
Automatic Recurrent ANN Rule Extraction with Genetic Programming

Julián Dorado, Juan R. Rabuñal, Daniel Rivero, Antonino Santos, Alejandro Pazos
University of A Coruña, Campus Elviña s/n, 15192, A Coruña

julian@udc.es, juanra@udc.es, infdrc00@ucv.udc.es , nino@udc.es, ciapazos@udc.es

Abstract- Various rule-extraction techniques using ANNs

have been used so far, most of them being applied on multi-layer
ANNs, since they are more easily handled. In many cases,
extraction methods focusing on different types of networks and
training have been implemented, however, there are virtually no
methods that view the extraction of rules from ANNs as systems
which are independent from their architecture, training and
internal distribution of weights, connections and activation
functions. This paper proposes a rule-extraction system of ANNs
regardless of their architecture (multi-layer or recurrent), using
Genetic programming as a rule-exploration technique.

I. INTRODUCTION

Artificial Neural Networks (ANNs) are systems which are
easily implemented and handled. These and other features
make them optimal for problem-solving in various areas.
However, many developers and researchers avoid using
them, since they consider them as �black boxes�, that is, they
are systems which, produce certain response outputs from a
series of inputs, while the process through which those
outputs are produced remains unknown. For that reason, in
fields such as medicine, where their use is highly
recommended, people do not consider ANNs to be
accountable, due to the fact that the reason for their right
functioning and the solutions they contribute cannot be
explained. An example could be medical diagnosis. A
computational system designed for diagnosis should be able
to explain the reason for that diagnosis and how it was
reached.

Nevertheless, Expert Systems (ES) are able to explain the
solution or response achieved, which is their main core and
also their guarantee of success. Therefore, this paper tries to
develop a system which carries out an automatic extraction of
rules from already trained ANNs, thus obtaining the
knowledge that an ANN obtains from the problem it solves.

Different rule-extraction techniques using ANNs have
been used so far, always applied to multi-layer ANNs due to
the fact that they are more easily handled. These networks
also have a limited capacity with regard to the knowledge
which can be distributed among their connections.

As may be inferred, the extraction of rules from recurrent
ANNs is more complicated, due to the fact that past states
intervene in neural activation, and that their capacity of
distributed knowledge is considerably higher than that of
multi-layer ANNs, since there are no restrictions to neural
connectivity. If, besides, recurrent ANNs are used in dynamic
problems where certain time characteristics such as the
prediction of time series intervene, the task of extracting by

means of the methods developed so far becomes harder, if
not impossible for most of them.

Therefore, the system presented can be applied to every
ANN kind. For that reason, the system should comply with a
series of requirements [1]:

1) It should have no ANN architecture requirements: A
rule-extraction mechanism which can work with every type
of neural network, including those which are highly
interlinked or recurrent.

2) It should have no ANN training requirements: Many
of the proposed algorithms are based on a given ANN
training process for which rule-extraction is designed.
Therefore, they are not valid for other training sets.

3) It should be correct: Many rule-extraction
mechanisms only generate functioning approaches. It is
desirable that the rules describe the ANN as accurately as
possible.

4) It should have a highly expressive level: Rule language
(syntax) characterises the compactness of the extracted
symbolic language. Usually, powerful languages are
desirable, due to the fact that a very compact and easy to
understand rule language can be produced.

II. STATE OF THE ART

A. Genetic Programming

Some people thinks that Cramer and Fuji, who published
on evolving programs in 1985 and 1987 at the very first
ICGA conference [2][3], are the pioneers of Genetic
Programming (GP). But still others think that Friedberg from
1958 and 1959, who evolved machine language programs
[4][5], is really the pioneer.

John Koza created the term which titles the book �Genetic
Programming� [6]. This book establishes formally the bases
of GP used nowadays. Later, the same author published
�Genetic Programming II� [7], and, recently, �Genetic
Programming III� [8]. Both explore new possibilities of GP.

