum ��
HRG maximum ��
FRG average ��
FRG standard deviation �

FRG minimum ��
FRG maximum ��

Table 2: Terminal inputs based on gradient statistics.

The cell quantities pertaining to individual materials
(i.e. the densities and energies) were set to zero if the as-
sociated material was absent from a given cell. The terminal
inputs accounted for this by setting a gradient to zero when
either of the two associated cells had the relevant quantity
equal to zero. For example, every cell in a time frame had a
value for the density of the ball but only cells on the ball had
a non-zero value for this quantity. Hence, if the gradients
pertained to the density of the ball, a cell in the centre of the
ball would be associated with 8 non-zero HRGs, a cell on
the edge of the ball would be associated with less than with
8 non-zero HRGs and a cell away from the ball would not
be associated with any non-zero HRGs. Therefore, the gra-
dient statistics were only calculated from non-zero gradients
and were themselves set to zero in the event of all gradients
being zero.

3.2 Training procedure

All of the experiments discussed below used the same train-
ing procedure. Mesh pressure plots were manually scruti-
nised for a number of time-frames in order to judge which

cells required refinement. The time-frames TF2 and TF3
were chosen as the training time-frame and the validation
time-frame respectively. Table 3 gives the number of manu-
ally designated refinement cells which corresponded to each
material in these time-frames.

Time-Frame Ball Plate Overlap Total
training (TF2) 38 46 3 81
validation (TF3) 52 67 9 110

Table 3: Number of refinement cells manually designated
for the different materials in the training and validation time-
frames. The overlap column gives the number of refinement
cells containing the ball and the plate.

Training involved processing all the manually designated
refinement cells in TF2 and 1500 non-refinement cells. The
latter were chosen such that � � �� (i.e. positioned in the
left half of the time-frame which was where the impact was
located) and such that each cell was at least one cell away
from any refinement cell. Non-refinement cells which were
neighbours to refinement cells (including diagonal neigh-
bours) were termed as limbo cells because they represented
‘indifferent’ cells, and GP neither rewarded nor punished
their detection.

Each tree output a real value ��� in response to each train-
ing cell and the result for each training cell was classified ac-
cording to the conditions in Table 4. For example, if ��� � �
and the training cell was a refinement cell then the result
was deemed to be a true positive (TP). These classifications

Is ��� � � ? Refinement cell? Class
true true true positive (TP)
true false false positive (FP)
false true false negative (FN)
false false true negative (TN)

Table 4: Result classifications depending on GP tree output
and training cell type.

enabled each tree to be assigned a figure of merit (FOM) as,

FOM �
���

�	
� ����
(1)

where ��� and ��� are the TP and FP counts over all
training cells and �	
� is the total number of refinement
cells in the training time-frame. Therefore, the minimum
FOM was 0 which occured when a GP tree failed to identify
any refinement cells, and the maximum FOM was 1 which
occured when a tree successfully identified all refinement
cells and did not detect any non-refinement cells as requiring
refinement. (Note that the limbo cells did not influence the
FOM.) Hence, the FOM was used as the fitness measure.



Quantity Gradient FOM ��� ���

type av. s.d. av. s.d. av. s.d.
��, ��, �� HRG 0.746 0.039 96.9 6.4 19.9 7.2
��, ��, �� FRG 0.701 0.046 93.7 7.4 23.9 11.1
��, ��, �� HRG, FRG 0.778 0.044 98.0 8.2 15.8 6.0
��, ��, �� HRG 0.593 0.069 92.0 4.2 46.8 16.2
��, ��, �� FRG 0.616 0.026 86.5 3.1 30.6 4.6
��, ��, �� HRG, FRG 0.573 0.072 88.4 4.1 46.3 16.9
�	, �
 HRG 0.511 0.031 80.1 4.4 46.8 4.8
�	, �
 FRG 0.504 0.019 84.8 4.6 58.3 7.3
�	, �
 HRG, FRG 0.513 0.041 82.3 5.6 50.9 7.9
��, ��, ��, ��, ��, ��, �	, �
 HRG 0.731 0.079 100.1 2.8 28.9 18.5
��, ��, ��, ��, ��, ��, �	, �
 FRG 0.721 0.079 910.5 6.0 29.4 14.4
��, ��, ��, ��, ��, ��, �	, �
 HRG, FRG 0.707 0.078 100.4 4.9 33.9 19.3

Table 5: FOM, TP and FP results produced by processing the validation time-frame using various terminal inputs.

