
Time Series Perturbation by Genetic Programming

G. Y. Lee
Assistant Professr, Department of Computer and Information Engineering, Young-San University

San 150, Ju-Nam-Ri, Ung-Sang-Eup,
Yang-San-Shi, Kyung-Nam, South Korea

sky@java-tech.com

Abstract- This paper presents a new algorithm that
combines perturbation theory and genetic programming
for modeling and forecasting real-world chaotic time
series. Both perturbation theory and time series
modeling have to build symbolic models for very
complex system dynamics. Perturbation theory does not
work without well-defined system equation. Difficulties
in modeling time series lie in the fact that we can’t have
or assume any system equation. The new algorithm
shows how genetic programming can be combined with
perturbation theory for time series modeling. Detailed
discussions on successful applications to chaotic time
series from practically important fields of science and
engineering are given. Computational resources were
negligible as compared with earlier similar regression
studies based on genetic programming. Desktop PC
provides sufficient computing power to make the new
algorithm very useful for real-world chaotic time series.
Especially, it worked very well for deterministic or
stationary time series, while stochastic or nonstationary
time series needed extended effort, as it should be.

1 Introduction
Time series is a scalar sequence of numerical data,

. Time series modeling usually starts from
generating vector time series,
x x x0 1 2, , , . . .

r r r
x x x0 1 2, , , . . .

xw

. An
appropriately arranged set of the scalar time series data,

, constitutes a vector. The
subscript t stands for current time,

()x xt n− −1 τ , . . . , x xt t t− −2τ τ, , ,
τ for delay time (also

called lag time or lag spacing), w t T= + for forecast time,
T for future time (also called lead time or prediction
horizon), and n for embedding dimension of the Euclidean
state space where each vector is a point. Determination of
these state space parameters for a given time series is
critical for good model. However, it is not the scope of this
paper. See Weigend 1993 for various data characterization
techniques.

Time series modeling is to find the functional
approximation to in Eq. (1) that relates ~f f ()xw

i with
remaining components of vector. The approximation error

()e i should be minimal for all vectors,
r r r
x x x0 1 2, , ,

 () ()()x f xw
i

t
i=

r ()() ()≅ +
~f x et

i ir , i = 1, 2, 3, ...

 ()
()()()rx x x x xt

i
t n t t t

i
n≡ ∈− − − −1 2τ τ τ, . . . , , , R (1)

As ARMA (Box 1994) and many other techniques such as
GMDH (Ivakhnenko 1971) do, genetic programming
applied to symbolic regression (Koza 1994) tries to find
explicit model that is written in mathematical symbols. It
has achieved interesting performance for stationary
scientific time series (Koza 1994, Oakeley 1994, Iba 1994).
But, real-world time series is very chaotic and usually
highly nonstationary (Box 1994). Also, noise makes it
difficult to have practically useful model. Expensive
computations resulted in only moderately performing
models for them.

The author noted that time series modeling have some
similarities with perturbation theory of quantum mechanics
(Rae 1992). They need useful approaches for formulating
nonstationary or stochastic system dynamics. Of course, the
system behaviors are represented differently. Perturbation
theory assumes well-defined system behavior, e.g. the wave
equation (Rae 1992, Nayeh 1993), while time series
modeling should work without such kind of equations.

Note that symbolic regression based on genetic
programming (Koza 1994) provides evolutionary ways to
do the essentially same works, i.e. formulation of complex
system dynamics, as perturbation theory does, even without
explicit system equation. The algorithm presented here takes
several viewpoints to model complex system dynamics from
perturbation theory. And, genetic programming is requested
to play the role of ill-defined system equation for chaotic
time series.

Section 2 formulates the new algorithm, followed by
Section 3 to show application examples to many real-world
chaotic time series. Section 4 concludes this paper and lists
up topics for further study.