Different branches derive form GP. One of the most
promising ones with regard to Knowledge Discovery (KD) is
that of fuzzy rules [9][10]. This branch derives form the
union between fuzzy logic and systems based on rules (SBR).
Fuzzy rules can be obtained by means of Evolutionary
Computation (EC) with the technique known as
Automatically Defined Functions (ADF) [7], which
represent an evolution of the concept called �Classical
genetic Computing�.

0-7803-7278-6/02/$10.00 ©2002 IEEE

B. ANN rule extraction

Several authors have studied the relationship between
ANNs and fuzzy rules [11] [12] [13]. Most results establish
that equivalence by means of a process of consecutive
approaches. Apart from being purely theoretical solutions,
they require a great number of rules in order to approach the
ANN functioning [13]. Jang�s and Sung�s work [11] is rather
different, given that they provide an equivalence between
radial ANNs and fuzzy systems where a finite number of
rules or neurons is required, though in this case it is limited to
a fixed ANN architecture.

Andrews [14][15] identifies three rule-extraction
techniques: �decompositional�, �pedagogical� and �eclectic�.
The first one refers to extraction at the neuron level. The
second one treats the ANN as a black box, where by means
of applying inputs to the network, a backwards to forwards
analysis of the neurons in the hidden layers is carried out,
extracting the corresponding rules. The third one uses the
ANN architecture and the input-output pairs as a complement
to a symbolic training algorithm.

Towell and Shavlik [16] apply the first technique using the
connections between neurons as rules based on simple
transformations. This limits extraction to those networks with
a given multi-layer architecture and few process elements
[14].

Thrun [17] has developed the main approach by means of
using the second technique, titled �Validity Interval
Analysis� (VIA). The algorithm uses linear programming
(SIMPLEX), applying value intervals to each neuron�s
activations in each layer. The system extracts �possibly
correct� rules through the ANN by means of a backwards and
forwards propagation of those intervals. This algorithm has,
in the worst of cases, exponential complexity, due to the fact
of using linear programming. Besides, when a great number
of process elements is used, the time spent reaching the
solution is unacceptable.

Other approaches using the second technique are
RULENEG algorithms [18] and DEDEC ones [19], which
use an ANN in order to extract rules from another ANN�s
training set. However, those rule-extraction techniques which
focus exclusively on the training data lose the generalization
capacity which ANNs have. Other rule-extraction techniques
are [20] [21] [1], which are based on previously debated
approaches.

GAs have recently been used for finding and extracting
ANNs, due to the advantages offered by evolutionary
techniques for searching in complex systems. [22], using the
second technique (pedagogical) uses a GA where the
chromosomes are multi-condition rules based on intervals or
value ranks applied to the ANN inputs. These values are
obtained from the training parameters.

Wong and Leung have been used PG for knowledge
discovery from databases (KDD). LOGENPRO (Logic
grammar based Genetic Programming) [23]. It uses first

orden logic to represents the knowledge. This is the first
aproximation that shows the advantages of GP for KDD.

III. FUNDAMENTALS

One of the most important aspects of any rule-extraction
system is the optimization of the rules obtained from the
ANN analysis. It should be kept in mind that the extracted
rules may be contained in general rules, and many of the
logical expressions obtained may be simplified if they are
written in a different way. Therefore, the optimization of
rules consists of simplifying and carrying out symbolic
operations on the rules. Depending on the extraction method
and on the type of rules obtained, various optimization
techniques can be applied. They can be classified into two
main groups: imbibed optimization methods and a posteriori
methods. The latter are usually a syntactic analysis algorithm
applied to the rules obtained in order to simplify them. For
instance [24] uses Prolog as programming language for a
post-processing of the rules obtained. He uses a Prolog
program for reaching optimal linguistic variables, thus
obtaining simplified rules which use those variables. Imbibed
optimization techniques are techniques used for rule-
extraction algorithms which intrinsically cause the algorithm
to produce rules which are more and more optimal each time.
An example may be the technique of depth penalization used
in GP. Conceptually, when the adaptation level of a GP
individual is evaluated (tree) its capacity is reduced a certain
degree according to the number of terminal and non-terminal
nodes that the tree has. Thus the existence of simple
individuals is dynamically fostered. Therefore, if we are
searching for rules (syntactic trees), the appearance of simple
(optimization) rules is intrinsically favoured.

