

Towards Evolution of Software Agents in Electronic Commerce

Fangming Zhu Sheng-Uei Guan

Department of Electrical and Computer Engineering
National University of Singapore

10 Kent Ridge Crescent, Singapore 119260
{engp9402,eleguans}@nus.edu.sg

Abstract -- With the development of Internet computing
and software agent technologies, agent-based electronic
commerce (e-commerce) is emerging. Software agents
have demonstrated tremendous potential in conducting
various tasks in e-commerce. However, when agents are
initially created, they have little knowledge and
experience with relatively lower capability. They should
also strive to adapt themselves to the changing
environment. It is advantageous if they have the ability
to learn and evolve. This paper addresses evolution of
software agents in e-commerce. Agent fitness and life
cycle are proposed as evolution mechanisms, and
modularized agent structure is introduced to facilitate
the evolution process. Genetic Programming (GP)
operators are employed to restructure agents in the
proposed multi-agent evolution cycle.

1 Introduction
Doing business on the Internet is becoming more and more
popular. The use of the Internet to facilitate commerce
among companies and customers brings forth many benefits,
such as automated transactions, greater access to buyers and
sellers, and dramatically reduced costs.

In the recent decade, agent-based e-commerce has
emerged and become a focus of the next generation of e-
commerce. The motivation of introducing software agents
into e-commerce is to overcome the arising barricades which
include overload of information, difficulty in searching, lack
of negotiation infrastructure, etc. In this new approach,
software agents act on behalf of customers to carry out
delegated tasks automatically. They have demonstrated
tremendous potential in conducting various e-commerce
activities, such as comparison-shopping, negotiation,
payment, mediation, distribution, auction, sales promotion,
etc. [1, 2, 3].

Some research projects have concentrated on employing
software agents in specific e-commerce applications.
Typical examples are AuctionBot [4], Kasbah [5], etc.

Issues such as integrity and security also attract many efforts
of research work [7, 8, 9].

As numerous agents are roaming throughout the Internet,
they compete for the limited resource to achieve their own
goals. For instance, when a limited number of products are
available, agents will have to compete against each other to
get them. In the end, some of them will succeed, while the
others will fail. The successful agents may become more
powerful, and the unsuccessful agents may lose some fitness.
This is similar to the evolution in natural ecosystems.
Furthermore, the Web environment also changes rapidly and
continuously, and there may exist some malicious agents and
hosts. Therefore, agents should strive to protect and adapt
themselves in order to complete their tasks successfully.

However, when agents are initially created, they have
little knowledge and experience with relatively lower
capability. Although owners may give some basic
knowledge or functionality to these agents, it is
advantageous if they have the ability to learn and evolve.
For example, when agents participate in an auction, they all
aim to win the auction with desirable prices. However,
young agents are not familiar with the auction regulations,
and their bidding strategies are inferior to those of senior
agents. Therefore, they may fail to win the auction. But they
can learn something from this experience, and may become
stronger after some period of time.

Many issues are essential in agent evolution. Firstly,
evolution of an agent is closely related with agent structure.
Thus, a suitable agent structure is one of basic concerns in
agent evolution. Secondly, agents should have their own
mechanisms to advance evolution. How to design strong and
adaptive evolution mechanisms is another pursuit. Thirdly,
in multi-agent system, evolution of individual agent is also
related with many social concerns, such as coordination,
relationship, topology, communication, etc. Finally, agent
owners should closely interact with the evolution procedures
of their agents. For instance, they should be informed of the
information of the fitness of agents and can interfere with
evolution by some tools.

jjaeone
Proceedings of the 2001 IEEE Congress on Evolutionary Computation Seoul, Korea 匀 May 27-30, 2001

sonms
0-7803-6657-3/01/$10.00 © 2001 IEEE

sonms
1303

In this paper, we address multi-agent evolution for agents
in e-commerce. Agent fitness and life cycle are proposed as
evolution mechanisms to control the evolution process.
Agent group and modularized structure are introduced to
facilitate the evolution process. Genetic Programming (GP)
operators, such as reproduction, crossover, and mutation, are
main tools to restructure software agents.

2 Background and related work
Research in the fields of DAI (Distributed Artificial
Intelligence) and MAS (Multi-Agent System) has invested
considerable efforts in evolving cooperation strategies in
domains where multiple, autonomous agents share goals and
resources, and need to use mutually acceptable work-sharing
strategies to accomplish common goal. Thomas Haynes et
al. [10, 11] proposed a cooperation strategy approach for
multi-agent problem solving situation. They aimed to evolve
programs to control an autonomous agent capable of
learning how to survive in a hostile environment. Namatame
[15] provided a model for investigating collective behaviors
that emerge from local interaction among self-interested
agents. Dworman et al. [13] simulated artificial agents in
two coalition games, and they claimed that simple artificial
agents could formulate effective strategies for negotiating
agreements that approximate those prescribed by the theory
of cooperative games.

