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Abstract- Here a new general GP schema theory for head-
less chicken crossover and subtree mutation is presented.
The theory gives an exact formulation for the expected
number of instances of a schema at the next generation
either in terms of microscopic quantities or in terms of
macroscopic ones. The paper gives examples which show
how the theory can be specialised to specific operators.

1 Introduction

The theory of schemata in genetic programming has had a dif-
ficult childhood. After some excellent early efforts leading to
different worst-case-scenario schema theorems [1, 2, 3, 4, 5,
6, 7], exact schema theories have become available only very
recently [8, 9, 10, 11]. These new theories give exact formu-
lations (rather than lower bounds) for the expected number of
instances of a schema at the next generation, and are applica-
ble to GP with various types of subtree crossover. No exact
schema theory for subtree mutation (or any other type of GP
mutation) has ever been proposed.

This paper fills this theoretical gap and presents a new
general GP schema theory for subtree mutation and headless
chicken crossover. Headless chicken crossover is a variant
of crossover, introduced for GAs in [12] and for GP in [13],
in which one of the parents is randomly generated while the
other is selected from the population. Our theory gives an
exact formulation for the expected number of instances of a
schema at the next generation for these operators.

The paper is organised as follows. Firstly, we provide a re-
view of earlier relevant work on schemata in Section 2. Most
of the concepts introduced in that section are described exten-
sively, since they are necessary to understand the rest of the
paper. Then, we derive general schema theorems for GP with
headless chicken crossover and subtree mutation in Sections 3
and 4, respectively. In Section 5 we give examples that show
how the theory can be specialised to obtain schema theorems
for specific operators and primitive sets. Some conclusions
are drawn in Section 6.

2 Background

Schemata are sets of points of the search space sharing some
syntactic features. For example, in the context of GAs oper-
ating on binary strings, syntactically a schema is a string of
symbols from the alphabet �0,1,*�, where the character * is

interpreted as a “don’t care” symbol. Typically schema theo-
rems are descriptions of how the number of members of the
population belonging to a schema vary over time. If ���� ��
is the probability that a newly created individual samples the
schema � , which we term the total transmission probability
of � , an exact schema theorem is simply [14]

������ �� ��� ������ ��� (1)

where � is the population size, ���� � � �� is the number
of individuals in � at generation �� � and ���� is the expec-
tation operator. Holland’s [15] and other worst-case-scenario
schema theories normally provide a lower bound for ���� ��
or, equivalently, for ������ �� ���.

One of the difficulties in obtaining theoretical results on
GP using the idea of schema is that its definition is much less
straightforward than for GAs. Various definitions have been
proposed in the literature [1, 2, 3, 4, 5, 7], but for brevity here
we will describe only the definition of fixed-size-and-shape
schema introduced in [5, 6] which is what is used in this paper
and in other recent work [8, 9, 10, 11, 16].

2.1 GP Schemata

Syntactically a GP fixed-size-and-shape schema (or just
schema for simplicity) is a tree composed of functions from
the set � � ��� and terminals from the set � � ���, where
� and � are the function and terminal sets used in a GP
run [5, 6]. The primitive � is a “don’t care” symbol which
stands for a single terminal or function. A schema � repre-
sents programs having the same shape as � and the same
labels for the non-� nodes. For example, if �=�+, *�
and � =�x, y� the schema (+ x (= y =)) represents
the four programs (+ x (+ y x)), (+ x (+ y y)),
(+ x (* y x)) and (+ x (* y y)).

Using this definition, in [5, 6] a worst-case-scenario
schema theorem was derived for GP with point mutation and
one-point crossover. This result was improved in [8, 9] where
an exact schema theory for GP with one-point crossover (but
no mutation) was derived.

2.2 Cartesian Node Reference Systems

In [11] a general schema theory for GP with subtree-
swapping crossover was presented which was based on the
notion of variable arity hyperschema and on the concepts of
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Figure 1: Tree-independent Cartesian node reference system.
Nodes and links of the maximal tree are drawn with dashed
lines. Only four layers are shown.

Cartesian node reference systems and probability distribu-
tions over them. These are also the basis for the new theory
presented in this paper. They are described in this and the
following sections.