2 Time Series Perturbation Algorithm
2.1 Development

 The inherently nonstationary dynamics of the wave
equation does not allow for exact solution. Perturbation
theory (Nayeh 1993) involves two types of Hamiltonians for
such equation. Now, let ()Ψu x

r
 be an unperturbed

Hamiltonian and ()Ψp xr be a perturbed Hamiltonian. Then
r r () () (Φ Ψ Ψ

rx xu p= + x (2))

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

jjaeone
0-7803-6657-3/01/$10.00 © 2001 IEEE

jjaeone
403

meets the system equation, i.e. the wave equation. Equation
(2) states that nonstationary system behavior can be
described by linear combination of Hamiltonians. The same
thing holds again for the perturbed Hamiltonian. This means
that the perturbed Hamiltonian ()Ψp xr can be expanded as
another linear combination of different Hamiltonians, and
the expansion repeats for all newly available sequence of
perturbed Hamiltonians. Perturbation technique provide
systematic ways to find the unperturbed Hamiltonians that
are integrated into a final solution to the complex system
equation. If Eq. (2) meets the system equation, any linear
combination of the Hamiltonians also meets the system
equation.

Note that the time series carry system dynamics for
source system as the wave equation does for a quantum
system. Then, we believe that the same procedure for
obtaining solutions to quantum system can be applied to
time series modeling. Given below is the detailed analogical
development of the time series modeling algorithm based on
the perturbation theory.

Now, the time series model or the function in Eq. (1)
can be expressed as a sum of the unperturbed and perturbed
Hamiltonians, on the analogy of Eq. (2). That is,

f

 () () ()f x f x f xu p
r r r

= + (3)
Equation (3) can be rewritten with appropriate constants, a
and b

 () () ()f x af x b f xu p
r r r

= + + (4)
rsince if ()f xu

r
 and ()f xp meets the system equation (=

system dynamics carried by time series), their linear
combination also meets the equation as Hamiltonians do for
the wave equation. The constant b is a kind of large number
such as the average. Seeing differently, b is a deterministic
value for every datum in the sequence of time series.

Equation (4) states that time series consist of the
unperturbed and the perturbed time series. The unperturbed
time series consists of the constant and the variable
expressed by the explicit function ()f xu

r
. The perturbed

time series is given by
 () () ()f x af x b f xu p

r r r
− − = (5)

Here, note that the perturbed time series can be easily
calculated if we substract the numuerical values returned by
linear combination of the unperturbed time series ()f xu

r

from the original time series ()f xr .

Equation (5), ()f xp
r represents still another time series

to model. We can proceed to model it, again with the same
algorithm for the original time series. In general, we will
have in theory a sequence of the unperturbed time series,

()f xu
jr
where j stands for j-th modeling procedure. In the

long run, the general form of time series perturbation model
becomes

 (6) () () ()f x a f x f xj
u

j

j

J

p
Jr r

= +
=
∑

0

r

where the 0-th unperturbed time series ()f xu
r 0 = 1, and

()f xp
Jr

 is negligible. Now, note that our problem is
reduced to how we get the series of the unperturbed time
series models. As you may already know, it is by GP
(Genetic Programming), see next section.

2.2 Implementations
Everytime we apply the classical GP-based symbolic

regression (Koza 1994) to the sequence of the unperturbed
time series, we can get the functional forms for ()f xu

r 0 ,

()f xu
r 1 ,..., ()f xu

Jr
in Eq.(6). This paper suggests that the

constants , j = 0, 1, 2, ... , J are determined by the least
square regression that makes

a j

()f xp
Jr

negligible.
Next several subsections describe some general and

special implementation details this paper is based on. For
more classic techniques about GP-based symbolic
regression, see (Koza 1994).

General Implementation Issues

1) Construction, Selection, and Integration of Models
For time series modeling based on genetic programming,

population of symbolic forms is subject to genetic evolution.
Initially, structures and contents of the symbolic forms are
determined at random. Genetic evolution alters the
structures and contents of symbolic forms such that they can
capture the time series dynamics. Usually, the best symbolic
form in a population is taken as a model for the time series.
As a corollary, we are expected to have P models if we use
P populations in the evolution.

Then, a question arises. What should we select one
among the multiple models to represent the time series
dynamics ? A commonsense selection may be the one that
produces the minimum approximation error for all time
series vectors, See Eq. (1). However, it is very hard to build
a perfect model within practical limit on computational
resources. The fact is that even the best one selected among
P multiple models must be only partially successful in
capturing the time series dynamics. And, moreover, the
other P – 1 unselected models do capture partial dynamics
of the time series, so that we can save computational
resources if we can reuse them in some ways. We may
reasonably integrate the partially successful models.
Paragraphs below explains how.