However, little research effort is dedicated to agent
evolution in e-commerce activities. Most of the existing
work mainly focuses on evolving strategies for agents,
extending the MAS approaches. Gimenez-Funes [12] used
possibility-based and case-based decision models to design
the bidding strategies for agents in electronic auctions.
Ritcher and Sheble [14] developed bidding strategies which
were used for electric utilities in the scenario of double
auctions.

In our previous work, we have proposed a SAFER
(Secure Agent Fabrication, Evolution & Roaming)
architecture, which aims to construct a standard, dynamic
and evolutionary agent system for e-commerce [6]. SAFER
provides a framework for agents in e-commerce and
establishes a rich set of mechanisms to manage and secure
them. As suggested in its name, we aim to integrate agent
fabrication, evolution, and roaming in the architecture. We
have elaborated agent fabrication and roaming in [19] and
[18] respectively. This paper addresses the evolution part of
the SAFER architecture.

In the following sections of the paper, we first propose
agent fitness and life cycle as basic evolution mechanisms in
section 3. After the paper elaborates agent group and
modularized structure in section 4, it covers multi-agent
evolution in section 5. Section 6 discusses the integration of
agent evolution in SAFER architecture, and section 7
concludes the paper.

3 Agent fitness & life cycle
Agent fitness is an essential metric for agent evolution. It
shows the performance of an agent and its ability to survive
and adapt to the environment. It is also an indicator of the
trend of evolution. Generally, the higher the fitness of an
agent is, the stronger it is. If an agent’s fitness is found too
low, or decrease rapidly, we may suspect that the agent
might have been attacked or something may have gone
wrong in the agent body. We consider that agent fitness can
consist of two parts:
• Integrity fitness if . It is used to measure the integrity of

an agent, as the agent may be compromised during the
process of evolution, roaming, or communicating. It
may be caused by intentional damages from malicious
agents or accidental errors during routine procedures.

• Achievement fitness af . The achievement fitness is
evaluated by the history of an agent, which includes the
number of tasks carried out and the quality of tasks
completed. Every time an agent completes a task and
reports to its owner, the owner will assess the outcome
and give a corresponding mark. Through analyzing the
trend of agent performance by analyzing its mark
history, the achievement fitness can be evaluated.

Thus, the overall agent fitness F can be obtained as

ai ffF ⋅+⋅= βα , and βα , are the fitness weights specified
by owners.

Dormancy

Death

Illness

Creation

Filter

Growing

Restructuring

Recycle
pool

Fig. 1 Agent Life Cycle

In its lifespan from creation to termination, an agent
experiences several states. We construct an agent life cycle
to demonstrate the transition between these states, as shown
in Figure 1. These states are explained as follows.

Creation: A new agent is created for some specific

purpose. As in the SAFER architecture, agent factory
is responsible for fabricating new agents according to

sonms
1304

customizations from owners and fabrication formalities
[19].

Growing: An agent gradually grows up, as it learns from
experience, becomes more adapted to the environment,
and fulfills assigned tasks successfully. Normally agent
fitness will also increase along with growth.

Illness: When an agent is damaged or tampered with by
malicious agents or hosts, it will fall back into the
illness state. After recovery, it can be treated as a
growing agent again.

Dormancy: An agent becomes inert in this state, as it
may finish its task and be waiting for new instructions.
Under this state, all the evolution and communication
activities are also suspended, until it receives some
reactivating commands.

Restructuring: An agent can undergo restructuring which
is one of the important steps of evolution. We will
discuss it in detail in section 5.

Death: As an agent reaches its expiry time prescribed by
its owner, or it cannot be recovered from illness, it will
be brought to death. Besides these, it is owner’s
privilege to bring agents residing in any states to death.

As an agent is being decomposed, we may want to

preserve something useful for reuse. The Filter and Recycle
Pool in the life cycle shown in Figure 1 are for this purpose.
An agent owner can customize the filtering criteria. For
instance, the basic criteria may include the rules like that a
recycled agent should have never been attacked or tampered
with, or/and the fitness of the recycled agent is above a
certain level. The recycling process has several steps. First,
the recycled agent is decomposed into several modules.
Then, these modules are evaluated and the potentially useful
ones are saved in the recycle pool for future reuse.

