
Generalisation and Domain Specific Functions in Genetic Programming

Ibrahim Kuscu
Department of Computing

University of Surrey
Guildford, GU2 7XH, U.K.

Email: i.kuscu@surrey.ac.uk

Abstract- This research presents an evaluation of user de-
fined domain specific functions of genetic programming
using relational learning problems, generalisation for this
class of learning problems and learning bias. After pro-
viding a brief theoretical background, two sets of exper-
iments are detailed: experiments and results concern-
ing the Monk-2 problem and experiments attempting to
evolve generalising solutions to parity problems with in-
complete data sets. The results suggest that using non-
problem specific functions may result in greater generali-
sation for relational problems.

1 Introduction

There are many ways in which learning systems may be con-
sidered as very useful; for example, the fact that learning sys-
tems use input-output data makes them suitable for the situa-
tions where some tasks cannot be defined well except by ex-
amples. In this case it is possible to specify some input-output
pairs as instances of the problem but it may not be possible to
state a concise relationship between inputs and desired out-
puts. We would like learning systems to adjust their internal
structures in order to produce desired outputs for a very large
set of inputs. A learning system is expected to approximate
a target relationship1 implicit in the examples presented to it
during the training process. It may be possible that the com-
plete set of examples related to a problem may not be readily
available or may be too cumbersome to present to the learner.
The learning system, in such cases, is not only expected to
capture the implicit rule in the training data but also to pro-
vide correct outputs to inputs which are presented after the
training phase. The current state of learning research shows
that for those problems where the implicit rule in the training
data is not so difficult, learning systems perform well. How-
ever, if the implicit rule to be extracted from the instances
of a given problem is more difficult and depends on complex
inter-relationships among the inputs, the task of the learner
becomes much more difficult. This is a real challenge for
learning systems especially in being able to produce a gener-
alisation performance for such relational problems.

The solution for the problem of generalisation is directly
related to learning bias [7]. Without a proper bias there is a
great risk that, for a given problem, generalisation may not

1There may be more than one relationships existing in the training data.
The aim of the learning is normally to discover a desired relationship which
is applicable to the unseen data.

be possible. The issue of bias will be raised later in the pa-
per within the context of genetic programming. In fact, the
method proposed in this paper is effective in finding gen-
eral solutions to relational problems due to their capabili-
ties of improving on the learning bias. More specifically,
user defined problem (domain) specific functions of genetic
programming [4] are evaluated as a factor influencing rep-
resentational bias. User defined problem-specific functions
can introduce a high level of prior knowledge when encoding
the potential solutions and may impose constraints on finding
generalising solutions to relational problems which require
discovery of higher order relationships that may exist in the
input-output mapping. Finding generalising solutions to rela-
tional learning problems may be realised through the use of
some more general, non-problem-specific functions.

This paper presents two sets of experiments where domain
specific functions are compared in terms of their generalisa-
tion ability with functions which are more general and not so
specific to the problem in hand. It will be shown that, con-
trary to common understanding [4] using non-problem spe-
cific functions can result in better generalisation performance
for relational learning problems. In the rest of the paper, I
will first introduce the relational learning problems, domain
specific functions and their relation to learning bias. Then, I
will present experimental evidence that using non-problem-
specific functions can improve generalisation performance
for some relational problems such as Monk-2 and parity prob-
lems.

2 Three Monks Problems

Originally, the three monks problems were used to com-
pare the performance of different symbolic and non-symbolic
learning techniques [9] including AQ17-DCI, AQ17-FCLS,
AQ14-NT, AQ15-GA, Assistant Professional, mFOIL, ID5R-
hat, TDIDT, ID3, AQR, CN2, CLASSWEB, ECOBVEB,
PRISM, Back-propagation and Cascade Correlation. They
involve classification of robots which are described by six dif-
ferent attributes.

There were a total of 432 instances and 124 of them were
drawn at random to compose the training set for Monk-1 and
Monk-3. For Monk-2 there were 169 randomly chosen cases
in the training set. Testing sets for all three problems included
the 432 cases. So, training cases were replaced in the testing
sets.