Now, let ()g xpp
r be the model constructed in

population pp. Then, the j-th unperturbed time series model
()f xu

jr
has, in this paper, the form

jjaeone
404

() ()f x g xu
j

pp pp
pp

Pr
= +

=
∑α α0

1

r (7)

where the numerical coefficients for each ()g xpp
r are

calculated by the least square regression with respect to
training data set of the time series. Note that Eq. (6) can be
rewritten. Insert Eq. (7) into Eq. (6). We get

() () () () ()f x a f x f x a g x f xj
u

j

j

J

p
J j

pp pp
pp

P

j

J j

p
Jr r r r

= + = +








 +

= ==
∑ ∑∑

0
0

10
α α

r

r r

r

In this paper, the numerical coefficients in the linear
combination of the models are simply updated with respect
to the data region that is close to forecast point. For example,
assume that we have 200 data in the training region. Then,
the 201st datum is forecasted with the numerical coefficients

calculated with respect to data between 1st and 200th
positions of the time series. The model is given by Eq. (6) if
j =1, and by Eq. (10) if j is greater than 1. For the 202nd
datum, the numerical coefficients are updated with respect
to data between 2nd and 201st positions. We can proceed
further only if the true time series datum at position v is
known before we try to forecast the position fp = v + 1. The
value S = fp – v ≥1 is termed as the impact step in this
paper. The data region that comes after the training region is
called the validation region. The model with changing
coefficients is used to forecast the data in the validation
region. After forecasting the last datum in the validation
region, the forecasting performance, e.g. Eq. (11), Eq. (12)
is recorded. The forecasting performance in the validation
region is an important criterion to determine if we stop or
proceed to another perturbation modeling procedure by
genetic programming. For this reason, we call it the
validation performance.

which becomes

() () ()f x a a g x f xj j j
pp
j

pp
j

p
J

pp

P

j

J

j

Jr
= + +

===
∑∑∑ α α0

110
 (8)

Changing notations for the numerical coefficients, Eq. (8)
can be rewritten as

() () ()f x g x f xK K
K

J P

p
Jr r

= + +
=

×

∑β β0
1

 (9)

From (3) and (9), we can see that the unperturbed time
series model up to J-th modeling procedure, see Section 2.1,
takes the form

() ()f x g xu
J

K K
K

J Pr r
= +

=

×

∑β β0
1

 (10)

2) Interpretation of the Perturbation Modeling by GP
We are now at a point to clarify overall procedure of the

time series perturbation modeling procedure based on
genetic programming. First, the vector time series, Eq. (1),
are divided into three data regions for training, validation,
and forecasting. For the first modeling procedure, genetic
programming is run with respect to the training region and
we have the unperturbed time series model as expressed by
Eq. (10), J = 1.

Once the unperturbed time series model is determined,
the j-th model building procedure is formally over. Ideally,
the model would capture the time series dynamics and
therefore can forecast the time series beyond the training
region. But, our model would fail only after a few
acceptable forecasts due to several practical reasons. For
example, the training region may not be sufficient to
provide information needed to capture the dynamics beyond
it. Even if the training region contains sufficient information,
computational resources may fall short of what is necessary
to make full use of the information.

There may be several ways to keep the model
performance as high as possible beyond the training region.
The most straightforward one would be to re-construct the
model with respect to newly defined training region that
includes the latest available true time series data. But, the
new model should be constructed in time to become useful
forecaster for the time series.

Another modeling procedure starts if the validation
performance got improved as compared with former
modeling procedure. By default, the first modeling
procedure is followed by the second modeling procedure.
Otherwise, the perturbation modeling procedure stops on the
assumption that the model has started to capture spurious or
excessive perturbation such as noise or disturbance. This
type of criterion to terminate learning or modeling algorithm
was used in the field of artificial neural network (Geman
1992) and called early stopping policy. Section 4
summarizes above interpretation of the proposed GP-based
time series perturbation modeling procedure.

Several Implementation Issues

1) Performance of individual model
A model or any individual in a population should be

given numerical performance value that measures how well
the time series is approximated or simulated by the
symbolic forms represented by the individual or the model.
Popular performance value is the normalized mean squared
error (Weigend 1993), and the coefficient of variation (Iba
1994). They are defined by

() () ()()CV N x N x xi i
i
N= −






=∑
1 1 2

1

0 5
~

.