A Cartesian node reference system can be defined by first
considering the largest possible tree that can be created with
nodes of arity ����. This maximal tree would include 1 node
of arity ���� at depth 0, ���� nodes of arity ���� at depth
1, ����� nodes of arity ���� at depth 2, etc.. Then one can
organise the nodes in the tree into layers of increasing depth
and assign an index to each node in a layer. We can then
define a coordinate system based on the layer number 	 and
the index 
. This reference system can also be used to lo-
cate the nodes of non-maximal trees by using a subset of
the nodes and links in the maximal tree. So, for example, if
���� � �, the nodes in the expression (A (B C D) (E F
(G H))) would be placed in a node reference system as in-
dicated in Figure 1 where, for example, F is indexed by (2,3).
It should be noted that in the this kind of reference system
it is possible to transform pairs of coordinates into integers
by counting the nodes in breadth-first order (and vice versa).
So, nodes A, B, C, D, E, F and G would have indices 0, 1, 4,
5, 2, 7, 8 and 25, respectively. We will use this property to
simplify the notation in some of the following sections.

2.3 Functions over Node Reference Systems

Given a node reference system it is possible to define func-
tions over it. An example of such functions is the name
function ��	� 
� �� which returns the node at position �	� 
�
in a particular tree �; if � does not have a node at position
�	� 
�, a default value of � is returned. For example, for the
tree in Figure 1, ��	� 	� �� � � and ��
� 	� �� � �, while
��
� 
� �� � �.

Another example of a node function is the arity function
�	� 
� �� which returns the arity of the node at coordinates
�	� 
� in �. The function returns �� if �	� 
� is not in �. For
example, for the tree in Figure 1,�	� 	� �� � 
,��� 	� �� �

, �
� �� �� � 	 and �
� �� �� � �.

Finally, it should be noted that these functions can be ap-
plied to schemata too. A useful function in handling schemata

is the defining node function, ��	� 
���, which returns 1 if
the node at coordinates �	� 
� is a defining node, 0 if it is a =
symbol, �� if it is not in � .

2.4 Modelling the Selection of Crossover and Mutation
Points

Most genetic operators used in GP require the selection of
a node where to perform a transformation (e.g. the insertion
of a random subtree, or of a subtree taken from another par-
ent). In most cases the selection of the node is performed
with a stochastic process of some sort. It is possible to model
this process by assuming that a probability distribution is de-
fined over the nodes of each individual. If we use the node-
reference system introduced in the previous section, this can
be expressed as the function:

��	� 
	�� � �
�

A node at coordinates ��� �� is
selected in program �

�
� (2)

where we assume that ��	� 
	�� is zero for all the undefined
coordinates �	� 
� in �.1 For example, if we select nodes with
uniform probability from the tree in Figure 1, then ��	� 
	�� �
�
� if �	� 
� exists in �, and ��	� 
	�� � 	 otherwise.

There are many possible uses for probability distributions
over node reference systems. In the following section we
will concentrate on their use in modelling crossover opera-
tors. Later it will become clear how these can be used to
model headless chicken crossover and subtree mutation.

2.5 Modelling Subtree-swapping Crossover

In general in order to model crossover operators we need to
use the following conditional probability distribution:

��	�� 
�� 	�� 
�	��� ��� �

�
�

A node at coordinates ���� ��� is selected in parent �� and
a node at coordinates ���� ��� is selected in parent ��

�
�

with the convention ��	�� 
�� 	�� 
�	��� ��� � 	 if
��	�� 
�� ��� � � or ��	�� 
�� ��� � �, where ��	� 
� ��
is the name function defined in Section 2.3. If the selection
of the crossover points is performed independently in the two
parents, then

��	�� 
�� 	�� 
�	��� ��� � ��	�� 
�	��� � ��	�� 
�	����

where ��	� 
	�� is defined in Equation 2. We will call
crossover operators for which this relation is true separable.

Standard crossover with uniform selection of the crossover
points is a separable operator with

��	� 
	�� �
Æ���	� 
� �� 
� ��

����
�

where ���� is the number of nodes in � and Æ��� is a function
which returns 1 if � is true, 0 otherwise.

1For this probability distribution we use the notation ���� ���� rather than
���� �� �� since this can be seen as the conditional probability of selecting
node ��� �� if (or given that) the program being considered is �.
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Also standard crossover with a 90%-function/10%-any-
node selection policy is separable. However, it should be
noted that some crossover operators, like for example one-
point crossover and strongly typed GP crossover, are not sep-
arable. Models for these and other crossover operators are
described in [11].

