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Abstract- This paper presents a new algorithm that 
combines perturbation theory and genetic programming 
for modeling and forecasting real-world chaotic time 
series. Both perturbation theory and time series 
modeling have to build symbolic models for very 
complex system dynamics. Perturbation theory does not 
work without well-defined system equation. Difficulties 
in modeling time series lie in the fact that we can’t have 
or assume any system equation. The new algorithm 
shows how genetic programming can be combined with 
perturbation theory for time series modeling. Detailed 
discussions on successful applications to chaotic time 
series from practically important fields of science and 
engineering are given. Computational resources were 
negligible as compared with earlier similar regression 
studies based on genetic programming. Desktop PC 
provides sufficient computing power to make the new 
algorithm very useful for real-world chaotic time series. 
Especially, it worked very well for deterministic or 
stationary time series, while stochastic or nonstationary 
time series needed extended effort, as it should be.  

1 Introduction 
Time series is a scalar sequence of numerical data, 

. Time series modeling usually starts from 
generating vector time series, 
x x x0 1 2, , , . . .

r r r
x x x0 1 2, , , . . .

xw

. An 
appropriately arranged set of the scalar time series data, 

, constitutes a vector. The 
subscript t stands for current time, 

( )x xt n− −1 τ , . . . , x xt t t− −2τ τ, , ,
τ  for delay time (also 

called lag time or lag spacing), w t T= +  for forecast time, 
T for future time (also called lead time or prediction 
horizon), and n for embedding dimension of the Euclidean 
state space where each vector is a point. Determination of 
these state space parameters for a given time series is 
critical for good model. However, it is not the scope of this 
paper. See Weigend 1993 for various data characterization 
techniques.  

Time series modeling is to find the functional 
approximation  to  in Eq. (1) that relates ~f f ( )xw

i  with 
remaining components of vector. The approximation error 

( )e i  should be minimal for all vectors, 
r r r
x x x0 1 2, , , . . . . 

    ( ) ( )( )x f xw
i

t
i=

r ( )( ) ( )≅ +
~f x et

i ir , i = 1, 2, 3, ... 

  ( )
( )( )( )rx x x x xt

i
t n t t t

i
n≡ ∈− − − −1 2τ τ τ, . . . , , , R   (1) 

As ARMA (Box 1994) and many other techniques such as 
GMDH (Ivakhnenko 1971) do, genetic programming 
applied to symbolic regression (Koza 1994) tries to find 
explicit model that is written in mathematical symbols. It 
has achieved interesting performance for stationary 
scientific time series (Koza 1994, Oakeley 1994, Iba 1994). 
But, real-world time series is very chaotic and usually 
highly nonstationary (Box 1994). Also, noise makes it 
difficult to have practically useful model. Expensive 
computations resulted in only moderately performing 
models for them. 

The author noted that time series modeling have some 
similarities with perturbation theory of quantum mechanics 
(Rae 1992). They need useful approaches for formulating 
nonstationary or stochastic system dynamics. Of course, the 
system behaviors are represented differently. Perturbation 
theory assumes well-defined system behavior, e.g. the wave 
equation (Rae 1992, Nayeh 1993), while time series 
modeling should work without such kind of equations.  

Note that symbolic regression based on genetic 
programming (Koza 1994) provides evolutionary ways to 
do the essentially same works, i.e. formulation of complex 
system dynamics, as perturbation theory does, even without 
explicit system equation. The algorithm presented here takes 
several viewpoints to model complex system dynamics from 
perturbation theory. And, genetic programming is requested 
to play the role of ill-defined system equation for chaotic 
time series. 

Section 2 formulates the new algorithm, followed by 
Section 3 to show application examples to many real-world 
chaotic time series. Section 4 concludes this paper and lists 
up topics for further study.  