 (11)

() ()()
()()∑

∑
=

=

−

−
= N

i
i

N

i
ii

xx

xx
NNMSE

1

2
1

2~
)(

() ()()
22

1

2

ˆ
)(

ˆ

~

σσ
NMSE

N
xxN

i
ii

=
−

≅ ∑ = (12)

where ()~x i and ()x i are model evaluation and true datum
at the position i. x and denote the sample average
and sample variance of the time series.

$σ 2

N is the number
of data over which ()NMSE N or is calculated. (N)CV

jjaeone
405

MSE stands for Mean Squared Error. Model fitness of an
individual is given by the inverse of ()NMSE N

()g xpp

 or

 in this paper. ()CV N

r

2) Super population and Migration
Genetic programming designed for time series

perturbation modeling in this paper has a special-purpose
population called the super population of which sole service
is to select and keep the best individuals, in Eq. (7),
from each of multiple populations. The best individual from
a population is allowed to replace a super population
member at the end of each generation if and only if its
fitness excels that of the member being replaced.

Migration does occur between the multiple populations
that undergo evolution. Only those members in the super
population that survived the whole generations become the
final model ()g xpp

r in Eq. (7). The super population is
different from the multi-agent team (Luke 1996) where
agents or team members are somehow engaged in the
evolutionary processes.

3) Three Symbolic Anomalities
Symbolic structures and contents that can not be

translated into mathematically valid equations define
mathematical anomality. Division-by-zero, negative
arguments given to square root are typical examples of the
mathematical abnormality. Symbolic structures and contents
that cause computer software error such as the overflow or
underflow define computational anomality. The last
symbolic anomality is the semantic replication. When
multiple symbolic forms are mathematically equivalent,
they are semantic replications of each other. For example,
(+ x3 (sin (/ x2 x2))) is the semantic replication of (+ x3 (sin
1)) = x3. Especially, semantic replication between the best
individual from a population and the super population
member should be avoided at the end of each generation and
each modeling procedure. If not, mathematical error of
singular matrix occurs during calculation of the numerical
coefficients in Eq. (6) or Eq. (10) using the least square
regression.

Any type of symbolic anomalities consumes
computational resources because they blemish genetic
diversity in a population. Also, they cause unexpected error
in the program run. There should be systematic techniques
to detect and repair the cases of symbolic anomalities. If any
individual in a population has symbolic anomality, its
fitness is arbitrarily assigned a very small value in this paper
to reduce the chance of breeding offspring in the next
generation.

4) Derived Terminal Set
Function set and terminal set for regression problem

based on genetic programming are very important because
they are basic symbols to represent time series datum in
explicit form. Terminal set provides argument symbols for
function symbols. For example, the symbolic

form ()sin x3 has the argument symbol for the function
symbol sin.

x3

The concept of derived terminal set (DTS) is introduced
in this paper for the purpose of saving computational
resources for initializing and processing various kinds of
primitive functions such as , . DTS is a
collection of symbols that represent primitive functions.
DTS is used, along with the terminal set and the function set,
for creating the initial population for genetic programming.

()sin x3 (cos x3)

Desirable characteristics of DTS include the capability of
approximating a mathematical function when linearly
combined. Time series modeling is in a sense an
approximation of the unknown function f in Eq. (1).
Orthogonal functions (Sansone 1991) satisfy these
conditions. In addition to trigonometric functions, we made
DTS by applying Tschebyshev function to elements of

r
xt

in Eq. (1). The Tschebyshev terminal is given by Torder i,

()[]T orderorder i i,
**cos arccos≡ × x xi

** ∈ xr (13)

where order is an integer, the double asterisks in
indicate that should be appropriately adjusted to be in
the interval [-1, 1]. The following linear mapping is used.

xi
**

xi

x sxi i
** ,= − t ()s x xi

MAX
i
MIN= −

−
2

1
,

()t x x xi
MIN

i
MAX

i
MIN= + −

−
1 2

1
 (14)

In Eq. (14), and are the global maximum and

minimum. Now, let and be local maximum and
minimum observable in the training region. The global

 and are estimated by introducing arbitrary
expansion ratio

xi
MAX

xi
MIN

xi
MIN

xi
max xi

min

xi
MAX

η . Equation (15) assume that the global
interval is 2 1η + times broader than the local interval
observable in the training region.

x xi
MAX

i= + ⋅max ,η ∆ x xi
MIN

i= − ⋅min ,η ∆

∆ = −x xi i
max min (15)

3 Applications
3.1 Human Body Blood Flow Dynamics

Time series data obtained by solving the Mackey – Glass
equation have been used by several works (Oakeley 1994,
Iba 1994, Casdagli 1989). The equation simulates the
nonlinear dynamics of human blood flow, and is given by

dx
dt

bx
x

axt t

t
c t=

+
−−

−

∆

∆1
,

() ()x a x bx xt t t t
c

+ −

−
= − + +1

1
1 1∆ ∆− (16)

With appropriately assigned constant values a, b, and ∆ , the
difference equation in Eq. (16) is used to generate very
chaotic time series from the initial random seeds of

jjaeone
406

predetermined size, about 40. Table below compares results
of this study with those of earlier works.