Thanks to these probabilistic models of crossover, it is
possible to develop a general schema theory for GP as de-
scribed in the following sections. This theory is the basis for
the schema theory for headless chicken crossover and subtree
mutation presented later in this paper.

2.6 Exact GP Schema Theorems for Subtree-swapping
Crossovers

For simplicity in this and the following sections we will use a
single index to identify nodes unless otherwise stated. We can
do this because, as indicated previously, there is a one-to-one
mapping between pairs of coordinates and natural numbers.

In order to state a schema theorem valid for subtree-
swapping crossovers, we need to introduce new form of
schema: the Variable Arity Hyperschema, or VA hyperschema
for brevity. A VA hyperschema is a rooted tree composed
of internal nodes from the set � � ����� and leaves from
� � ����� [11]. The operator = is a “don’t care” symbols
which stands for exactly one node, the terminal # stands for
any valid subtree, while the function # stands for exactly one
function of arity not smaller than the number of subtrees con-
nected to it. For example, the VA hyperschema (# x (+ =
#)) represents all the programs with the following character-
istics: a) the root node is any function in the function set with
arity 2 or higher, b) the first argument of the root node is the
variable x, c) the second argument of the root node is +, d)
the first argument of the + is any terminal, e) the second argu-
ment of the + is any valid subtree. If the root node is matched
by a function of arity greater than 2, the third, fourth, etc. ar-
guments of such a function are left unspecified, i.e. they can
be any valid subtree.

We can use VA hyperschemata and the notion of proba-
bility distributions over node reference systems to obtain the
following general result [11]:
Theorem 1. The total transmission probability for a fixed-
size-and-shape GP schema � under a subtree-swapping
crossover operator and no mutation is

���� �� � ��� �������� ���

���
�
����

�
����

����� ������� �� � (3)

�
���

�
�

��
� �	��� ���Æ��� � ���� 
��Æ��� � ���� 
� ���

where: ��� is the crossover probability; ���� �� is the se-
lection probability of the schema �;2 � is the set of unique

2In fitness proportionate selection ���� �� � ������������

� �����
, where

���� �� is the number of programs matching the schema � at generation

individuals in the population; ����� �� and ����� �� are the
selection probabilities of parents �� and ��, respectively; the
third summation is over all the crossover points (nodes) in
the schema �; the fourth summation is over all the crossover
points in the node reference system; ��
� �	��� ��� is the
probability of selecting crossover point 
 in parent �� and
crossover point � in parent ��; ���� 
� �� is the VA hyper-
schema obtained by rooting at coordinate � in an empty ref-
erence system the subschema of � below crossover point 
,
then by labelling all the nodes on the path between node � and
the root node with # function nodes, and labelling the argu-
ments of those nodes which are to the left of such a path with
# terminal nodes; ���� 
� is the hyperschema obtained by
replacing the subtree below crossover point 
 with a # node.

The functions ���� 
� �� and ���� 
� are designed to re-
turn exactly the hyperschemata needed to create � using
crossover. ���� 
� is the hyperschema representing all the
trees that match the upper portion of � (i.e., the parts of �
not below crossover point 
). ���� 
� �� is the hyperschema
representing all the trees that match the lower portion of � ,
but where the matching portion is at some arbitrary position �.
The combined effect of these definitions is that if one crosses
over any individual matching���� 
� at point 
with any indi-
vidual matching ���� 
� �� at point �, the resulting offspring
is always an instance of � . Further, this is the only way to
construct an instance of � .3

To better understand how ���� 
� and ���� 
� �� are con-
structed, let us consider an example; throughout this example
we will use the 2–D coordinate system, so positions 
 and �
will in fact be ordered pairs. Let us take our schema to be
� �(* = (+ x =)), and our coordinates to be 
 � ��� 	�
and � � ��� ��. Then Figure 2 illustrates how we construct
���� 
� (the top two coordinate grids) and ���� 
� �� (the
lower three coordinate grids). The top coordinate grid shows
the initial schema � , with the crossover point 
 marked, and
the lower part of the schema shaded. The next grid then
shows ���� 
�, which is obtained by simply replacing the
shaded subtree (in this case just the terminal ‘=’) with a ‘#’.
The upper of the three coordinate grids for ���� 
� �� again
illustrates the initial schema � with the crossover point 

marked. Now, however, the shaded area (the part of � be-
low 
) needs to be translated to position � as shown in the
second coordinate grid. The third coordinate grid then shows
the insertion of ‘#’ symbols (a) along the path from the root
to � (in this case just �	� 	�) and (b) in all argument posi-
tions to the left of ‘#’ symbols (in this case just ��� 	�). This
placement of ‘#’ symbols, combined with the fact that we
allow ‘#’s to represent functions of varying arity, ensures
that ���� 
� �� �(# # =) represents all the possible trees
whose subtrees at position � match the lower part of � (i.e.,
the part below position 
).