 
2 Time Series Perturbation Algorithm 
2.1 Development 

 The inherently nonstationary dynamics of the wave 
equation does not allow for exact solution. Perturbation 
theory (Nayeh 1993) involves two types of Hamiltonians for 
such equation. Now, let ( )Ψu x

r
 be an unperturbed 

Hamiltonian and ( )Ψp xr  be a perturbed Hamiltonian. Then 
r r              ( ) ( ) (Φ Ψ Ψ

rx xu p= + x           (2) )
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meets the system equation, i.e. the wave equation. Equation 
(2) states that nonstationary system behavior can be 
described by linear combination of Hamiltonians. The same 
thing holds again for the perturbed Hamiltonian. This means 
that the perturbed Hamiltonian ( )Ψp xr  can be expanded as 
another linear combination of different Hamiltonians, and 
the expansion repeats for all newly available sequence of 
perturbed Hamiltonians. Perturbation technique provide 
systematic ways to find the unperturbed Hamiltonians that 
are integrated into a final solution to the complex system 
equation. If Eq. (2) meets the system equation, any linear 
combination of the Hamiltonians also meets the system 
equation. 

Note that the time series carry system dynamics for 
source system as the wave equation does for a quantum 
system. Then, we believe that the same procedure for 
obtaining solutions to quantum system can be applied to 
time series modeling. Given below is the detailed analogical 
development of the time series modeling algorithm based on 
the perturbation theory.  

Now, the time series model or the function in Eq. (1) 
can be expressed as a sum of the unperturbed and perturbed 
Hamiltonians, on the analogy of Eq. (2). That is, 

f

           ( ) ( ) ( )f x f x f xu p
r r r

= +             (3) 
Equation (3) can be rewritten with appropriate constants, a 
and b  

              ( ) ( ) ( )f x af x b f xu p
r r r

= + +         (4) 
rsince if ( )f xu

r
 and ( )f xp  meets the system equation (= 

system dynamics carried by time series), their linear 
combination also meets the equation as Hamiltonians do for 
the wave equation. The constant b is a kind of large number 
such as the average. Seeing differently, b is a deterministic 
value for every datum in the sequence of time series.    

Equation (4) states that time series consist of the 
unperturbed and the perturbed time series. The unperturbed 
time series consists of the constant and the variable 
expressed by the explicit function ( )f xu

r
. The perturbed 

time series is given by  
                ( ) ( ) ( )f x af x b f xu p

r r r
− − =        (5) 

Here, note that the perturbed time series can be easily 
calculated if we substract the numuerical values returned by 
linear combination of the unperturbed time series ( )f xu

r  

from the original time series ( )f xr .  

Equation (5), ( )f xp
r  represents still another time series 

to model. We can proceed to model it, again with the same 
algorithm for the original time series. In general, we will 
have in theory a sequence of the unperturbed time series, 

( )f xu
jr
where j stands for j-th modeling procedure. In the 

long run, the general form of time series perturbation model 
becomes 

                  (6) ( ) ( ) ( )f x a f x f xj
u

j

j

J

p
Jr r

= +
=
∑

0

r

where the 0-th unperturbed time series ( )f xu
r 0 = 1, and 

( )f xp
Jr

 is negligible. Now, note that our problem is 
reduced to how we get the series of the unperturbed time 
series models. As you may already know, it is by GP 
(Genetic Programming), see next section. 
 

2.2 Implementations  
Everytime we apply the classical GP-based symbolic 

regression (Koza 1994) to the sequence of the unperturbed 
time series, we can get the functional forms for ( )f xu

r 0 , 

( )f xu
r 1 ,..., ( )f xu

Jr
in Eq.(6). This paper suggests that the 

constants , j = 0, 1, 2, ... , J are determined by the least 
square regression that makes 

a j

( )f xp
Jr

negligible. 
Next several subsections describe some general and 

special implementation details this paper is based on. For 
more classic techniques about GP-based symbolic 
regression, see (Koza 1994). 
 
General Implementation Issues 
 

1) Construction, Selection, and Integration of Models  
For time series modeling based on genetic programming, 

population of symbolic forms is subject to genetic evolution. 
Initially, structures and contents of the symbolic forms are 
determined at random. Genetic evolution alters the 
structures and contents of symbolic forms such that they can 
capture the time series dynamics. Usually, the best symbolic 
form in a population is taken as a model for the time series. 
As a corollary, we are expected to have P models if we use 
P populations in the evolution. 