Earlier Works Forecating
Performance Casdagli 1993 Iba 1994 This Study

NMSE(20) 0.063 0.031 0.019
NMSE(30) 0.159 0.009
NMSE(40) 0.316 0.158 0.004
NMSE(50) 0.631 0.371 0.003
NMSE(60) 0.990 0.617 0.005

Time series perturbation algorithm outperforms the

earlier works based on genetic programming. See section
17.5.1 and section 17.5.3.2, Lee 1999, for further details.

3.2 Santa Fe and ASHRAE Time Series Competitions

Santa Fe Institute and ASHRAE (American Society for
Heating, Refrigerating, and Air-conditioning Engineers)
held worldwide competitions for time series analysis and
forecast. Time series was chosen from very stationary to
highly volatile system. See Weigend 1993 for more details
on the categorization and characterization of the time series
data for the competition. This paper has fixed computational
parameters for them to the followings:

• Number of populations = 5, Population size = 30,
Generation Limit = 9, Maximum number of
perturbation modeling allowed = 5

• Function set = { , –, , /, sin, cos, exp, log, expt },
Terminal set = {

()t n t t− − −1 τ τ
}

{

+ ×
x x xt − 2τ, . .. , , , x U

T orde ~= 1 1rorder i, for each i }, Depth of
regression trees = Initial 6, after-crossover 18

0 x

• Crossover fraction = 0.8, Mutation fraction = 0.1,
Reproduction fraction = 0.1, Maximum number of
migrating individuals allowed = 1 % of total individuals

• Lag spacing = 1, Lead time = 1, Embedding dimension
= 1 or 4, Impact step = 1

• Total number of time series vector = 400, Training
region T = first 200 data, Validation region V = next
100 data after region T, Forecast region F = the last
100 data after region V, Terminating NMSE = 0.01.

Table below summarizes the modeling and forecasting
performances of the perturbation modeling explored in this
study. Symbols for each time series are used to save space
here, and they are : Sun = Time series for the true solar
beam isolation flux, Energy = Energy consumption rate in a
building, Laser = Intensity fluctuation of NH3 laser, Heart =
Heart rate of a human patient, Curr. = Currency exchange
rate for Swiss franc vs. US dollor, Part. = Quantum particle
position in 4D potential well, and Star = Surface brightness
of a white dwarf star, PG1195. See Weigend 1993. For
Santa Fe competition series, numerical values added to the
symbols are used to represent the embedding dimensions.

Performances in each Region
T V F (Forecasting)

Com- Time

Modeling
With DTS

With
DTS

No
DTS

Sun 0.005 0.001 0.002 0.002 ASHRAE
Energy 0.032 0.039 0.054 0.075
Laser, 1 0.007 0.018 0.015 0.016
Laser, 4 0.001 0.003 0.004 0.004
Heart, 1 0.065 0.190 0.165 >> 1
Heart, 4 0.178 0.259 0.355 Infinite
Curr., 1 1.542 1.666 1.247 35.88
Curr., 4 8.364 7.878 15.39 Infinite
Part., 1 0.023 0.033 0.076 12.54
Part., 4 0.699 0.354 0.154 Infinite
Star, 1 0.006 0.008 0.033 0.028

Santa Fe

Star, 4 0.002 0.001 0.002 0.002

Note that Sun, Laser, and Star are all from physics

systems that have stationary system dynamics. These time
series are categorized into the stationary or deterministic
time series (Weigend 1993, Box 1994). Stationary or
deterministic time series is well modeled and forecasted by
the perturbation modeling based on genetic programming.
The terminating NMSE for forecasting was achieved before
the maximum number of perturbation modeling ran out.

