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Abstract- Various rule-extraction techniques using ANNs 

have been used so far, most of them being applied on multi-layer 
ANNs, since they are more easily handled. In many cases, 
extraction methods focusing on different types of networks and 
training have been implemented, however, there are virtually no 
methods that view the extraction of rules from ANNs as systems 
which are independent from their architecture, training and 
internal distribution of weights, connections and activation 
functions. This paper proposes a rule-extraction system of ANNs 
regardless of their architecture (multi-layer or recurrent), using 
Genetic programming as a rule-exploration technique. 

I. INTRODUCTION 

Artificial Neural Networks (ANNs) are systems which are 
easily implemented and handled. These and other features 
make them optimal for problem-solving in various areas. 
However, many developers and researchers avoid using 
them, since they consider them as �black boxes�, that is, they 
are systems which, produce certain response outputs from a 
series of inputs, while the process through which those 
outputs are produced remains unknown. For that reason, in 
fields such as medicine, where their use is highly 
recommended, people do not consider ANNs to be 
accountable, due to the fact that the reason for their right 
functioning and the solutions they contribute cannot be 
explained. An example could be medical diagnosis. A 
computational system designed for diagnosis should be able 
to explain the reason for that diagnosis and how it was 
reached. 

Nevertheless, Expert Systems (ES) are able to explain the 
solution or response achieved, which is their main core and 
also their guarantee of success. Therefore, this paper tries to 
develop a system which carries out an automatic extraction of 
rules from already trained ANNs, thus obtaining the 
knowledge that an ANN obtains from the problem it solves. 

Different rule-extraction techniques using ANNs have 
been used so far, always applied to multi-layer ANNs due to 
the fact that they are more easily handled. These networks 
also have a limited capacity with regard to the knowledge 
which can be distributed among their connections. 

As may be inferred, the extraction of rules from recurrent 
ANNs is more complicated, due to the fact that past states 
intervene in neural activation, and that their capacity of 
distributed knowledge is considerably higher than that of 
multi-layer ANNs, since there are no restrictions to neural 
connectivity. If, besides, recurrent ANNs are used in dynamic 
problems where certain time characteristics such as the 
prediction of time series intervene, the task of extracting by 

means of the methods developed so far becomes harder, if 
not impossible for most of them. 

Therefore, the system presented can be applied to every 
ANN kind. For that reason, the system should comply with a 
series of requirements [1]: 

1) It should have no ANN architecture requirements: A 
rule-extraction mechanism which can work with every type 
of neural network, including those which are highly 
interlinked or recurrent. 

2) It should have no ANN training requirements: Many 
of the proposed algorithms are based on a given ANN 
training process for which rule-extraction is designed. 
Therefore, they are not valid for other training sets. 

3) It should be correct: Many rule-extraction 
mechanisms only generate functioning approaches. It is 
desirable that the rules describe the ANN as accurately as 
possible. 

4) It should have a highly expressive level: Rule language 
(syntax) characterises the compactness of the extracted 
symbolic language. Usually, powerful languages are 
desirable, due to the fact that a very compact and easy to 
understand rule language can be produced. 

II. STATE OF THE ART 

A. Genetic Programming 

Some people thinks that Cramer and Fuji, who published 
on evolving programs in 1985 and 1987 at the very first 
ICGA conference [2][3], are the pioneers of Genetic 
Programming (GP). But still others think that Friedberg from 
1958 and 1959, who evolved machine language programs 
[4][5], is really the pioneer. 

John Koza created the term which titles the book �Genetic 
Programming� [6]. This book establishes formally the bases 
of GP used nowadays. Later, the same author published 
�Genetic Programming II� [7], and, recently, �Genetic 
Programming III� [8]. Both explore new possibilities of GP. 