Then, a question arises. What should we select one 
among the multiple models to represent the time series 
dynamics ? A commonsense selection may be the one that 
produces the minimum approximation error for all time 
series vectors, See Eq. (1). However, it is very hard to build 
a perfect model within practical limit on computational 
resources. The fact is that even the best one selected among 
P multiple models must be only partially successful in 
capturing the time series dynamics. And, moreover, the 
other P – 1 unselected models do capture partial dynamics 
of the time series, so that we can save computational 
resources if we can reuse them in some ways. We may 
reasonably integrate the partially successful models. 
Paragraphs below explains how. 

Now, let ( )g xpp
r  be the model constructed in 

population pp. Then, the j-th unperturbed time series model 
( )f xu

jr
has, in this paper, the form 
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( ) ( )f x g xu
j

pp pp
pp

Pr
= +

=
∑α α0

1

r          (7) 

where the numerical coefficients for each ( )g xpp
r  are 

calculated by the least square regression with respect to 
training data set of the time series. Note that Eq. (6) can be 
rewritten. Insert Eq. (7) into Eq. (6). We get 

( ) ( ) ( ) ( ) ( )f x a f x f x a g x f xj
u

j

j

J

p
J j

pp pp
pp

P

j

J j

p
Jr r r r

= + = +








 +

= ==
∑ ∑∑

0
0

10
α α

r

r r

r

      

In this paper, the numerical coefficients in the linear 
combination of the models are simply updated with respect 
to the data region that is close to forecast point. For example, 
assume that we have 200 data in the training region. Then, 
the 201st datum is forecasted with the numerical coefficients 

calculated with respect to data between 1st and 200th 
positions of the time series. The model is given by Eq. (6) if 
j =1, and by Eq. (10) if j is greater than 1. For the 202nd 
datum, the numerical coefficients are updated with respect 
to data between 2nd and 201st positions. We can proceed 
further only if the true time series datum at position v is 
known before we try to forecast the position fp = v + 1. The 
value S = fp – v ≥1 is termed as the impact step in this 
paper. The data region that comes after the training region is 
called the validation region. The model with changing 
coefficients is used to forecast the data in the validation 
region. After forecasting the last datum in the validation 
region, the forecasting performance, e.g. Eq. (11), Eq. (12) 
is recorded. The forecasting performance in the validation 
region is an important criterion to determine if we stop or 
proceed to another perturbation modeling procedure by 
genetic programming. For this reason, we call it the 
validation performance. 

which becomes 

( ) ( ) ( )f x a a g x f xj j j
pp
j

pp
j

p
J

pp

P

j

J

j

Jr
= + +

===
∑∑∑ α α0

110
   (8) 

Changing notations for the numerical coefficients, Eq. (8) 
can be rewritten as  

( ) ( ) ( )f x g x f xK K
K

J P

p
Jr r

= + +
=

×

∑β β0
1

     (9) 

From (3) and (9), we can see that the unperturbed time 
series model up to J-th modeling procedure, see Section 2.1, 
takes the form  

( ) ( )f x g xu
J

K K
K

J Pr r
= +

=

×

∑β β0
1

         (10) 

 
2) Interpretation of the Perturbation Modeling by GP  
We are now at a point to clarify overall procedure of the 

time series perturbation modeling procedure based on 
genetic programming. First, the vector time series, Eq. (1), 
are divided into three data regions for training, validation, 
and forecasting. For the first modeling procedure, genetic 
programming is run with respect to the training region and 
we have the unperturbed time series model as expressed by 
Eq. (10), J = 1. 

Once the unperturbed time series model is determined, 
the j-th model building procedure is formally over. Ideally, 
the model would capture the time series dynamics and 
therefore can forecast the time series beyond the training 
region. But, our model would fail only after a few 
acceptable forecasts due to several practical reasons. For 
example, the training region may not be sufficient to 
provide information needed to capture the dynamics beyond 
it. Even if the training region contains sufficient information, 
computational resources may fall short of what is necessary 
to make full use of the information. 

There may be several ways to keep the model 
performance as high as possible beyond the training region. 
The most straightforward one would be to re-construct the 
model with respect to newly defined training region that 
includes the latest available true time series data. But, the 
new model should be constructed in time to become useful 
forecaster for the time series.  