In Thrun’s experiments two different codings of data sets



are used. The first set adapted an original coding for the prob-
lems where each of the attributes may have the following val-
ues:

attribute#1 : {1, 2, 3}
attribute#2 : {1, 2, 3}
attribute#3 : {1, 2}
attribute#4 : {1, 2, 3}
attribute#5 : {1, 2, 3, 4}
attribute#6 : {1, 2}

The training and testing sets used for the experiment in this
paper are the same as the original coding used by Thrun in the
performance comparison experiments. The rules describing
the true cases can be formulated as:

MONK-1:
(attribute1 = attribute2)or(attribute5 = 1)

MONK-2:
(attributeN = 1) for EXACTLY TWO choices of n (n

1,2,...,6)

MONK-3:
(attribute5 = 3 and attribute4 = 1) or
(attribute5 != 4 and attribute2 != 3)

The second set of training and testing cases for the prob-
lems were the conversion of the original coding into the bi-
nary coding. This has a direct effect on the rules describing
the true cases and the formulation of the problems. The num-
ber of input variables increases from 6 to 17 since each pos-
sible value of the attributes is represented as 2, 3 or 4 digit
binary numbers where each digit represents the presence of a
specific value of the attributes.

There are 27 � 16 = 432 possible instances and 2432 pos-
sible monks problems. From these, three were chosen for ex-
perimentation. Each of the three problems requires learning
of a binary classification task. The most difficult one amongst
these problems is the second since it refers to a complex com-
bination of different attribute values and is very similar to par-
ity problems. Problem one can be described by standard dis-
junctive normal form (DNF) and may easily be learned by all
symbolic learning algorithms such as AQ and decision trees.
Finally, problem three is in DNF form but aims to evaluate
the algorithms under the presence of noise. The training set
for this problem contains five percent misclassification.

The results of the comparison (please refer to Table 1)
have shown that only Back-propagation, cascade correlation
and AQ17-DCI had 100 percent performance on the Monk-2
problem. However, the success of Back-propagation is prob-
ably due to the conversion of the original training set values
into binary values which will affect the learning rule rep-
resenting the true cases. The success of AQ17-DCI is at-
tributable to the fact that it has a function which tests the
number of attributes for a specific value. Monk-1 and Monk-3
were relatively easy to learn by most of the algorithms.

M1 M2 M3
AQ17-DCI, 100 100 94.2

AQ17-FCLS, 92.6 97.2
AQ14-NT, 100
AQ15-GA, 100 86.8 100

Assist. Prof. 100 81.3 100
mFOIL, 100 69.2 100

ID5R-hat, 90.3 65.7
TDIDT, 75.7 66.7

ID3, 98.6 67.9 94.4
AQR, 95.9 79.7 87
CN2, 100 69 89.1

CLASSWEB,0.10 71.8 64.8 80.8
ECOBVEB, 82.7 71.3 68
Back-prop 100 100 93.1
Casc. Corr. 100 100 97.2

Table 1: Selected Results (in percentages) of Comparison Ex-
periment (Thrun et al ’91)

3 Learning Bias and Genetic Programming

In a typical learning scenario two kinds of bias can be iden-
tified: representational and procedural bias [7]. Representa-
tional bias is defined as the set of possible states in the search
space that can be described by the representational language
which is used to encode potential solutions. Procedural bias
refers to the way in which the states of the space (defined
by the representational language) will be searched. Selec-
tion of the correct biases can have great influence on whether
a problem can be solved and whether generalisation can be
achieved. One of the ways to obtain better generalisation of
the solutions produced by GP is to improve on learning bias.
For GP the following types of learning bias can be identified.

� representational bias: This is introduced when the en-
coding strategy to represent the possible solutions is
chosen. The encoding strategy should define a repre-
sentation language and some rules for using the lan-
guage. The language is mainly determined by the user-
defined problem-specific functions and terminals and
the rules are defined by the decisions on how they will
be combined (i.e. structure and maximum depth of the
tree). For example, the functions and terminal units
should be sufficient to encode a solution.

� evolutionary bias: This refers to the mechanisms of
evolution applied to the individuals and can be viewed
on two different levels: (1) bias in the selection process
and (2) bias in applying the genetic operators.

The bias in the selection process is mainly determined
by the preferences stated in the fitness function to select
a potential solution over another to produce more Off-
spring. For example, the idea that simpler programs are
relatively more general can be introduced into the fit-



ness function giving more preference to simpler func-
tions to undergo genetic operators.

The bias in genetic operations refers to the ways ge-
netic operators are used. This can be seen as the bias
existing in the main mechanism of searching the space
of possible solutions. For example the rate and type of
the crossover or mutation operators may affect whether
a desired solution can be reached or not.