3.3 Detector performance

Various terminal input sets were investigated for detector
evolution by running GP with 20 different randomiser seeds
per set. The results produced by processing the validation
time-frame with the fittest detector from the population for
each seed are given in Table 5. The results were averaged
over 20 randomiser seeds in each case. The densities � are in
���������, and ��, ��, and �� are internal energies of air,
ball and plate; �	 and �
 are the radial and axial velocities
respectively.

The table shows that the highest FOMs were achieved by
basing terminal inputs on material densities alone. Terminal
inputs based on material energies produced slightly greater
FOMs than for inputs based on velocities. It can be seen that
no benefit was gained from processing the densities, energies
and velocities together - in fact, this produced less consis-
tent results as shown by the relatively high FOM standard
deviations.

The average FOM for inputs based on HRGs was typically
greater than that for inputs based on FRGs, possibly because
more information could be gained at material edges. For
example, consider a cell located on a material edge such
that 3 of its 8 neighbours are outside the material. For a
material specific quantity, this cell would be associated with
5 non-zero HRGs but only a single non-zero FRG (due to
the definition of these gradients).

3.4 Comparison to GP evolving a simple threshold

We compared the results in Table 5 with other results we
will call ���� and reported in [11]. In ���� GP evolved
a numerical threshold � for the density gradient rule, i.e.
������� � �. The comparison revealed that evolved de-
tectors generally improved upon the FOMs gained using the
ones evolved in ����. ���� results achieved a maximum
FOM of 0.796 for the validation time frame (TF3), which
was obtained by processing ��, �� and ��.

(a) (b)

Figure 1: TF2 (top) and TF3 (bottom) results for best evolved
detector for (a) ball and (b) plate. Symbols: � (TP), � (FP),
square (FN), � (positive result on a limbo cell). Cell density
is proportional to cell brightness.



A greater FOM resulted for 8 out of the 20 runs (with
different randomiser seeds) when these densities were pro-
cessed as HRGs and FRGs together. The maximum FOM in
this case was 0.852 (��� � ��	 and ��� � �
) and the
results for the corresponding detector are shown in Fig. 1.
(The operation of this detector is analyzed in Section 3.5).
Comparing these figures with similar ones for ���� in [11]
shows that the FPs were largely a subset of those produced in
����, and that the two approaches had many positive returns
on limbo cells in common.

Reference [11] explains that in ���� a maximum FOM of
0.802 could be gained by using individual gradient thresholds
for different material densities. Therefore, detector evolution
successfully produced greater FOMs than could be achieved
by using optimum thresholds for different materials. We also
note that the evolved detectors consistently produced much
greater FOMs than the simple threshold approach of ����
when energies and velocities were processed.

3.5 Detector interpretation

An advantage of GP over other fuzzy approaches (e.g. arti-
ficial neural networks) is that evolved solutions can be in-
terpreted to discover the constituent building blocks. This
section interprets the evolved detector which processed ��,
�� and �� as HRG and FRG statistics, giving a FOM of
0.852.

The detector comprised 65 nodes but analysis of the ac-
tive paths through the tree during processing revealed that
many of these nodes were redundant. Redundant compo-
nents in GP solutions are known as introns and, although
these components do not contribute to a solution’s fitness,
they do benefit the survival of a solution by reducing the
chances of the regeneration operators from mutilating the
active components. For example, the detector contained a
��� function where the first argument was always greater
than the second, thus the sub-tree constituting the second ar-
gument was redundant. However, its existence reduced the
likelihood of a regeneration operator (i.e. cross-over or mu-
tation) from selecting a node in the sub-tree constituting the
first argument, thereby increasing the survival chance of the
active components.

The detector was reduced to 23 nodes after removal of
the redundant components. The detector is represented by
��
���� ��� where �� and �� are returns from the following
sub-trees,

�� � ��� ���� � ����� (2)

and

�� � ���� � ��� � ���
����� � ��� � ������

���� ���� � ����� (3)

where the symbolic representation for the terminal inputs in-
troduced in Section 3.1 has been augmented with a subscript
to denote the relevant material, e.g. ��� represents an av-
erage HRG of the density of the ball.

The detector did not include any nodes pertaining to air
density because none of the manually designated refinement
cells in the training time-frame contained air alone, and so
the evolved solution learned to ignore air density gradients.
The absence of nodes relating to standard deviations of gra-
dients suggests that this statistic was not useful for detecting
refinement cells.

Equation 2 clearly represents a thresholding measure, us-
ing a single threshold of 0.025 for the density gradients
on both the ball and the plate. However, from experiment
���� we know that the optimum threshold for the ball was
greater than that for the plate when considering maximal
cell-boundary gradients. The sub-tree �� allowed for this
by using the maximum HRG for the plate but the average
HRG for the ball. Equation 3 constitutes a more complex
thresholding measure which will be discussed further below.