Let us denote with ���� the schema obtained by replac-

�, 	��� �� is the mean fitness of such programs, and �	��� is the mean fitness
of the programs in the population.

3
��� �� �� and ���� �� are discussed in more detail in [11].
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Figure 2: Phases in the constructions of the VA hyperschema
building blocks ���� ��� 	�� and ���� �	� ��� ��� ��� of the
schema � �(* = (+ x =)) within a node coordinate
system with ���� � 
.

ing all the defining nodes in the schema � with = nodes. We
will refer to ���� as the shape of � .

If the choice of the crossover points in any two parents,
�� and ��, depends only on their shapes, ����� and �����,
i.e. if ��
� �	��� ��� � ��
� �	������ ������, we term the op-
erators node-invariant. For node-invariant subtree-swapping
crossovers Equation 3 can be transformed into the following
exact macroscopic description of schema propagation:
Theorem 2. The total transmission probability for a fixed-
size-and-shape GP schema � under a node-invariant
subtree-swapping crossover operator and no mutation is

���� �� � ��� �������� ���

���
�
	
�

�
���

�
�

��
� �	�	� ��� (4)

������ 
� �	� �������� 
� �� ��� ���

where the schemata ��, ��, � � � are all the possible program
shapes (i.e. all the fixed-size-and-shape schemata including
only = symbols) and the other symbols have the same mean-
ing as in Theorem 1.

The sets���� 
��	 and���� 
� ���� either are (or can
be represented by) fixed-size-and-shape schemata or are the
empty set. So, the theorem indicates which pairs of schemata
can contribute to the creation of instances of a schema and
with which relative probability. Such schemata can be con-
sidered the building blocks for the schema.

2.7 Previous Schema Theories for Mutation

We are aware of only two schema-theory results for muta-
tion applicable to the standard GP representation. We briefly
summarise them below.

In [7] Rosca derived a worst-case-scenario schema theo-
rem for rooted-tree schemata, which can be defined as hyper-
schemata without = symbols and # function nodes. In the
case in which only subtree mutation and fitness proportionate
selection are present the theorem is equivalent to:

������ ����� ������ ��

�
��� ��

�
�����

���
�����
�����

�����
���
�����
����

�
� �

(5)
where �� is the mutation probability (per individual), ����
is the size of a program � matching the schema � , ���� is
its fitness, and ���� is the order of a schema defined as the
number of defining symbols it contains.

A second result for mutation can be obtained from the
worst-case-scenario GP schema theorem for fixed-size-and-
shape schemata under point mutation and one-point crossover
derived in [5, 6]. In the absence of crossover, this leads to:

������ �� ��� ������ ����� ���
���� (6)

where �� is the mutation probability (per node) and ����
(the order of �) is the number of non-� symbols in � .
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3 Schema Theory for Subtree-swapping Head-
less Chicken Crossover

Different forms of subtree-swapping headless chicken
crossover can be defined depending on whether one returns
one or two offspring and whether such offspring inherit their
root nodes from the parent which has been randomly gen-
erated or the one selected from the population [13]. In this
paper we will concentrate on the case in which we generate a
single offspring, and the offspring inherits the root from the
parent selected from the population.

The schema theory for subtree-swapping headless chicken
crossover is a natural extension of the theory for subtree-
swapping crossover since the only difference between the two
operators is the source of the non-root-donating parent: the
population through fitness proportionate selection in the lat-
ter case, a stochastic tree generation algorithm in the former
case. Therefore, the theorems (and the proofs) provided in
this section are also very similar to the corresponding results
for subtree-swapping crossover.