Review of the research on generalisation in genetic pro-
gramming [5] showed that almost all of these researchers con-
centrated on improving on the evolutionary bias in order to
promote generalisation, generally by introducing changes to
the fitness function.

4 The Role of Domain Specific Functions

In general, a reasonable amount of prior knowledge allowed
in a learning model restricts the learner’s uncertainty and/or
biases and expectations about the domain and can be useful
in shaping and reaching a good solution. In GP, however,
user defined functions often introduce excessively rich do-
main knowledge (human intervention) into the model so that
the degree of learning to be achieved is excessively poor.

Although the step of selecting user defined functions
has been claimed to be common to several other learning
paradigms ([4] p.88), the amount of domain knowledge in-
troduced in this step by GP and other paradigms is not com-
pared. For example, the degree of prior knowledge involved
in definitions of the character of inputs and outputs to an arti-
ficial neural network seems negligible compared to GP’s pro-
vision of almost a halfway solution in the form of user de-
fined functions and terminal units. Moreover, in the light of
substantial research on automating the topological structure
and parameter selection of artificial neural networks [6], any
claim that neural networks and GP require a similar level of
human intervention would be even less convincing. Examin-
ing a large number of problems solved by conventional GP
suggests that user defined functions and terminal units bias
the model strongly towards the user’s conception of the possi-
ble solutions so that what is left as “learning” becomes merely
finding an optimal or near optimal composition of those func-
tions and terminal units. A good modelling of learning using
GP should probably be using less problem-specific functions.

This is particularly important in solving the relational
learning problems since their solutions, rather than reflecting
a direct relationship between inputs and outputs, depend on
discovery of a higher order relationship (i.e., a reformulation
from the original input/output mapping). A learning model
will only be considered successful if it is able to discover (re-
represent or reformulate) these implicit relationships and use
them in generating a solution to relational learning problems.
If user defined functions refer to these “to be reformulated”
relationships, a process of discovery will be prevented. If
such a re-formulation is not discovered the solution found af-
ter evolving on the training set may be one which can only

memorise at least some part of the training instances by com-
pression. This should be avoided if general solutions to rela-
tional learning problems are to be found.

For these reasons, in this paper I will focus on a differ-
ent aspect of selection of primitive functions. Suppose that
a particular function from a minimally sufficient set of func-
tions for a particular problem can be defined by some rela-
tively more general functions. For example, the XOR can be
defined by AND, OR and NOT. For a particular problem re-
quiring XOR function in the composition of its solution, typ-
ical GP practice would favour using XOR function since it
would drastically facilitate finding a solution and the solution
would be simple and elegant. Experiments in this paper aim
to discover such specialised functions by starting the search
with more general functions which can define the specialised
functions. There are two main reasons to use non-problem-
specific functions:

� To reduce the introduction of excessive prior knowl-
edge to the representation of possible solutions so that
the solutions are the result of learning process with lit-
tle or no human intervention.

� To allow the learning process to discover (as a result
of a re-reformulation process) the functions required to
solve relational learning problems. One would expect
that after such a reformulation is achieved, generalisa-
tion to the test cases will be more likely.

To give a concrete example for the issues above, let’s con-
sider the Monks problems. In GP practice a typical function
set for each of the monks problems would be as shown below
in F function sets for each of the problems. The actual rules
describing the true cases are given in Italics.

MONK-1:
(attribute1 = attribute2) or (attribute5 = 1)

F=fEQUAL, OR, TEST-VALUE-OF-AN-ATTRIBUTEg

MONK-2:
(attributeN = 1) for EXACTLY TWO choices of N
(N 1,2,...,6)
F=fEQUAL, TEST-VALUE-OF-A-NUMBER-OF-
ATTRIBUTES, NOT, OR, AND g

MONK-3:
(attribute5 = 3 and attribute4 = 1) or
(attribute5 != 4 and attribute2 != 3)
F=fEQUAL, NOT, OR, AND g

Note that the above functions make the learning pro-
cess required for the solutions of relational learning prob-
lems a simple one and prevent the assessment of our learning
model’s performance in solving these problems. If we were to
use those functions, the learner would only be finding an op-
timal composition of the problem specific functions. A more
appropriate task is, however, to discover these functions and
represent them in a solution in such a way that it can success-
fully generalise after training. For all of the three problems, I



will use only protected division (where division by zero result
in zero rather than an error), multiplication, plus and minus.