Another modeling procedure starts if the validation 
performance got improved as compared with former 
modeling procedure. By default, the first modeling 
procedure is followed by the second modeling procedure. 
Otherwise, the perturbation modeling procedure stops on the 
assumption that the model has started to capture spurious or 
excessive perturbation such as noise or disturbance. This 
type of criterion to terminate learning or modeling algorithm 
was used in the field of artificial neural network (Geman 
1992) and called early stopping policy. Section 4 
summarizes above interpretation of the proposed GP-based 
time series perturbation modeling procedure.  

 
Several Implementation Issues 

 
1) Performance of individual model 
A model or any individual in a population should be 

given numerical performance value that measures how well 
the time series is approximated or simulated by the 
symbolic forms represented by the individual or the model. 
Popular performance value is the normalized mean squared 
error (Weigend 1993), and the coefficient of variation (Iba 
1994). They are defined by  

( ) ( ) ( )( )CV N x N x xi i
i
N= −






=∑
1 1 2

1

0 5
~

.

     (11) 

( ) ( )( )
( )( )∑

∑
=

=

−

−
= N

i
i

N

i
ii

xx

xx
NNMSE

1

2
1

2~
)(  

( ) ( )( )
22

1

2

ˆ
)(

ˆ

~

σσ
NMSE

N
xxN

i
ii

=
−

≅ ∑ =  (12) 

where ( )~x i  and ( )x i  are model evaluation and true datum 
at the position i. x  and  denote the sample average 
and sample variance of the time series. 

$σ 2

N  is the number 
of data over which ( )NMSE N  or  is calculated. (N )CV
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MSE stands for Mean Squared Error. Model fitness of an 
individual is given by the inverse of ( )NMSE N

( )g xpp

 or 

 in this paper. ( )CV N

r

2) Super population and Migration 
Genetic programming designed for time series 

perturbation modeling in this paper has a special-purpose 
population called the super population of which sole service 
is to select and keep the best individuals,  in Eq. (7), 
from each of multiple populations. The best individual from 
a population is allowed to replace a super population 
member at the end of each generation if and only if its 
fitness excels that of the member being replaced.  

Migration does occur between the multiple populations 
that undergo evolution. Only those members in the super 
population that survived the whole generations become the 
final model ( )g xpp

r  in Eq. (7). The super population is 
different from the multi-agent team (Luke 1996) where 
agents or team members are somehow engaged in the 
evolutionary processes. 

3) Three Symbolic Anomalities 
Symbolic structures and contents that can not be 

translated into mathematically valid equations define 
mathematical anomality. Division-by-zero, negative 
arguments given to square root are typical examples of the 
mathematical abnormality. Symbolic structures and contents 
that cause computer software error such as the overflow or 
underflow define computational anomality.  The last 
symbolic anomality is the semantic replication. When 
multiple symbolic forms are mathematically equivalent, 
they are semantic replications of each other. For example, 
(+ x3 (sin (/ x2 x2))) is the semantic replication of (+ x3 (sin 
1)) = x3. Especially, semantic replication between the best 
individual from a population and the super population 
member should be avoided at the end of each generation and 
each modeling procedure. If not, mathematical error of 
singular matrix occurs during calculation of the numerical 
coefficients in Eq. (6) or Eq. (10) using the least square 
regression. 

Any type of symbolic anomalities consumes 
computational resources because they blemish genetic 
diversity in a population. Also, they cause unexpected error 
in the program run. There should be systematic techniques 
to detect and repair the cases of symbolic anomalities. If any 
individual in a population has symbolic anomality, its 
fitness is arbitrarily assigned a very small value in this paper 
to reduce the chance of breeding offspring in the next 
generation. 

4) Derived Terminal Set 
Function set and terminal set for regression problem 

based on genetic programming are very important because 
they are basic symbols to represent time series datum in 
explicit form. Terminal set provides argument symbols for 
function symbols. For example, the symbolic 

form ( )sin x3 has the argument symbol  for the function 
symbol sin.  

x3

The concept of derived terminal set (DTS) is introduced 
in this paper for the purpose of saving computational 
resources for initializing and processing various kinds of 
primitive functions such as , . DTS is a 
collection of symbols that represent primitive functions. 
DTS is used, along with the terminal set and the function set, 
for creating the initial population for genetic programming.  