4 Agent group & modularized structure

4.1 Agent group for evolution

As shown in Figure 2, we organize agents into groups for
evolution. Agents in an agent group can come from same or
different owners, and each owner can organize many agent
groups. The criteria for group formation are varied. For
instance, agents in one group can be homogeneous or
heterogeneous, which is determined by their purposes or
functions. According to the variability of membership of
group, there are two types of groups, i.e. closed group and
open group. For a closed group like Group A in Figure 2,
the group members are fixed. While in open groups such as
Group B or C in Figure 2, new agents can join or leave the
group as the membership can be changing all the time.

Group BGroup A

Group C

Joining

Leaving

Agent

Fig. 2 Agent Groups for Evolution

Fitness of an agent group is also a useful value, which
can act as a hint for better organization of the agent group.
Representation of the fitness of an agent group can be
largely different according to the owner’s objectives. For
instance, an owner may choose the average fitness of all the
agents in the group as the fitness of group, while others may
choose the minimum or maximum fitness. For the two
different types of group discussed above, the fitness of a
group may have different properties. For a closed group, the
average fitness is supposed to rise steadily, while the
average fitness of an open group is fluctuating. A newborn
agent may bring down the average fitness, while a senior
agent can boost average fitness. The dynamically joining
and leaving agents also affect the average group fitness.

4.2 Modularized agent structure

Agent

Identity

Data

Functionality

Standard
Modules

Specific
Modules

Module
Implementation

Module GID

Knowledge

Fig. 3 Modularized Agent Structure

Modularization is a basic thread which runs through the
whole process of agent fabrication in the SAFER
architecture. Various modules for different types of agents
are stored in agent factories. When a new agent is created,
necessary modules are combined according to the

sonms
1305

custimization from its owner and guidelines for fabrication
[19].

A general agent strucutre is shown in Figure 3. An agent
is composed of four kinds of modules, i.e., identity, data,
knowledge, and functionality. The identity module contains
basic elements of the identity of an agent, such as agent ID,
certificate, timestamp, agent-digest, etc. The data modules
are to store information collected from hosts, parameters
used in functionality modules, as well as logs of the agent
activities. The knowledge modules store the agent
knowledge which is to support analysis and decision-
making. The most important part of an agent is the
functionality modules. They comprise specific and standard
modules. The specific modules, such as negotiation
modules, are one of the variable and important components
of an agent. For the standard modules, SAFER provides two
choices, direct module implementation or virtual module
with Global ID (GID) [19].

The modularized agent structure can facilitate agent
evolution, as we aim to enhance agent capability by acquring
or exchanging modules with GP operators.

5 Multi-agent evolution
The evolution process in agent groups can be incessant and
cycling. Figure 4 shows the multi-agent evolution cycle.
Typically it operates in one agent group and is supervised by
an agent owner. There are three main stages, namely,
restructuring, selection, and growing. In the stages of
selection and growing, the agent owner uses agent fitness
and agent life cycle as evolution tools, which have been
discussed in section 3. This evolution cycle is similar to the
GP algorithm cycle, while the stopping criteria of multi-
agent evolution are determined by the agent owner.

Fig. 4 Multi-agent Evolution Cycle

GP is a technique which enables computers to solve
problems without being explicitly programmed. GP first
creates the initial generation of software randomly, then
employs main operators: crossover and mutation to generate
new individuals. After evaluating the fitness of population,
GP uses certain selection criteria to form the new
population. This cycle will last until the optimal result is
found or time-out occurs [16,17].

We use GP operators to restructure agents. The main
operators are crossover, mutation, and reproduction.
Crossover for agents has two types, i.e. inter-agent crossover
and intra-agent crossover. With the inter-agent crossover, as
shown in Figure 5, an agent exchanges a module with
another agent. It should be ensured that exchanged sub-tree
is compatible with the original structure. Otherwise, the
resulting agent may be in a mess and cannot work. Figure 6
illustrates the intra-agent crossover, which exchanges some
parameters between modules in the same agent. For
example, a bidding agent may have many decision-algorithm
modules which are used to decide the next bid depending on
the last increment of price and the approaching of deadline.
Intra-agent crossover can alter some parameters in the
decision algorithms to form new algorithms. Mutation is not
so popular, but it can still be useful in some circumstances.
We can specify the allowed ranges for some parameters, and
let them mutate in a reasonable way, as shown in Figure 7.
Reproduction is a very straightforward operator which
produces a copy of agent components or the whole body
directly. (In Fig. 5, 6, 7, “M” denotes a module, and “D”
denotes a piece of data.)