5 Experimental Set-up: Monk-2 Problem

The experiment involving the Monk-2 problem using non-
problem-specific functions is carried out using lil-gp pack-
age.2 The parameters of the problem are shown in Figure 1.
The population size is set to 5000. Initially, the number of
generations was 250 but no significant increase in the per-
formance has been observed after the generation 100. The
results reported here use 101 generations. The parameters of
creating an initial population and breeding were adapted from
early implementations of Koza with standard GP ([4] Chp. 7).

max_generations = 100
pop_size = 5000
#random_seed = 1
output.basename = Monk2
#original coding of
training-testing
(169 and 263) cases
data.file = m2o.dat
#how to generate the
initial population
init.method = half_and_half
init.depth = 2-6
#limits on tree size.
max_nodes = 1000
max_depth = 17

##breeding parameters
(emulates Koza Ch. 7)
breed_phases = 2
breed[1].operator = crossover,
select=fitness_overselect
breed[1].rate = 0.9
breed[2].operator = reproduction,
select=fitness_overselect
breed[2].rate = 0.1

Figure 1: Lil-gp parameters used for the Monk-2 problem.

The problem summary is provided in Figure 2. The func-
tion set encourages evolution to produce learning rules based
only on the four arithmetical functions and any successful
performance can only be credited to the discovery of a so-
lution as a reformulation of these functions through an evolu-
tionary process.

Original coding of training and testing data is used rather
than the binary conversion (see above). In this way, the rela-

2Lil-gp is a C-based programming environment for development of
Genetic programming (GP) applications. It is developed by Douglas
Zongker at Michigan State University and publicly available at URL:
http://isl.cps.msu.edu/GA/software/lil-gp/index.html

Problem Monk2
Terminals attributes
Functions +, -, %, *,

Random Number None
Fitness Cases Same as Thrun’s experiments

(169 training cases)
Fitness Number of correct outputs

during training
Wrapper None

Parameters PopSize=5000, generations=101

Figure 2: Problem summary for Monk-2 problem

tional nature of the problem is preserved. As in the Thrun’s
experiments, the same 169 training cases and 263 test cases
are used. However, unlike Thrun’s experiments, no overlap-
ping is allowed between training and testing cases (i.e. the
cases which were used for training are not placed in the test
cases and likelihood of artificial increases in the test perfor-
mance due to the success on the previously seen training cases
is eliminated).

5.1 Results on Monk-2 Problem

The training and testing performances of 25 independent runs
are reported as a graph in Figure 3. The test scores reflect the
performances over completely unseen cases. The best train-
ing scores observed are more than 90 percent success indi-
cating that it is possible to discover an individual which can
learn successfully those instances of the problem which are
presented to it. However, the success in predicting the un-
seen cases does not seem to be as successful. First, the max-
imum generalisation performance on the test cases is just un-
der 80 percent (3rd and 25th runs). If training cases were re-
placed back among the test cases (as in Thrun’s experiments)
the comparative scores would be 0.83 for the third run and
0.81 for the 25th run (these figures are computed based on
the overall success on 432 cases; correct hits during training
plus correct hits during testing divided by the total number of
training and testing cases). These figures are slightly higher
than the figures obtained when the training cases are not re-
placed back into the testing cases.

When these figures are compared to Thrun’s experiment
(reported in Table 1), GP with non-problem-specific func-
tions outperforms most of the well-known learning methods
except AQ family, cascade correlation and back-propagation
algorithms. As noted previously, AQ methods used equality,
a domain specific function, when solving Monk problems.
The aim of the experiments presented, however, was to dis-
cover such functions. As shown, such an objective can be
realised at least with some success. Cascade correlation and
back-propagation solved the Monk-2 problem using binary
conversion of the data set. In the experiments reported here,
the original coding is used since it preserves the true rela-
tional nature of the problem. Clearly, it is easier to solve the



0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25

S
co

re
s

Independent Runs

 training
 testing

Figure 3: Training and testing performances on Monk-2 prob-
lem.

problem if the binary conversion of the data is used.
For almost all of the runs, test performances are drastically

lower than the training performance. A general observation is
that, for some of the runs, a successful performance in train-
ing does not lead to a successful performance in testing. As
the evolutionary process progresses, gradual increases in the
training performances is observed (though not for all of the
runs). However, as expected, these increases are not corre-
lated and reflected in the testing performances. It seems that
given the experimental set up, the evolutionary process of GP
often results in a learning performance which is good only for
learning a set of training cases presented to the system during
the course of the evolution (i.e. compression based learning)
but not sufficient for predictive generalisation.