Different branches derive form GP. One of the most 
promising ones with regard to Knowledge Discovery (KD) is 
that of fuzzy rules [9][10]. This branch derives form the 
union between fuzzy logic and systems based on rules (SBR). 
Fuzzy rules can be obtained by means of Evolutionary 
Computation (EC) with the technique known as 
Automatically Defined Functions (ADF)  [7], which 
represent an evolution of the concept called �Classical 
genetic Computing�.  
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B. ANN rule extraction 

Several authors have studied the relationship between 
ANNs and fuzzy rules [11] [12] [13]. Most results establish 
that equivalence by means of a process of consecutive 
approaches. Apart from being purely theoretical solutions, 
they require a great number of rules in order to approach the 
ANN functioning [13]. Jang�s and Sung�s work [11] is rather 
different, given that they provide an equivalence between 
radial ANNs and fuzzy systems where a finite number of 
rules or neurons is required, though in this case it is limited to 
a fixed ANN architecture. 

Andrews [14][15] identifies three rule-extraction 
techniques: �decompositional�, �pedagogical� and �eclectic�. 
The first one refers to extraction at the neuron level. The 
second one treats the ANN as a black box, where by means 
of applying inputs to the network, a backwards to forwards 
analysis of the neurons in the hidden layers is carried out, 
extracting the corresponding rules. The third one uses the 
ANN architecture and the input-output pairs as a complement 
to a symbolic training algorithm. 

Towell and Shavlik [16] apply the first technique using the 
connections between neurons as rules based on simple 
transformations. This limits extraction to those networks with 
a given multi-layer architecture and few process elements 
[14]. 

Thrun [17] has developed the main approach by means of 
using the second technique, titled �Validity Interval 
Analysis� (VIA). The algorithm uses linear programming 
(SIMPLEX), applying value intervals to each neuron�s 
activations in each layer. The system extracts �possibly 
correct� rules through the ANN by means of a backwards and 
forwards propagation of those intervals. This algorithm has, 
in the worst of cases, exponential complexity, due to the fact 
of using linear programming. Besides, when a great number 
of process elements is used, the time spent reaching the 
solution is unacceptable. 

Other approaches using the second technique are 
RULENEG algorithms [18] and DEDEC ones [19], which 
use an ANN in order to extract rules from another ANN�s 
training set. However, those rule-extraction techniques which 
focus exclusively on the training data lose the generalization 
capacity which ANNs have. Other rule-extraction techniques 
are [20] [21] [1], which are based on previously debated 
approaches. 

GAs have recently been used for finding and extracting 
ANNs, due to the advantages offered by evolutionary 
techniques for searching in complex systems. [22], using the 
second technique (pedagogical) uses a GA where the 
chromosomes are multi-condition rules based on intervals or 
value ranks applied to the ANN inputs. These values are 
obtained from the training parameters. 

Wong and Leung have been used PG for knowledge 
discovery from databases (KDD). LOGENPRO (Logic 
grammar based Genetic Programming) [23]. It uses first 

orden logic to represents the knowledge. This is the first 
aproximation that shows the advantages of GP for KDD. 

III. FUNDAMENTALS 

One of the most important aspects of any rule-extraction 
system is the optimization of the rules obtained from the 
ANN analysis. It should be kept in mind that the extracted 
rules may be contained in general rules, and many of the 
logical expressions obtained may be simplified if they are 
written in a different way. Therefore, the optimization of 
rules consists of simplifying and carrying out symbolic 
operations on the rules. Depending on the extraction method 
and on the type of rules obtained, various optimization 
techniques can be applied. They can be classified into two 
main groups: imbibed optimization methods and a posteriori 
methods. The latter are usually a syntactic analysis algorithm 
applied to the rules obtained in order to simplify them. For 
instance [24] uses Prolog as programming language for a 
post-processing of the rules obtained. He uses a Prolog 
program for reaching optimal linguistic variables, thus 
obtaining simplified rules which use those variables. Imbibed 
optimization techniques are techniques used for rule-
extraction algorithms which intrinsically cause the algorithm 
to produce rules which are more and more optimal each time. 
An example may be the technique of depth penalization used 
in GP. Conceptually, when the adaptation level of a GP 
individual is evaluated (tree) its capacity is reduced a certain 
degree according to the number of terminal and non-terminal 
nodes that the tree has. Thus the existence of simple 
individuals is dynamically fostered. Therefore, if we are 
searching for rules (syntactic trees), the appearance of simple 
(optimization) rules is intrinsically favoured. 