( )sin x3 (cos x3 )

Desirable characteristics of DTS include the capability of 
approximating a mathematical function when linearly 
combined. Time series modeling is in a sense an 
approximation of the unknown function f in Eq. (1). 
Orthogonal functions (Sansone 1991) satisfy these 
conditions. In addition to trigonometric functions, we made 
DTS by applying Tschebyshev function to elements of 

r
xt  

in Eq. (1). The Tschebyshev terminal  is given by  Torder i,

( )[ ]T orderorder i i,
**cos arccos≡ × x xi

** ∈ xr          (13) 

where order is an integer, the double asterisks in  
indicate that  should be appropriately adjusted to be in 
the interval [-1, 1]. The following linear mapping is used. 

xi
**

xi

x sxi i
** ,= − t  ( )s x xi

MAX
i
MIN= −

−
2

1
,  

( )t x x xi
MIN

i
MAX

i
MIN= + −

−
1 2

1
                 (14) 

In Eq. (14),  and are the global maximum and 

minimum. Now, let and  be local maximum and 
minimum observable in the training region. The global 

 and are estimated by introducing arbitrary 
expansion ratio 

xi
MAX

xi
MIN

xi
MIN

xi
max xi

min

xi
MAX

η . Equation (15) assume that the global 
interval is 2 1η +  times broader than the local interval 
observable in the training region. 

x xi
MAX

i= + ⋅max ,η ∆   x xi
MIN

i= − ⋅min ,η ∆

∆ = −x xi i
max min                             (15) 

 

3 Applications 
3.1 Human Body Blood Flow Dynamics 

Time series data obtained by solving the Mackey – Glass 
equation have been used by several works (Oakeley 1994, 
Iba 1994, Casdagli 1989). The equation simulates the 
nonlinear dynamics of human blood flow, and is given by  

dx
dt

bx
x

axt t

t
c t=

+
−−

−

∆

∆1
,  

( ) ( )x a x bx xt t t t
c

+ −

−
= − + +1

1
1 1∆ ∆−                (16) 

With appropriately assigned constant values a, b, and ∆ , the 
difference equation in Eq. (16) is used to generate very 
chaotic time series from the initial random seeds of 
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predetermined size, about 40. Table below compares results 
of this study with those of earlier works.  
 

Earlier Works Forecating 
Performance Casdagli 1993 Iba 1994 This Study

NMSE(20) 0.063 0.031 0.019 
NMSE(30) 0.159  0.009 
NMSE(40) 0.316 0.158 0.004 
NMSE(50) 0.631 0.371 0.003 
NMSE(60) 0.990 0.617 0.005 

 
Time series perturbation algorithm outperforms the 

earlier works based on genetic programming. See section 
17.5.1 and section 17.5.3.2, Lee 1999, for further details. 

3.2 Santa Fe and ASHRAE Time Series Competitions 
 
Santa Fe Institute and ASHRAE (American Society for 
Heating, Refrigerating, and Air-conditioning Engineers) 
held worldwide competitions for time series analysis and 
forecast. Time series was chosen from very stationary to 
highly volatile system. See Weigend 1993 for more details 
on the categorization and characterization of the time series 
data for the competition. This paper has fixed computational 
parameters for them to the followings:  

• Number of populations = 5, Population size = 30, 
Generation Limit = 9, Maximum number of 
perturbation modeling allowed = 5 

• Function set = { , –, , /, sin, cos, exp, log, expt }, 
Terminal set = {

( )t n t t− − −1 τ τ
}  

{

+ ×
x x xt − 2τ, . .. , , , x U

T orde ~= 1 1rorder i,  for each i }, Depth of 
regression trees = Initial 6, after-crossover 18 

0 x

• Crossover fraction = 0.8, Mutation fraction = 0.1, 
Reproduction fraction = 0.1, Maximum number of 
migrating individuals allowed = 1 % of total individuals 

• Lag spacing = 1, Lead time = 1, Embedding dimension 
= 1 or 4, Impact step = 1 

• Total number of time series vector = 400, Training 
region T = first 200 data, Validation region V = next 
100 data after region T, Forecast region F = the last 
100 data after region V, Terminating NMSE = 0.01. 