However, it is not clear whether the problem with gener-
alisation is attributable to the nature of the relational learning
problems or the encoding strategy. In order to discover this, in
the next section a set of experiments attempting to find solu-
tions to parity problems using non-problem-specific functions
with incomplete data sets will be carried out.

6 Parity problems

Parity problems involve a test that determines whether the
number of ones or zeros in an array of binary digits is odd
or even [8]. For example, in parity problems, the rule for the
true cases is follows:

The output is true if an odd number of ones are
encountered among the n number of inputs.

It has been shown in [3] that parity mappings do not show
any regularity which can be described in the form of a direct
correlation between value(s) of particular inputs and value(s)
of output. So, parity problems are well-known examples of
relational problems.

A general attitude in solving parity problems is to pro-
vide the learner with the complete set of cases defining the
problem [4]. For example, XOR is solved if a successful
network topology and set of weights are found based on a
training over all (four) instances of the problem. A similar
approach is taken for higher bit problems. In fact, all of the
parity problems reported in [4] are solved in the same way.
This approach adapts compression based learning and does
not promote generalisation for such relational problems.

In this section, a set of experiments to solve parity-5 and
parity-6 problems with a generalisation oriented approach
will be presented. The instances defining these problems will
be split into two: training and testing instances. Using ge-
netic programming, the generalisation performance with non-
problem-specific functions (i.e. four arithmetical functions)
and with problem-specific functions (i.e. logical functions)
will be compared. This will help us to understand if the use
of non-problem-specific functions can in any way lead to gen-
eralisation performance for relational learning problems (i.e.,
to see if it is possible to discover some higher re-formulations
required for the solutions of these problems).

6.1 Experimental Set-up

For this set of experiments (even) parity-5 and parity-6 prob-
lems are chosen since they have reasonable number of in-
stances defining the problem (i.e. not too few nor too large).
These instances are split into two to determine the training
and testing cases. For parity five there are 32 cases defining
the problem. This set is split into 22 training and 10 testing
cases. For parity 6, a total of 64 cases is split into 45 train-
ing and 19 test cases (for each problem around 70 percent
(arbitrary) of the instances are selected as training instances
representing a reasonably good size for each problem).

The problem summary is presented in Figure 4. Termi-
nal sets constitute the input variables; 5 for parity-5 and 6 for
parity-6. Two sets of functions are used for comparison pur-
poses. One set included problem-specific functions. Since
parity problems are Boolean problems the basic problem-
specific primitives constitute AND, OR and NOT functions.
The other set included four mathematical non-problem spe-
cific functions. Since lil-gp package is used, the basic GP
parameters were the same as those used for the Monk-2 prob-
lem reported above except for the number of generations. For
parity-5 30, and for parity-6, 70 generations were found to be
satisfactory.

6.2 Results on Parity problems

Using the above parameters, for each of the parity problems
two sets of 30 runs were carried out (2 � 2 � 30 = 120 inde-
pendent runs). The differences between the sets were the set
of functions used. In the first set, problem specific functions
(i.e. three Boolean functions AND, OR, and NOT) were used.
In the second set, non-problem specific functions (four arith-
metical functions plus, minus, multiplication and protected



Problems Parity-5 (p5), Parity-6 (p6)
Terminal Sets Input variables

Functions either f+, -, %, *,g
or fand, or, notg

Random Number None
Fitness Cases 22 for p5, 45 for p6

Fitness Number of correct
outputs during training

Wrapper None
Population Size 5000

Generations 30 for p5, 70 for p6

Figure 4: Problem summary for Parity problems

division) were used. Figure 5 and Figure 6 depict the results
on parity-5 using Boolean functions and parity-5 using math-
ematical functions respectively. Figure 7 and Figure 8 show
the same information for parity-6 problem. Each of the bars
represents the training score and the dotted line presents the
testing score for every run. The result of the experiments pre-
sented some surprising new findings related to generalisation
performance on parity problems; a kind of relational learn-
ing problem. Looking at these figures some of the significant
observations can be summarised as follows:

1. Regardless of the function sets used training scores
tend to be high. Surprisingly, (in general) prob-
lem specific functions result in slightly lower perfor-
mances than non-problem specific functions for the
same amount of evolutionary time. Often, training per-
formances using non-problem specific functions can
reach up to 100 percent. However, in the case of prob-
lem specific functions this can only be observed for
a few cases. This is a significant new evidence con-
trary to a major belief [4] that problem specific func-
tions make it easier to find solutions. At least for these
problems, non-problem specific functions may perform
better than problem specific functions.