Another thing to be taken into account when applying the 
extraction algorithm is its modus operandi. As previously 
discussed, extraction techniques can be classified into three 
main groups: �decompositional�, �pedagogical� and 
�eclectic�. The first approach is based on treating each ANN 
neuron, particularly those in the hidden layers, and the output 
ones. Thus the rules are extracted from each neuron and from 
its relation to the rest. This makes the methods based on these 
techniques totally dependent on the architecture of the ANN, 
thus limiting their applicability in a general way. On the 
contrary, the second approach treats ANNs as �black boxes� 
where only the relations among inputs and outputs are 
considered. Therefore, the main goal of this technique is 
obtaining the function computed by the ANN, while the last 
approach combines elements from the other two. EC has been 
applied in this paper, and specifically GP as building 
algorithm of a syntactic tree which reflects a set of rules as 
similar as possible to the functioning of an ANN. A symbolic 
regression has been applied to the input-output patterns. 
These patterns are input sequences applied to an ANN and 
the outputs obtained from it. This type of technique can be 
termed as �pedagogical�, where the ANN is treated as a 
�black box�. This is an advantage, given that it is not 
necessary to know how an ANN works internally. However, 
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a rule-extraction algorithm which can work with �black box� 
structures should be able to implement some kind of 
mechanism which allows a priori incorporation of the 
knowledge obtained from the �black box�, thus reducing 
considerably the search space of the system rules. These 
structures are known as �grey box�. This is possible thanks to 
the use of GP due to the fact that the number and type of 
terminal and non-terminal elements which intervene in the 
search process can be determined. For instance, if we know 
that an ANN carries out classification tasks, the type of 
terminal nodes can be determined as Boolean, avoiding 
floating point levels. This offers a great advantage, given that 
all the possible combinations of mathematical operations can 
be eliminated beforehand. 

IV. SYSTEM’S DESCRIPTION 

The main method proposed for the extraction of ANN rules 
is the use of EC, due to the fact that it has proved to be very 
useful at search tasks, where the solution space increases 
exponentially with regard to the problem to be solved. The 
use of GP is proposed since it offers the advantage of having 
a way of representing and structuring information by means 
of a semantic tree. This tree diagram is a natural way of 
representing a rule which can be easily understood by human 
beings.  

This article suggests the addition of the self-explanatory 
function of ANNs. A system which develops the set of rules 
which serve as a model for a network�s functioning will be 
generated for this purpose. This set of rules extracted from 
ANNs constitute a fuzzy rules based system (FRBS), i.e. an 
understandable representation is obtained about the 
knowledge treasured by a neural network. 

The proposed system will be validated contrasting its 
correct functioning with other existing extraction techniques 
based on classification techniques. Some of these cases are 
the breast-cancer diagnosis and the lethal hepatitis one. In 
these cases, the direct extraction of rules from those data will 
be proven with the purpose of extracting the rules pertaining 
to each network by means of training ANNs.  

Finally, the algorithm will be proved with recurrent ANNs 
for time-series prediction tasks. An ANN trained for 
predicting a laboratory chaotic time series (such as the 
Mackey- Glass) will be used for this purpose. 

In each case, the work is initially based on obtaining ANNs 
for solving the problem. Once the ANNs are designed and 
trained, the same test and training values are used for 
generating a second data pattern which will be used for 
finding the rules acquired by the ANN in the training process 
(Fig.1). 

The rule-extraction algorithm, as discussed before, is based 
on GP. This search technique allows problem solving by 
means of the automatic generation of algorithms and 
expressions. These expressions are codified in the shape of a 
tree. In order to create this tree, we must specify which nodes 

will be terminal (leaves) and which will be non-terminal. The 
difference is that some of them will be able to have offspring 
and the others will not.  