Table 6 shows which sub-tree contributed to the overall
detector output for the training and validation time-frames.
It can be seen that �� gave the detector output for most TPs,
i.e. ��� � �� � �� for most manually designated refinement
cells. This can also be seen from Figures 2 and 3 which
show the individual outputs from each sub-tree. Note that
�� was very close to 0.0 (equal to -0.0005) for the missed
refinement in cell in TF3.

The detector output was given by �� for most TNs be-
cause these cells corresponded to air alone or to uniform
local densities, both of which yielded zero gradient statistics
and thus �� � ������ and �� � �����	.

TF2 TF3
��� ��� ��� ��� ��� ��� ��� ���

61 0 0 33 70 1 3 41
20 0 3 3267 39 0 15 3185
81 0 3 3300 109 1 18 3226

Table 6: Sub-tree results for the training and validation time-
frames. The first row is sub-tree ��, the second is sub-tree
��, and the third row is totals. Note that the sum of the
totals for a given time-frame is less than the time-frame size
(60*60=3600) due to limbo cells and the fact that the extreme
time-frame boundaries � � �, � � �	 and � � �	 were not
processed. The boundary � � � was processed because it
acted as a line of symmetry.

Analysis of the individual sub-tree outputs revealed that
the main purpose of �� was to reduce the FPs resulting from
�� alone. This can be seen from Figure 4 where �� has
effectively reduced ��� from 10 to 3 for the training time-
frame, by virtue of the fact that �� and �� had opposite sign
for most of these non-refinement cells. Figure 5 shows that
�� effectively reduced ��� from 33 to 18 for the validation
time-frame.

Referring to Equation 3, it can be seen that the sub-tree ��
achieved this FP reduction by increasing its threshold when-
ever ��� or ��� was less than 0.08, due to the product be-
ing negative. Interestingly, when the training time-frame was



Figure 2: Sub-tree outputs in response to the manually des-
ignated refinement cells in the training time-frame. The cells
are ordered by ascending ��.

Figure 3: Sub-tree outputs in response to the manually des-
ignated refinement cells in the validation time-frame. The
cells are ordered by ascending ��.

processed with the �� sub-tree alone, ��� and ��� were
typically greater than 0.08 for correctly detected refinement
cells, i.e. TPs, whereas they were typically less than 0.08 for
incorrectly detected refinement cells, i.e. FPs (providing that
the corresponding material was present in the relevant cell,
e.g. ��� was only less than 0.08 for a refinement cell when
the cell did not include the ball). In other words, it appears
that this threshold manipulation in �� evolved in order to
correct for the short-comings of the �� sub-tree.

Figure 4: Sub-tree outputs in response to manually desig-
nated non-refinement cells in the training time-frame when
������� ��� � ���). The cells are ordered by ascending ��.

Figure 5: Sub-tree outputs in response to manually desig-
nated non-refinement cells in the validation time-frame when
������� ��� � ���). The cells are ordered by ascending ��.

4 Conclusions

This was a proof of concept problem to determine whether
the Genetic Programming method can be applied to the field
of numerical methods for impact analysis for non-destructive
testing.

Evolved detectors generally gave better results than
could be achieved by a simple threshold approach, e.g.
������� � �, even when the latter used different optimum
thresholds for different materials.

The simple threshold and detector evolution experiments
both revealed that the individual material densities were the
most useful cell properties. The figure of merit (FOM) in
response to densities was at least twice that for the other cell
properties in the threshold optimisation experiment. There
was a less marked distinction between processing the differ-
ent cell properties in the detector evolution experiment be-
cause the evolved detectors greatly improved upon the simple
threshold results in response to energies and velocities. Nev-
ertheless, the evolved detectors produced the greatest FOMs
in response to material densities alone. Producing velocities
alone consistently gave the lowest FOMs.

Similar results were obtained by using HRGs and FRGs
individually but there was a slight tendency for HRGs to
give greater FOMs. This suggests that refinement cells were
more reliably identified using very localised gradients.

It has been shown that evolved detectors can be inter-
preted in order to gain understanding of a solution’s under-
lying principles. Interpretation of the best detector revealed
that detection was based on a combined thresholding for the
different materials, which was significantly more sophisti-
cated than the simple threshold approach. The interpretation
also indicated which dimensions of the problem space could
be neglected due to their absence in the evolved solutions,
e.g. air densities and standard deviation of gradients.

Efficient mesh refinement for impact problems will re-
main a topic of research for many years.
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