2. Testing performances are consistently low when prob-
lem specific functions are used whereas, they are fre-
quently much higher when non-problem specific func-
tions are used. Best test performances with problem
specific functions hardly reach 40 percent in the case
of parity-5 and are even lower in the case of parity-6.
Best training performances with non-problem specific
functions, though not so frequently, are greater than 90
percent for each of the parity problems.

3. The fact that non-problem specific functions can gener-
alise to parity problems with incomplete data, by itself,
is a very significant result. To my knowledge this is the
only time parity problems are being shown to be gen-
eralisable with incomplete data. Moreover, the results
are reached without introducing excessive prior knowl-
edge.

These issues clearly indicate that use of non-problem spe-
cific functions can promote generalisation better than prob-
lem specific functions. The problem with generalisation ob-
served in the previous experiments seems to be resulting from
the complexity of Monk-2 problem rather than the encoding
strategy used in representing the potential solutions. This pro-
vides evidence that non-problem specific functions might be
better for finding generalising solutions for relational prob-
lems.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

S
co

re
s

Independent Runs

 training
 testing

Figure 5: Training and testing performances on Parity-5 prob-
lem using problem specific (boolean) functions.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

S
co

re
s

Independent Runs

 training
 testing

Figure 6: Training and testing performances on Parity-5 prob-
lem using non-problem-specific functions.

Looking at generational training and testing scores of
30 runs per problem type (i.e. parity-5 and parity-6) with
problem-specific-functions and without problem-specific-
functions and observing training and testing scores over evo-
lutionary time for a particular run reveals that, for both of the
problems, use of Boolean functions (problem-specific func-
tions) shows a negative effect on testing as evolutionary time
progresses. In most cases, when Boolean functions are used
generalisation performance improves earlier in the evolution-
ary time and it reduces eventually. However, when non-
problem-specific functions are used, testing performance will
tend to increase while evolutionary time proceeds further. Al-
though this is not observed in all of the runs, the overall per-
formance of non-problem specific functions is greater than



0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

S
co

re
s

Independent Runs

 training
 testing

Figure 7: Training and testing performances on Parity-6 prob-
lem using problem specific (Boolean) functions.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30

S
co

re
s

Independent Runs

 training
 testing

Figure 8: Training and testing performances on Parity-6 prob-
lem using non-problem-specific functions.

that of problem-specific functions.
One of the reasons why non-problem-specific functions

produce better results than Boolean functions for these prob-
lems may be related to the nature of the search space that
evolution is operating on. The logical functions create dis-
crete Boolean functions whereas the arithmetical functions
have a continuity. This may result in different search spaces.
It can be argued that it must be easier for evolution to find its
way through the space of possible solutions which are created
by arithmetical functions with continuity. The fact that arith-
metical functions are more general than the Boolean func-
tion may result in a situation where there are various ways
of representing a particular Boolean function. This, in turn,
may help evolution to find a better generalising solution more
easily among many alternatives when arithmetical functions
are used. However, when Boolean functions are used evolu-
tion may be forced to find a rare and particular representation
of the solution. In this case the distinction between using
problem-specific and non-problem specific functions reveals
itself in the contrast between using Boolean functions and
a set of more general functions which may constitute a less
rugged search space of the possible solutions.

7 Computational Cost

Using evolutionary methods for supervised problems is nor-
mally costly due to the fact that, in every generation, all of the
individuals in a population should be evaluated through all
the training cases. This is necessary for fitness computations.
Relational problems such as Monk-2 pose extra costs due to
complexity and size of the potential solutions. They not only
add to the cost of evaluation and memory consumption but
also make it harder to find a satisfactory (i.e. a success score
higher than 90 percent) solution in every run.

Several methods are proposed in [1, 2] to reduce the com-
putational cost in solving supervised learning problems using
GP. This research mainly focuses on reducing evaluation cost
by choosing subsets of the fitness cases.