 OUTPUT 
Training 

Set 

INPUT 
Training 

Set 

 

Training 
Process

ANN 

RULE 
Extraction RULES 

 

FIG. 1: RULE EXTRACTION PROCESS 

When terminal and non-terminal operators are specified, it 
is necessary to specify their types: each node will have a 
type, and the non-terminal ones will require a specific type to 
their offspring [25]. This ensures that the trees thus generated 
satisfy the user�s grammar. Besides, both specified operator 
sets must comply with two requirements: closure and 
sufficiency, i.e. it must be possible to build correct trees with 
the specified operators, and that the solution to the problem 
(the expression we are looking for) can be expressed by 
means of those operators. Depending on the problem to be 
solved, mathematical and trigonometrical functions (sine, 
cosine, square root,�), logic operators (AND, OR, NOT, IF-
ELSE) on real and Boolean numbers have been used as 
operators, together with the typical operations +, -, *, and % 
which is the protected division (avoid dividing by zero). 
Thus, logic operators have been basically selected for 
classification tasks, dispending with mathematical operations. 
On the contrary, it is necessary to use them for prediction, 
due to the nature of the outputs of the ANNs which deal with 
this type of problem. 

V. RESULTS 

A. Classification problems 

ANNs have shown their extreme usefulness for tasks in 
which having an input sequence we must decide whether 
those values correspond to a certain classification. As it was 
debated before, various  problems of medical diagnosis have 
been used in order to train ANNs so that they produce it. 

The first data set used was the detection of lethal hepatitis 
cases. For this purpose we used a data base obtained from 
UCI [26]. It contains 155 examples for two classifications: 32 
deaths, and 123 alive cases. There are 19 attributes, 13 of 
which are Boolean while 6 have discreet values. An ANN 
was trained with these examples, obtaining an adjustment of 
100% of cases. The ANN has a multi-layer architecture, with 
one hidden layer with 9 neurons and with tangent hyperbolic 
activation functions. 
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The extraction of rules has been applied to this ANN, with 
the following operators: 

Constants: 20 random values in the range [0,1] 
Variables: 19 inputs 
Operators: <, >, =, AND, OR, NOT, IF-ELSE, on Boolean 

and real values (threshold 0.5). 

The adjustment value obtained is the correct classification 
of 98.75% of cases. The rules obtained are represented in the 
equation (1). 

 (IF X2 THEN 0.88265634 
ELSE  (IF ( (IF X2 THEN 0.88595235 
                    ELSE X18)<0.62471390) 
             THEN  (IF (IF ((IF X6  THEN 0.98004091 
                                       ELSE 0.62053287)>0.93807793) 
                                 THEN (NOT X12) 
                                 ELSE X7) 
                            THEN X18 
                            ELSE 0.88265634) 
             ELSE   (IF X13 THEN X18   (1) 
                          ELSE 0.23380230))) 

TABLE I 
COMPARISON TO OTHER EXISTING RULE EXTRACTION METHODS 

Method Accuracy Ref. 
OUR 
C-MLP2LN 
k-NN, k=18, Manhattan 
FSM + rotations 
LDA 
Naive Bayes 
IncNet + rotations 
QDA 
1-NN 
ASR 
FDA 
LVQ 
CART 
MLP with BP 
ASI 
LFC 
Default 

98.75 % 
96.1 % 
90.2 % 
89.7 % 
86.4 % 
86.3 % 
86.0 % 
85.8 % 
85.3 % 
85.0 % 
84.5 % 
83.2 % 
82.7 % 
82.1 % 
82.0 % 
81.9 % 
79.4 % 

 
[24] 
[24] 
[24] 
[27] 
[27] 
[28] 
[27] 
[27] 
[27] 
[27] 
[27] 
[27] 
[27] 
[27] 
[27] 

 

The next set of data corresponds to the detection of breast 
cancer. We also have a data base obtained from UCI [26]. It 
contains 699 examples for two classifications: 458 cases of 
benign cancer (65.5%) and 241 cases of malign cancer 
(34.5%). There are 9 attributes, all of which are discreet in 
character.  