Indeed, for the class of operators headless chicken
crossover operators defined above we have:
Theorem 3. The total transmission probability for a fixed-
size-and-shape GP schema � under a subtree-swapping
headless chicken crossover is

���� �� � ��� �������� ���

���
�
����

�
����

����� ������� �� � (7)

�
���

�
�

��
� �	��� ���Æ��� � ���� 
��Æ��� � ���� 
� ���

where: � is the space of all possible programs that can be
built with the given terminal and function sets, ����� �� is the
probability that the random tree generation algorithm used
will produce program �� at generation �, and the other sym-
bols have the same meaning as in Theorem 1.
Proof. Let ����� ��� 
� �� �� be the probability that, at gen-
eration �, the selection/crossover/randomisation process will
choose parent �� taken from the population, parent �� ran-
domly generated and crossover points 
 and � in �� and ��,
respectively. Then, let us consider the function

����� ��� 
� ���� � Æ��� � ���� 
��Æ��� � ���� 
� ����

Given two parent programs, �� and ��, and a schema of in-
terest � , this function returns the value 1 if crossing over ��

at position 
 and �� at position � yields an offspring in � .
It returns 0 otherwise. This function can be considered as
a measurement function (see [17]) that we want to apply to
the probability distribution of parents and crossover points at
time �, ����� ��� 
� �� ��.

If ��, ��, 
, and � are stochastic variables with
joint probability distribution ����� ��� 
� �� ��, the function
����� ��� 
� ���� can be used to define a stochastic variable

� � ����� ��� 
� ����. The expected value of � is:

���� �
�
��

�
��

�
�

�
�

����� ��� 
� ��������� ��� 
� �� ���

(8)
We can write

����� ��� 
� �� �� � ��
� �	��� �������� ������� ��� (9)

where ��
� �	��� ��� is the conditional probability that
crossover points 
 and � will be selected when the parents
are �� and ��, ����� �� is the selection probability for the
root-donating parent and ����� �� is the probability that the
random tree generation algorithm will produce program � �

at generation �. Substituting Equation 9 into Equation 8 and
noting that if crossover point 
 is outside the schema � , then
���� 
� �� and ���� 
� are empty sets, lead to

���� � (10)�
�� � �
�� � �

����� ������� ��
�
� � �
�

����� ��� 
� ������
� �	��� ����

Since � is a binary stochastic variable, its expected value
also represents the probability that the offspring produced
by headless chicken crossover is in � . So, the contribu-
tion to ���� �� due to selection followed by headless chicken
crossover is ����. By multiplying this by ��� and adding the
term �� � �������� �� due to selection followed by cloning
one obtains the r.h.s. of Equation 7. �

This result allows one to calculate the expected proportion
of individuals belonging to a schema in the next generation.
This is a microscopic model since it requires to consider the
properties of each member of the search space, which makes
it hard to use it for computational studies. However, this
model can be transformed into a macroscopic model for a
very general class of headless chicken crossovers.

If we define as node invariant a headless chicken crossover
in which ��
� �	��� ��� � ��
� �	������ ������, then we can
obtain a macroscopic version of the previous theorem by fol-
lowing a strategy similar to the one used in the proof of The-
orem 2, obtaining
Theorem 4. The total transmission probability for a fixed-
size-and-shape GP schema � under a node-invariant
subtree-swapping headless chicken crossover is

���� �� � ��� �������� ��� (11)

���
�
	
�

�
���

�
�

��
� �	�	� ���

������ 
� �	� �������� 
� �� ��� ���

where ������ 
� ����� �� is the probability of randomly gen-
erating programs in ���� 
� ��  �� and the other symbols
have the same meaning as in Theorem 2.
Proof. We prove the theorem by transforming Equation 7 into
Equation 11. The schemata��,��, � � � represent disjoint sets
of programs. Their union represents the whole search space.
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So,
�

	 Æ��� � �	� � �. Likewise,
�

� Æ��� � ��� � �.
If we multiply the terms within the quadruple summation in
Equation 7 by the l.h.s. of these equations and reorder the
terms, we obtain:
�
	
�

�
�� � �
�� � �

����� ������� ��
�
� � �
�

��
� �	��� ���

Æ��� � ���� 
��Æ��� � �	�Æ��� � ���� 
� ���Æ��� � ���

�
�
	
�

�
�� � � ���

�� � � ���

����� ������� ��
�
� � �
�

��
� �	��� ���

Æ��� � ���� 
��Æ��� � ���� 
� ����

For node-invariant headless chicken crossover operators
��
� �	��� ��� � ��
� �	������ ������, which substituted into
the previous equation gives:
�
	