Table below summarizes the modeling and forecasting 
performances of the perturbation modeling explored in this 
study. Symbols for each time series are used to save space 
here, and they are : Sun = Time series for the true solar 
beam isolation flux, Energy = Energy consumption rate in a 
building, Laser = Intensity fluctuation of NH3 laser, Heart = 
Heart rate of a human patient, Curr. = Currency exchange 
rate for Swiss franc vs. US dollor, Part. = Quantum particle 
position in 4D potential well, and Star = Surface brightness 
of a white dwarf star, PG1195. See Weigend 1993. For 
Santa Fe competition series, numerical values added to the 
symbols are used to represent the embedding dimensions.  
 
 
 

Performances in each Region 
T V F (Forecasting)

Com- Time 

Modeling 
With DTS 

With
DTS 

No 
DTS 

Sun 0.005 0.001 0.002 0.002 ASHRAE
Energy 0.032 0.039 0.054 0.075 
Laser, 1 0.007 0.018 0.015 0.016 
Laser, 4 0.001 0.003 0.004 0.004 
Heart, 1 0.065 0.190 0.165 >> 1 
Heart, 4 0.178 0.259 0.355 Infinite
Curr., 1 1.542 1.666 1.247 35.88 
Curr., 4 8.364 7.878 15.39 Infinite
Part., 1 0.023 0.033 0.076 12.54 
Part., 4 0.699 0.354 0.154 Infinite
Star, 1 0.006 0.008 0.033 0.028 

Santa Fe

Star, 4 0.002 0.001 0.002 0.002 
 
Note that Sun, Laser, and Star are all from physics 

systems that have stationary system dynamics. These time 
series are categorized into the stationary or deterministic 
time series (Weigend 1993, Box 1994). Stationary or 
deterministic time series is well modeled and forecasted by 
the perturbation modeling based on genetic programming. 
The terminating NMSE for forecasting was achieved before 
the maximum number of perturbation modeling ran out. 

Embedding dimension n, lag spacing τ  , and lead time 
T are simplistically assumed and kept fixed in this study. 
Two different values of the embedding dimension, n = 1 and 
4, are chosen only to see if the embedding dimension works 
differently for stationary and nonstationary time series. 
Perturbation modeling worked much better for deterministic 
time series when we use increased embedding dimension. 
Of course, there must be a limit on the embedding 
dimension over which model performance deteriorates. 

On the other hand, the more a time series is 
nonstationary, the more unstable and irregular dynamics it 
will have. At the extreme, time series dynamics may be pure 
random. So, the increased embedding dimension for 
nonstationary time series might introduce increased 
randomness in dynamics that is hard to capture within 
practical, small computational resource limit. This point of 
view explains the different performances in the above table 
between the stationary and the other nonstationary time 
series. 

The foregoing table also reveals that DTS has minimal 
effects on the performances for stationary time series, while 
it does contribute to improve performances for 
nonstationary time series. Introduction of DTS saves 
computational resources to generate, evaluate, and process 
primitive functions. 

The algorithm for time series perturbation modeling 
based on genetic programming uses the update extension 
(Smith 1993) of time series beyond the training region. In 
the update extension, we must know true values of time 
series continuation that is S, the impact step, position behind 
the forecast position. The state space (Kailath 1996) 
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parameters were simplistically assumed for all 
aforementioned tables. Analysis to determine such 
parameters is not the scope of this paper. Moreover, 
extremely small quantity of training data, 200, makes very 
coarsely constructed state space. The competition 
contestants were required to use the runaway extension 
(Weigend 1993, Smith 1993) that do not rely on the true 
values to make forecasting extension of time series, and it is 
best successful when mass amount of data is used to 
construct very dense state space. 