Embedding dimension n, lag spacing τ , and lead time
T are simplistically assumed and kept fixed in this study.
Two different values of the embedding dimension, n = 1 and
4, are chosen only to see if the embedding dimension works
differently for stationary and nonstationary time series.
Perturbation modeling worked much better for deterministic
time series when we use increased embedding dimension.
Of course, there must be a limit on the embedding
dimension over which model performance deteriorates.

On the other hand, the more a time series is
nonstationary, the more unstable and irregular dynamics it
will have. At the extreme, time series dynamics may be pure
random. So, the increased embedding dimension for
nonstationary time series might introduce increased
randomness in dynamics that is hard to capture within
practical, small computational resource limit. This point of
view explains the different performances in the above table
between the stationary and the other nonstationary time
series.

The foregoing table also reveals that DTS has minimal
effects on the performances for stationary time series, while
it does contribute to improve performances for
nonstationary time series. Introduction of DTS saves
computational resources to generate, evaluate, and process
primitive functions.

The algorithm for time series perturbation modeling
based on genetic programming uses the update extension
(Smith 1993) of time series beyond the training region. In
the update extension, we must know true values of time
series continuation that is S, the impact step, position behind
the forecast position. The state space (Kailath 1996)

jjaeone
407

parameters were simplistically assumed for all
aforementioned tables. Analysis to determine such
parameters is not the scope of this paper. Moreover,
extremely small quantity of training data, 200, makes very
coarsely constructed state space. The competition
contestants were required to use the runaway extension
(Weigend 1993, Smith 1993) that do not rely on the true
values to make forecasting extension of time series, and it is
best successful when mass amount of data is used to
construct very dense state space.

From the practical points of view, each method of
forecasting extension has the long and the short. Runaway
extension requires expensive modeling burdens but the
forecasting is easy with established self-extending models.
It is beneficial to use the runaway extension when
computational time is limited for timely forecast but there is
a lot of stored data. On the other hand, the update extension
is good when we have little data but good computing power.
With modern high-speed computer, it will be more practical
to use update extension.

3.3 Major US Economic Time Series
Economic time series constitute a very difficult but highly
important category of time series. But, most short-term
economic time series are extremely nonstationary, which
has caused ever-continuing disputes on the existence of any
order or chaotic structure we can simulate or model. See
Dechert 1996 for related discussion.

Time series perturbation modeling based on genetic
programming was tested with respect to 18 major US
economic time series data available from http://
www.economagic. com.

Embedding dimensions are all fixed to 1 based on the
experience from Santa Fe competition that increased
embedding dimension may be risky for nonstationary
economic time series with limited computational resources.

Computational parameters were same as those for
ASHRAE and Santa Fe competitions. Here, the concept of
pre-modeling is introduced. Pre-modeling is the application
of the algorithm with very small data size, i.e. 100 training
data, for the purpose of grasping data characteristics. Pre-
modeling is based on the experience from Santa Fe
competition. That is, the more stationary a time series is, the
higher the model performance would be.

Federal fund rates FFR, Japanese yen to US dollar
currency exchange rate YENDOL, and 30-year Treasury
Constant Maturity 30YTCM were relatively difficult to
forecast. They are relatively more nonstationary, and need
increased computational resources.

Table below shows how the forecasting performances for
FFR improve with increasing size of training data. All other
parameters were fixed. NT stands for NMSE in the training
(= modeling) region, and NF for the forecasting region, i. e.,
100 data after the end of NT.

τ =1 Month τ =6 Month τ =12 MonthData
Size NT NF NT NF NT NF
100 0.096 0.176 0.534 10.62 0.812 3.602
200 0.022 0.082 0.244 0.485 0.503 0.748
300 0.030 0.012 0.206 0.232 0.352 0.627

Evolution with increased number of training data, i. e. high
density state space results in better modeling and forecasting
performances. The more dense the state space is, the more
system dynamics can be captured (Smith 1993).

4 Conclusion
This paper presented a new algorithm that combines
perturbation theory (Rae 1992, Nayeh 1993) with genetic
programming. Perturbation theory provides efficient ways to
get solution to complex system equation that usually does
not allow for exact solution. Genetic programming provides
evolutionary processes to get symbolic forms that model
time series dynamics. In the time series perturbation
algorithm, the sequence of time series plays the role of the
system equation in perturbation theory. Symbolic models
obtained by genetic programming plays the role of
Hamiltonians in perturbation theory.