Various ANNs have been trained, however, 100% of 
classifications was never reached. The rate of success was 
98.28% with one hidden layer with 7 neurons and neurons 
with linear activation function. The same architecture with 
tangent hyperbolic activation functions has improved the 
success rate, with 98.68%.  

The value of the best adjustment obtained for this latter 
ANN is a right classification in 99.71% of cases (using the 
outputs produced by the ANN). However, in order to draw a 
right comparison to other rule extraction techniques, the 
algorithm is directly applied to the set of initial input-output 
patterns (dispensing with the ANN outputs). In this case, the 
global adjustment value obtained is the correct classification 
of 99.28% of cases. The rules obtained are the following (2):  

 (IF (((0.9<X1) OR  (IF (X1>0.4)  
                                 THEN (((0.3>X7) AND (X1<>X4)) AND (X6>0.2)) 
                                 ELSE FALSE))  
                         OR (((0.3<X2) AND (X5>0.4))  
                        AND  (IF (X9<>X4) 
                                   THEN (X1<>X4) 
                                   ELSE (X3>0.4)))) 
THEN   (IF ((X3>0.4) OR (X5>0.4)) 
              THEN (0.0<>X6) 
              ELSE ((0.9<X1) OR (0.4<X6))) 
ELSE   (IF  (IF (0.4>X8) 
                    THEN (0.3>X3) 
                   ELSE (X3=0.6)) 
             THEN (0.9<X1) 
             ELSE   (IF (X3>0.4) 
                           THEN  (IF (0.3<>X4) 
                                         THEN (0.4>X8) 
                                         ELSE (0.4<X6))   (2) 
                          ELSE (X3>X5)))) 

TABLE II 
COMPARISON TO OTHER EXISTING RULE EXTRACTION METHODS 

Method Accuracy Ref. 
OUR 
C-MLP2LN 
IncNet 
k-NN 
Fisher LDA 
MLP with BP  
LVQ 
Bayes (pairwise dependent) 
Naive Bayes  
DB-CART 
LDA 
LFC, ASI, ASR 
CART 

99.28 % 
99.0 % 

97.1 
97.0 
96.8 
96.7 
96.6 
96.6 
96.4 
96.2 
96.0 

94.4-95.6 
93.5 

 
[24] 
[28] 
[24] 
[27] 
[27] 
 [27] 
[27] 
[27] 
[29] 
[27] 
[27] 
[29] 

B. Forecast of time series 

It is necessary to use recurrent ANN architectures for the 
prediction of time series and for modelling this type of 
problems. The extraction of rules from recurrent architecture 
ANNs poses an additional challenge, since these ANNs are 
characterised by their huge capacity of representation and 
distributed knowledge among their connections. This can be 
specifically applied to time and dynamic problems. The 
problem to be solved will be the prediction of a classical 
random laboratory time series: the Mackey-Glass series [30]. 
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The following results show that the rules to be obtained from 
this ANN should incorporate mechanisms for treating time 
values. Therefore, non-terminal nodes representing 
mathematical and trigonometrical operations will be used, 
together with input variables at previous n moments (Xn). 
Most of these time series cases are structures with a single 
input and a single output. The input corresponds to a number 
value of the t moment, while the system�s output is the 
prediction of the number value at t+1. This shows the level of 
complexity dealt with by the rule-extraction algorithm.  

The Mackey-Glass equation is an ordinary differential 
delay equation (3).  

)(
)(1

)( tbx
τtx
τtax

dt
dx

c −
−+

−=  

Choosing τ = 30, the equation becomes chaotic, and only 
short-term predictions are feasible. 

Integrating the equation (3) in the rank [t, t + δt] we obtain: 
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The first step is obtaining a recurrent ANN which emulates 
the behaviour of the series. In order to achieve that, different 
activation functions were used. The tangent hyperbolic is the 
one which yields best results. Besides, three neurons of this 
type with total interconnection were used. The training files 
used correspond to the first 200 values of the time series 
(Fig.3). The RANN resulting from the training process which 
has yielded the least medium square error (MSE=0.000072) 
may be seen in Fig.2. 