From the practical points of view, each method of 
forecasting extension has the long and the short. Runaway 
extension requires expensive modeling burdens but the 
forecasting is easy with established self-extending models. 
It is beneficial to use the runaway extension when 
computational time is limited for timely forecast but there is 
a lot of stored data. On the other hand, the update extension 
is good when we have little data but good computing power. 
With modern high-speed computer, it will be more practical 
to use update extension. 

 

3.3 Major US Economic Time Series 
Economic time series constitute a very difficult but highly 
important category of time series. But, most short-term 
economic time series are extremely nonstationary, which 
has caused ever-continuing disputes on the existence of any 
order or chaotic structure we can simulate or model. See 
Dechert 1996 for related discussion. 

Time series perturbation modeling based on genetic 
programming was tested with respect to 18 major US 
economic time series data available from http:// 
www.economagic. com. 

Embedding dimensions are all fixed to 1 based on the 
experience from Santa Fe competition that increased 
embedding dimension may be risky for nonstationary 
economic time series with limited computational resources.  

Computational parameters were same as those for 
ASHRAE and Santa Fe competitions. Here, the concept of 
pre-modeling is introduced. Pre-modeling is the application 
of the algorithm with very small data size, i.e. 100 training 
data, for the purpose of grasping data characteristics. Pre-
modeling is based on the experience from Santa Fe 
competition. That is, the more stationary a time series is, the 
higher the model performance would be.  

Federal fund rates FFR, Japanese yen to US dollar 
currency exchange rate YENDOL, and 30-year Treasury 
Constant Maturity 30YTCM were relatively difficult to 
forecast. They are relatively more nonstationary, and need 
increased computational resources.  

Table below shows how the forecasting performances for 
FFR improve with increasing size of training data. All other 
parameters were fixed. NT stands for NMSE in the training 
(= modeling) region, and NF for the forecasting region, i. e., 
100 data after the end of NT. 

 

 
 

τ =1 Month τ =6 Month τ =12 MonthData
Size NT NF NT NF NT NF 
100 0.096 0.176 0.534 10.62 0.812 3.602
200 0.022 0.082 0.244 0.485 0.503 0.748
300 0.030 0.012 0.206 0.232 0.352 0.627
 

Evolution with increased number of training data, i. e. high 
density state space results in better modeling and forecasting 
performances. The more dense the state space is, the more 
system dynamics can be captured (Smith 1993).  

4 Conclusion 
This paper presented a new algorithm that combines 
perturbation theory (Rae 1992, Nayeh 1993) with genetic 
programming. Perturbation theory provides efficient ways to 
get solution to complex system equation that usually does 
not allow for exact solution. Genetic programming provides 
evolutionary processes to get symbolic forms that model 
time series dynamics. In the time series perturbation 
algorithm, the sequence of time series plays the role of the 
system equation in perturbation theory. Symbolic models 
obtained by genetic programming plays the role of 
Hamiltonians in perturbation theory.  

A sequence of the unperturbed time series models is 
obtained for a time series much like the unperturbed 
Hamiltonians were obtained for a wave equation by 
perturbation techniques. They are linearly combined with 
numerical coefficients calculated with respect to given time 
series. Forecasting beyond the training region is performed 
based on the update extension which requires numerical 
coefficients updated by the least square regression with 
respect to the latest data. The update extension of forecast 
data, and the introduction of DTS saved computation 
resources. Stationary time series are more easily modeled 
and forecasted. 

The algorithm was successfully applied to many real-
world chaotic time series, covering physics to economic 
ones. Noticeable performance was achieved even with the 
simplistically assumed values of state space parameters and 
the limited computational resource. 

The algorithm should be coupled with time series 
characterization techniques to get optimized set of the state 
space parameters, if any. In this paper, a pre-modeling or the 
run of the algorithm with reduced size of training data is 
suggested to classify data characteristics. Time series with 
good forecasting performances in the pre-modeling were 
assumed to be stationary, based on the application 
experience for Santa Fe competition. The new algorithm 
produced consistent results on the time series data 
characteristics with the analyses by other techniques 
(Weigend 1993). Effects of various genetic programming 
parameters on the modeling performance should be studied 
further. 
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