�

�
�� � � ���

�� � � ���

����� ������� ��
�
� � �
�

��
� �	������ ������

Æ��� � ���� 
��Æ��� � ���� 
� ���

�
�
	
�

�
�� � � ���

�� � � ���

����� ������� ��
�
� � �
�

��
� �	�	� ���

Æ��� � ���� 
��Æ��� � ���� 
� ���

�
�
	
�

�
���

�
�
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Since
�

�������
����� ��Æ��� � ���� 
�� � ������ 
� 

�	� �� and
�

�������
����� ��Æ��� � ���� 
� ��� �

������ 
� �� ��� ��, this completes the proof. �

This and the previous theorems are quite similar to the corre-
sponding theorems for crossover. However, there is one im-
portant difference. Once the stochastic tree generation algo-
rithms is known, the quantities ���� �� are numeric constants.
So, the schema theorems for headless chicken crossover are
linear in the schema selection probabilities, while those for
crossover are quadratic.

Theorem 4 indicates which schemata can contribute to the
creation of instances of a schema and with which relative
probability.

4 Schema Theory for Subtree Mutation

Once the theory for headless chicken crossover is available it
is very easy to modify it to become a theory for subtree mu-
tation. It is sufficient to constrain the choice of the crossover
point in the random parent to always be the root node. This
can be modelled by setting:

��
� �	��� ��� � ��
	���Æ�� � 	�� (12)

where ��
	��� is the probability of selecting mutation point 

in the root donating parent ��. As a consequence, the result
in Theorem 3 simplifies considerably, leading directly to the
following
Corollary 5. The total transmission probability for a fixed-
size-and-shape GP schema � under subtree mutation is

���� �� � ��� ������� ���

��
�
����

�
����

����� ������� �� � (13)

�
���

��
	���Æ��� � ���� 
��Æ��� � ���� 
� 	��

where �� is the probability of mutation (per individual) and
all the other symbols have the same meaning as in Theorem 3.

If the choice of the mutation point in the parent program, �,
depends only on its shape, ����, i.e. ��
	�� � ��
	�����,
we term the mutation operator node-invariant. For node-
invariant mutation operators it is possible to specialise the
results in Theorem 4 obtaining
Corollary 6. The total transmission probability for a fixed-
size-and-shape GP schema � under node-invariant subtree
mutation is

���� �� � ��� ������� ��� (14)

��
�
	

�
���

��
	�	������� 
� �	� �������� 
� 	�� ���

where all the symbols have the same meaning as in Theo-
rem 4.
Proof. For a node invariant mutation operator, the quantity
��
� �	�	� ��� in Equation 11 becomes ��
	�	�Æ�� � 	�. So,
only terms where � � 	 remain.

The VA hyperschema���� 
� 	� has no # symbols since it
is simply a subtree of � . So, there exists only one shape � �

such that ������ 
� 	�  ��� 
� 	. Let us call it �	�. So, only
the terms in Equation 11 where � � �� remain. The proof is
completed by noting that ���� 
� 	� �	� � ���� 
� 	�. �

So, also mutation is a linear operator.

5 Specialisations and Example

In order to use the theory presented in the previous sec-
tions it is necessary to define the quantities ���� �� and
������ 
� ��  ��� ��. All other quantities are defined once
one chooses a particular crossover-/mutation-point selection
algorithm and a particular selection algorithm. It should be
noted that ���� 
� ��  �� is always either the empty set or a
set which can be represented by fixed-size-and-shape schema,
so we will need to be able to express ���� �� for a generic
schema � .

In the following subsections we will provide expressions
for ���� �� and ���� �� for two very widely used random-
tree generation algorithms: the “full” method and the “grow”
method [1, 18]. Starting from the root node, both methods
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use the strategy of creating trees by selecting random nodes
recursively along each branch until either a terminal is cho-
sen, or a maximum depth � is reached; only terminals are
then chosen at depth �. The two methods differ in that the
“full” method only chooses from � until the depth limit is
reached, guaranteeing that each branch is “full” out to depth
�, whereas “grow” chooses from � � � � � , which makes
it possible for some branches to have length less than �.