8 Conclusions

In this paper, experiments on relational learning problems
were presented using lil-gp genetic programming develop-
ment package. Several runs using non-problem specific func-
tions to solve the Monk-2 problem and parity problems were
done to understand the dynamics of non-problem specific
functions in obtaining generalising solutions for relational
learning problems.

The experiments show that it is possible to solve the
Monk-2 problem using non-problem specific functions with
a success comparable to most of the well-known learning
methods reported in Thrun’s experiments. One of the inter-
esting findings of the experiments concerning Monk-2 prob-
lem was that even though the system was able to learn the
training cases fairly well, it was not as successful in general-
ising to the test cases. It seems that there is an evolutionary
tendency to find a representation which would compress the
training cases. However, this compression based learning did
not produce a representation which could predictively gener-
alise what is learned during the training to the testing cases.
Moreover, in almost all of the runs there was a consistent ten-
dency to over-learn (over-fit) the training cases and do badly
on the testing cases.

Better results, both in terms of training and testing scores
were found in the parity experiments. The parity experiments
supported the idea that non-problem-specific functions may
perform better than problem-specific functions in finding gen-
eralising solutions to relational problems, though generalisa-
tion performances are not ideal.

Finally, the successful performances on the training phase
of relational problems indicate why relational problems such
as parity are attempted with a complete set of cases. It is eas-
ier to find a solution by means of compression to relational
learning problems but it is more difficult to generalise for
them.

Two main problems still require further investigation. One
is how to speed up the search for a solution. The computa-
tional cost of evaluating a large population of individuals for
every fitness case in the training set is very high. The sec-



ond problem is how to improve on the likelihood of finding
a satisfactory solution in every run. These are the issues of
concern for forthcoming stages of this research.

Acknowledgements: I’d like to thank to Dr. Inman
Harvey for his invaluable support during the process of de-
velopment of this research and S. West for stimulating dis-
cussions. Middle East Technical University, Turkey, has pro-
vided the funding for this research.

Bibliography

[1] Chris Gathercole and Peter Ross. Dynamic training sub-
set selection for supervised learning in genetic program-
ming. In Yuval Davidor, Hans-Paul Schwefel, and Rein-
hard Männer, editors, Parallel Problem Solving from Na-
ture III, pages 312–321, Jerusalem, 9-14 October 1994.
Springer-Verlag.

[2] Chris Gathercole and Peter Ross. Tackling the boolean
even N parity problem with genetic programming and
limited-error fitness. In John R. Koza, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi
Iba, and Rick L. Riolo, editors, Genetic Programming
1997: Proceedings of the Second Annual Conference,
pages 119–127, Stanford University, CA, USA, 13-16
July 1997. Morgan Kaufmann.

[3] G. Hinton and T. Sejnowski. Learning and re-learning
in boltzmann machines. In D. Rumelhart, J. McClel-
land, and the PDP Research Group, editors, Paral-
lel Distributed Processing: Explorations in the Micro-
structures of Cognition. Vols I and II. MIT Press, Cam-
bridge, Mass., 1986.

[4] John Koza. Genetic Programming:On the programming
of computers by means of natural selection. MIT Press,
Cambridge, MA, 1992.

[5] I. Kuscu. Evolutionary Generalisation and Genetic Pro-
gramming. PhD thesis, The University of Sussex, 1999.

[6] I. Kuscu and C. Thornton. Design of artificial neural
networks using genetic algorithms:review and prospect.
In C. Bozsahin, editor, Proceedings of Third Turkish Sy-
posium on Artificial Intelligence and Neural Networks,
pages 411–420, 1994.

[7] Pat Langley. Elements of Machine Learning. Morgan
Kauffmann, San Fransisco, 1996.

[8] D. Rumelhart, G. Hinton, and R. Williams. Learning in-
ternal representations by error propagation. In D. Rumel-
hart, J. McClelland, and the PDP Research Group, edi-
tors, Parallel Distributed Processing: Explorations in the
Micro-structures of Cognition. Vols I and II. MIT Press,
Cambridge, Mass., 1986.

[9] S. B. Thrun, J. Bala, E. Bloendorn, I. Bratko, and et al.
The Monk’s problems - a performance comparison of dif-
ferent learning algorithms. Technical Report CMU-CS-
91-197, School of Computer Science, Carnegie-Mellon
University., USA, 1991.