FIG. 2: RANN THAT EMULATE THE MACKEY-GLASS FUNCTION 

Once we have obtained the RANN, we try to obtain by 
means of symbolic regression the rules which direct its 
functioning. For this purpose we have used a test file 
containing the first 1000 values of the time series. These 
1000 values are transferred to the RANN, obtaining the 
corresponding outputs. Using the input-output file, we run the 
GP algorithm. Different combinations of terminal and non-
terminal elements have been tried, and the following have 
been used:  

Arithmetic functions: +, -, *, % (protected division) 
Constants: 10 random values in the range [0,1] 
Variables: : Xn, Xn-1, Xn-2, Xn-3 

The GP parameters which have been selected due to their 
best results are: 

Selection algorithm: Tournament 
Crossover rate: 95%   Mutation rate: 4% 
Population size: 1000 individuals 
Parsimony level: 0.0001 

Besides, the elitist strategy has been used, not allowing the 
loss of the best individual. 

The rule expressed as a mathematical function is the 
following: 

 ((Xn * ((((((Xn * (Xn * Xn-2)) % Xn-2) * (((0.9834 * 

(((((Xn * (Xn-2 % Xn-3)) * Xn-3) * Xn-3) % Xn-3) % (Xn 

% Xn-3))) % Xn-3) % ((Xn-2 * Xn-2) % Xn-3))) % Xn-3) * 

Xn-2) % Xn-2)) % ((Xn * Xn-2) % Xn-3) * 0.9834)) 

This function obtains an adjustment value (normalised) on 
the 1000 values produced by the RANN of 0.0029. The next 
graph compares the values produced by  the function forecast 
(4) and the RANN forecast. 

Error

TestTraining

200 10000
0

0.2

0.4

0.6

0.8

1.0
ANN forecast

Function forecast

 
FIG. 3: COMPARATIVE BETWEEN THE RANN FORECAST AND THE 

FUNCTION FORECAST (4) 

VI. CONCLUSIONS 

As inferred from the results presented, the GP-based rule 
extraction algorithm considerably improves the existing 
methods, being applicable to any ANN architecture, whether 
recurrent or feed-forward. Depending on the task for which 
the ANN has been designed, the types of operators on which 
GP works might be varied.  

As discussed in the introduction, the four features required 
by a rule-extraction system are faithfully approached in this 
case: 

By means of applying EC, the ANN is treated as a black 
box, where only the inputs-outputs it produces are 
considered. Therefore, it does not depend on their 
architecture or on their training algorithm (requirements 1 
and 2 complied with). 

1 3 

2 

1,874 

9,979 

-0,989 

1,742 

-8,219 

-1,943 
1,676 -0,202 

-6,081 

Input Output

(3) 

(4) 

0-7803-7278-6/02/$10.00 ©2002 IEEE



The rules extracted from the ANN are so similar to the 
ANN�s functioning as the adjustment value produced by the 
algorithm (GP), and as expressive as the semantic level used 
by the GP�s codified expression trees. 

Therefore, we may say that GP-based algorithms fit the 
needs of  the rule-extraction systems, apart from generating 
good results compared to other more specific methods of the 
ANN�s architecture and training. 

VII. FUTURE WORKS 

A possible development of the system is that of applying 
GP not only in order to obtain rules, but also operability 
ranks of ANNs. It would be like a validation system for an 
ANN�s functioning for the problem to be solved. Not only 
the initial training set which carries out the adjustment should 
be used for this purpose, but also new input data sets should 
be created simulating all the possible variations of values 
which could enter the ANN. Examining their outputs, 
functioning ranks should also be established. 

Another future development will be the analysis of the 
different parameters intervening in the algorithm�s correct 
functioning, according to the type of problem solved by the 
ANN. The ANN should be treated not as a black box, but as a 
grey one, where, for instance, the ANN�s activation function 
is known, being incorporated as one of the mathematical 
operators of GP, and analysing which are the rules extracted 
by this operator. 

In order to accelerate the rule-extraction process, it is 
possible to use a network with several computers so that the 
search is conducted in a distributed and concurring way, 
exchanging rules (sub-trees) among them. 
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