Agent i

MI
1 MI

2 MI
3

DI
1

Agent j

MJ
1 MJ

2 MJ
3

DJ
1 DJ

2 DJ
3DI

2

Agent i

MI
1 MI

2 MJ
3

DI
1

Agent j

MJ
1 MJ

2 MI
3

DJ
1 DI

2DJ
2 DJ

3

Inter-agent crossover

Fig. 5 Inter-agent Crossover between Two Agents

There are some tags in agents to facilitate the operator of
crossover and mutation. Some of them indicate the allowed
crossover point and the attributes of the sub-tree under this
point, and others show the type of nodes and their
corresponding ranges.

Restructuring

Selection Growing

sonms
1306

Intra-agent
crossover

Agent j

MJ
1 MJ

2 MJ
3

DJ
1 DJ

2 DJ
3

Agent j

MJ
1 MJ

2 MJ
3

DJ
2 DJ

1 DJ
3

Fig. 6 Intra-agent Crossover in an Agent

Mutation
Agent j

MJ
1 MJ

2 MJ
3

DJ
1 DJ

2 DJ
3

Agent j

MJ
1 MJ

2 MJ
3

DJ
1 DJ

4 DJ
3

Fig. 7 Mutation in an Agent

Other types of restructuring in multi-agent evolution

include replication, combination, and split, which are
illustrated in Figure 8. These types of restructuring involve
the combination of the basic GP operators. For example,
when an agent is split into two agents, reproduction and
mutation are employed in the process.

Agent i

Crossover
& Mutation

Combination

Agent j

Agent k Agent j

Reproduction
& Mutation

Split

Agent k

Agent iAgent i

Reproduction

Replication

Agent j

Fig. 8 Other Types of Agent Restructuring

6 Integration in the SAFER architecture
Agent evolution is an essential part of the SAFER
architecture. We have implemented a typical agent
community that includes one agent factory, one community
administration center, and several agent owners. With these
facilities, agents can be successfully fabricated according to
the formalities prescribed and customizations from owners,
although these agents are simple with little intelligence [19].
After modularized agents are fabricated by the agent factory,
they will be dispatched to their owners. Some of them are
organized as groups to evolve.

We have begun to implement agent evolution in the
SAFER architecture. As the first step, we have implemented
the “exchange module” function in the agent owner. With
this function, agent owner can choose and exchange
modules between two agents, which we regard as the typical
operation of the crossover operator. Figure 9 shows that an
agent owner is choosing the first agent and its module which
aims to exchange with another agent. We also have
implemented a mutation feature in the “check agent”
interface, which enables the owner to change some
parameters of modules within the allowed ranges.

Java is chosen as the implementation language, because
it has a list of important features including robustness,
security, and portability. Moreover, Java provides a three-
layered security model and many mechanisms to enhance
security protection. The interoperability feature of Java
between various platforms is also a motivation for us to
choose it as a prototyping language.

Fig. 9 A Screenshot of Exchanging Modules between Agents

7 Conclusions
In this paper, we present a new approach for evolving
software agents in e-commerce. Agent fitness and life cycle
are proposed to facilitate and control the process of agent
evolution. With agent group and modularized agent
structure, we construct multi-agent evolution cycle, which
includes stages of restructuring, selection, and growing. We
use GP operators to restructure software agents. Inter-agent
and intra-agent crossovers as well as other types of
restructuring operators are addressed. Finally, we discuss the
integration of agent evolution into the SAFER architecture,
and the primary phase of implementation is introduced.

We are improving our approach and implementation in
two aspects. Firstly, a virtual marketplace is being
constructed as an arena for agents, where they can
accomplish their tasks through interaction. This marketplace
can help us to test an agent’s capability and adaptability in
certain e-commerce activities, such as bidding and
comparison-shopping. Secondly, we aim to observe the

sonms
1307

fitness pattern of agent groups in the evolution course to find
what kind of group model can boost agent fitness more
effectively.

Bibliography

[1] Guttman, R.H. and Maes, P. (1999). Agent-mediated

negotiation for retail electronic commerce. In Agent-
Mediated Electronic Commerce: First International
Workshop on Agent Mediated Electronic Trading,
(Noriega, P., and Sierra, C. ed.), Berlin: Springer, 70-
90.

[2] Krishna, V. and Ramesh, V.C. (1998). Intelligent agents
for negotiation in market games, part1: model. IEEE
Transactions on Power Systems, 13(3), 1103-1108.

[3] Wang, T.H., Guan, S.U., and Ong, S.H. (2000). An
agent-based auction service for electronic commerce. In
Proceedings of International ICSC Symposium on
Interactive and Collaborative Computing, Australia.