5.1 Probability Distributions for the “Full” Method

Let us start by recursively defining a function ��	� 
� �� over
a node reference system which returns the probability that the
subtree rooted at position �	� 
� in � is created when using the
“full” method. This is given by:

��� �� �� � (15)

Æ����� �� �� � ��Æ�� � ��

�� �
�

Æ����� �� �� � ��Æ�� � ��

���

����	�
����
���

�� � �� � � �� � �� ��

By modifying appropriately the expression for ��	� 
� ��
we can generalise it so as to return the probability that the
subtree rooted at position �	� 
� created when using the “full”
method belongs to the subschema of � rooted at the same
position, obtaining:

��� ���� � (16)

Æ����� ���� � ��Æ�� � ��

�
���� ����

�� �
� ������ ����

�
�

Æ����� ���� � ��Æ�� � �� ��
���� ����

���
� �� ����� �����

������	����

���

�
�

����	������
���

�� � �� � � �� � �����

where �	 is the subset of � including the functions/terminals
of arity �. So, �	�
�	 � �, �	���	 � � and �
 � � .

Then, clearly for the “full” method we can define
���� �� � ��	� 	� �� and ���� �� � ��	� 	� �� (which, in-
cidentally, are independent from �).

5.2 Probability Distributions for the “Grow” Method

We proceed in a similar way for the “grow” method. We de-
fine a function ��	� 
� �� over a node reference system which
returns the probability that the subtree of � rooted at posi-
tion �	� 
� be created when using the “grow” method. Then,
we generalise the expression for ��	� 
� �� so as to return the
probability that the subtree rooted at position �	� 
� created
when using the “grow” method belongs to the subschema of
� rooted at the same position, obtaining:

���� ���� � Æ����� ���� � ��Æ�� � ��� (17)�
���� ����

�� �
� ������ ����

�
�

Æ����� ���� �� ���Æ�� � �� ��
���� ����

���
� ������� �����

������	����

���

�
�

����	������
���

���� �� � � �� � �����

with the convention that
	��

��
 ��	��� 
 ���������� � �.
Then, for the “grow” method we define ���� �� �

��	� 	� �� and ���� �� � ��	� 	� ��.

5.3 Example

Let us write a macroscopic, exact schema theorem equation
for the schema �� �� ��� assuming that we are using mu-
tation based on the “grow” method with a maximum allowed
depth � � �, �� � � and uniform selection of the crossover
points (i.e. in Equation 14 ��
	�	� � �����	�). Let us con-
sider the primitive set � � ����� ������� 	� which can be
decomposed into �� � ����� ������� and �
 � �	�. The
semantics of these primitives (see [19, 16]) is unimportant for
our example. We also assume that at generation � the popula-
tion does not contain individuals with more than 3 nodes.

In these conditions, by applying Corollary 6 and simplify-
ing we obtain:

���� �� ���� � (18)

�������� �� ����
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�

	
���� ���
���� ��� � ���� �� �����

�
�

�
���� �� ����
���� � ���� ��� � ���� �� �����

By using Equation 17 we then can calculate ���� �� for
the schemata �, �� ��, and �� �� ���. For � �
�� �� ��� we obtain
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Likewise, we obtain ���� �� � �
� and ���� ��� �� � �

 .
By substituting these values in Equation 18, we obtain

���� �� ���� �� �


	�
���� ���

�

	�
���� ��� ���

��

��
���� �� ���� ���
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This equation shows how mutation and selection interact in
the creation of instances of (= (= =)). It is particularly
interesting to study two cases. Firstly, let us consider a nee-
dle in a haystack situation in which only programs of length 3
are fit at all, while all other programs have zero fitness. Then,
clearly ���� �� ���� �� � � and ���� �� � ���� ��� �� �
	. In this circumstances one would expect the algorithm to
keep sampling programs of length 3. However, the expected
proportion of programs in (= (= =)) is only about 24%.
This means that the biases of mutation work against the in-
tended biases of selection. In fact, even on a flat landscape
the mutation biases impose a dynamics on the population.

6 Conclusions

Here we have presented the first ever exact schema theory
for GP with headless chicken crossover and subtree muta-
tion, thus filling an important theoretical gap. The theory
is not only an exact formulation for the expected number of
instances of a schema at the next generation but it is also
very general. So, it is applicable to most subtree-swapping
headless chicken crossovers and mutation operators used in
practice. In the paper we have also provided examples which
show how the theory can be specialised to specific operators.

As shown by some recent explorations reported in [10,
16], exact schema theories have many purposes. They can
be used, for example, to study the exact schema evolution in
infinite populations over multiple generations, to make com-
parisons between different operators and identify their biases,
to study the evolution of size, and investigate bloat. The exact
theory presented here also offers these possibilities as shown
in [20], where we have used it to characterise the behaviours
and biases of different mutation operators.
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