A sequence of the unperturbed time series models is
obtained for a time series much like the unperturbed
Hamiltonians were obtained for a wave equation by
perturbation techniques. They are linearly combined with
numerical coefficients calculated with respect to given time
series. Forecasting beyond the training region is performed
based on the update extension which requires numerical
coefficients updated by the least square regression with
respect to the latest data. The update extension of forecast
data, and the introduction of DTS saved computation
resources. Stationary time series are more easily modeled
and forecasted.

The algorithm was successfully applied to many real-
world chaotic time series, covering physics to economic
ones. Noticeable performance was achieved even with the
simplistically assumed values of state space parameters and
the limited computational resource.

The algorithm should be coupled with time series
characterization techniques to get optimized set of the state
space parameters, if any. In this paper, a pre-modeling or the
run of the algorithm with reduced size of training data is
suggested to classify data characteristics. Time series with
good forecasting performances in the pre-modeling were
assumed to be stationary, based on the application
experience for Santa Fe competition. The new algorithm
produced consistent results on the time series data
characteristics with the analyses by other techniques
(Weigend 1993). Effects of various genetic programming
parameters on the modeling performance should be studied
further.

jjaeone
408

Bibliography

Weigend, A. S. and Gershenfeld, N. A., Eds (1993),
Time Series Prediction – Forecasting the future and
Understanding the Past, SFI Studies in the Science of
Complexity, Vol. XV, Addison Wesley Publishing Co.

Box, G. E. P. , Jenkins, G. M. and Reinsel, G. C.
(1994), Time Series Analysis, 3rd ed., Englewood Cliffs, NJ:
Prentice Hall, 1994.

Ivakhnenko, A. G. (1971), “Polynomial Theory of
Complex Systems,” IEEE Trans. Syst. Man Cybern., vol.
1(4), pp. 364-378, 1971.

Koza, J. R. (1994), Genetic Programming II, MIT Press.
Oakeley, H. (1994), “Two Scientific Application of

Genetic Programming: Stack Filters and Non-Linear
Equation Fitting to Chaotic Data,” in Advances in Genetic
Programming, K. E. Kinnear Jr., Eds. MIT Press, pp. 369-
389.

Iba, H., de Garis, H. and Sato, T. (1994), “Genetic
Programming using a Minimum Description Length
Principle,” in Advances in Genetic Programming, K. E.
Kinnear Jr., Eds. MIT Press, pp. 265-284.

Rae, A. I. M. (1992), Quantum Mechanics, 3 rd ed.,
University of Birmingham, UK, IOP Publishing Ltd.

Geman, S. et al. (1992), “Neural Networks and the Bias /
Variance Dilemma,” Neural Computation, vol. 4, pp. 1-58.

Luke, S. (1996), and L. Spector, “Evolving Teamwork
and Coordination with Genetic Programming,” in Genetic
Programming 1996: Proceedings of the First Annual
Conference, MIT Press, pp. 150-156.

Sansone, G., Sansome, G. and Diamond, A. H. (1991),
Orthogonal Functions, Dover Publications.

Casdagli, M. C. (1989), “Nonlinear prediction of chaotic
time series,” Physics D. 35, pp. 335-356.

Lee, G. Y. (1999), ”Genetic Recursive Regression for
modeling and forecasting real-world chaotic time series,” in
Advances in Genetic Programming, vol. 3. MIT Press,
Chapter 17.

Kreider, J. F. (1993), results.asc, ASHRAE Competition
ftp site, ftp.cs.colorado.edu/pub/energy-shootout, 1993.

Smith, L. A. (1993), “Does a meeting in Santa Fe imply
chaos ?,” in Time Series Prediction – Forecasting the
Future and Understanding the Past, A. S. Weigend, and N.
A. Gershenfeld, Eds., SFI Studies in the Science of
Complexity, vol. XV. Addison-Wesley Publishing Co, pp.
323-343.

Kailath, T. (1980), Linear Systems, Englewood Cliffs,
NJ: Prentice Hall.

Dechert, W. D. (1996), Chaos Theory in Economics :
Methods, Models and Evidence, International Library of
Critical Writings in Economics, No. 66. Edward Elgar Pub.

Nayeh, A. H. (1993), and A. H. Nayfeh, Introduction to
Perturbation Techniques, John Wiley & Sons.

ftp://ftp.cs.colorado.edu/pub/energy-shootout
jjaeone
409

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