[4] Wurman, P.R., Wellman, M.P., and Walsh, W.E. (1998).
The Michigan Internet AuctionBot: a configurable
auction server for human and software agents. In
Proceedings of the Second International Conference on
Autonomous Agents, Minneapolis, USA, 301-308.

[5] Chavez, A. and Maes, P. (1998). Kasbah: an agent
marketplace for buying and selling goods. In
Proceedings of First International Conference on
Practical Application of Intelligent Agents and Multi-
Agent Technology, London, 75-90.

[6] Zhu, F.M., Guan, S.U., and Yang, Y. (2000). SAFER E-
Commerce: Secure Agent Fabrication, Evolution &
Roaming for E-Commerce. Internet Commerce and
Software Agents: Cases, Technologies and
Opportunities, (Rahman, S.M. and Bignall, R.J. ed.).
Idea Group, PA, 190-206.

[7] Corradi, A., Montanari, R., and Stefanelli, C. (1999).
Mobile agents integrity in e-commerce applications. In
Proceedings of 19th IEEE International Conference on
Distributed Computing Systems, 59-64.

[8] Greenberg, M.S., Byington, J.C., and Harper, D.G.
(1998). Mobile agents and security. IEEE
Communications Magazine, 36(7), 76-85.

[9] Marques, P.J., Silva, L.M., and Silva, J.G. (1999).
Security mechanisms for using mobile agents in
electronic commerce. In Proceedings of the 18th IEEE
Symposium on Reliable Distributed Systems, 378-383.

[10] Haynes, T. and Wainwright, R. (1995). A simulation of
adaptive agents in a hostile environment. In
Proceedings of the 1995 ACM Symposium on Applied
Computing, ACM Press, 318-323.

[11] Haynes, T., Wainwright, R., and Sen, S. (1994).
Evolving cooperation strategies. Department of
Mathematical Computer Sciences, The University of
Tulsa Technical Report No. UTULSA-MCS-94-10.

[12] Gimenez-Funes, E., Lgodo, L., Rodriquez-Aguilar,
J.A., and Garcia-Calves, P. (1998). Designing bidding
strategies for trading agents in electronic auctions. In
Proceedings of International Conference on Multi
Agent Systems, 136-143.

[13] Dworman, G., Kimbrough, S., and Laing, J. (1996).
Bargaining by artificial agents in two coalition games: a
study in genetic programming for electronic commerce,
in Proceedings of the AAAI Genetic Programming
Conference, Stanford, USA.

[14] Richter, C.W., Sheble, G.B., and Ashlock, D. (1999).
Comprehensive bidding strategies with genetic
programming/finite state automata. IEEE Transactions
on Power systems, 14(4).

[15] Namatame, A. and Sasaki, T., (1998). Competitive
evolution in a society of self-interested agents. In
Proceedings of IEEE World Congress on
Computational Intelligence.

[16] Koza, J.R. (1992). Genetic programming: on the
programming of computers by natural selection, MIT
press, Cambridge, MA, USA.

[17] Langdon, W.B. (1998). Genetic programming and data
structures: genetic programming + data structures =
automatic programming! Kluwer Academic Publishers,
Boston.

[18] Guan, S.U. and Yang, Y. (1999). SAFE: secure
roaming agent for e-commerce, In Proceedings the 26th
International Conference on Computers & Industrial
Engineering, Melbourne, Australia, 33-37.

[19] Guan, S.U., Zhu, F.M., and Ko, C.C. (2000). Agent
fabrication and authorization in agent-based electronic
commerce, in Proceedings of International ICSC
Symposium on Multi-Agents and Mobile Agents in
Virtual Organizations and E-Commerce, Wollongong,
Australia, 528-534.

[20] Calderoni, S., Marcenac, P., and Courdier, R. (1998).
Genetic encoding of agent behavioral strategy. In
Proceedings of International Conference on Multi
Agent Systems.

[21] Poh, T.K. and Guan, S.U. (2000). Internet-enabled
smart card agent environment and applications.
Electronic Commerce: Opportunities and Challenges,
(Rahman, S.M. and Raisinghani, M. ed.), Idea Group,
PA, 246-260.

[22] Hua, F. and Guan, S.U. (2000). Agent and payment
systems in e-commerce, Internet Commerce and
Software Agents: Cases, Technologies and
Opportunities, (Rahman, S.M. and Bignall, R.J. ed.).
Idea Group, PA, 317-330.

[23] Yang, Y. and Guan, S.U. (2000). Intelligent mobile
agents for e-commerce: security issues and agent
transport. In Electronic Commerce: Opportunities and
Challenges, (Rahman, S.M. and Raisinghani, M. ed.).
Idea Group, PA, 321-336.

sonms
1308

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