Another thing to be taken into account when applying the
extraction algorithm is its modus operandi. As previously
discussed, extraction techniques can be classified into three
main groups: �decompositional�, �pedagogical� and
�eclectic�. The first approach is based on treating each ANN
neuron, particularly those in the hidden layers, and the output
ones. Thus the rules are extracted from each neuron and from
its relation to the rest. This makes the methods based on these
techniques totally dependent on the architecture of the ANN,
thus limiting their applicability in a general way. On the
contrary, the second approach treats ANNs as �black boxes�
where only the relations among inputs and outputs are
considered. Therefore, the main goal of this technique is
obtaining the function computed by the ANN, while the last
approach combines elements from the other two. EC has been
applied in this paper, and specifically GP as building
algorithm of a syntactic tree which reflects a set of rules as
similar as possible to the functioning of an ANN. A symbolic
regression has been applied to the input-output patterns.
These patterns are input sequences applied to an ANN and
the outputs obtained from it. This type of technique can be
termed as �pedagogical�, where the ANN is treated as a
�black box�. This is an advantage, given that it is not
necessary to know how an ANN works internally. However,

0-7803-7278-6/02/$10.00 ©2002 IEEE

a rule-extraction algorithm which can work with �black box�
structures should be able to implement some kind of
mechanism which allows a priori incorporation of the
knowledge obtained from the �black box�, thus reducing
considerably the search space of the system rules. These
structures are known as �grey box�. This is possible thanks to
the use of GP due to the fact that the number and type of
terminal and non-terminal elements which intervene in the
search process can be determined. For instance, if we know
that an ANN carries out classification tasks, the type of
terminal nodes can be determined as Boolean, avoiding
floating point levels. This offers a great advantage, given that
all the possible combinations of mathematical operations can
be eliminated beforehand.

IV. SYSTEM’S DESCRIPTION

The main method proposed for the extraction of ANN rules
is the use of EC, due to the fact that it has proved to be very
useful at search tasks, where the solution space increases
exponentially with regard to the problem to be solved. The
use of GP is proposed since it offers the advantage of having
a way of representing and structuring information by means
of a semantic tree. This tree diagram is a natural way of
representing a rule which can be easily understood by human
beings.

This article suggests the addition of the self-explanatory
function of ANNs. A system which develops the set of rules
which serve as a model for a network�s functioning will be
generated for this purpose. This set of rules extracted from
ANNs constitute a fuzzy rules based system (FRBS), i.e. an
understandable representation is obtained about the
knowledge treasured by a neural network.

The proposed system will be validated contrasting its
correct functioning with other existing extraction techniques
based on classification techniques. Some of these cases are
the breast-cancer diagnosis and the lethal hepatitis one. In
these cases, the direct extraction of rules from those data will
be proven with the purpose of extracting the rules pertaining
to each network by means of training ANNs.

Finally, the algorithm will be proved with recurrent ANNs
for time-series prediction tasks. An ANN trained for
predicting a laboratory chaotic time series (such as the
Mackey- Glass) will be used for this purpose.

In each case, the work is initially based on obtaining ANNs
for solving the problem. Once the ANNs are designed and
trained, the same test and training values are used for
generating a second data pattern which will be used for
finding the rules acquired by the ANN in the training process
(Fig.1).

The rule-extraction algorithm, as discussed before, is based
on GP. This search technique allows problem solving by
means of the automatic generation of algorithms and
expressions. These expressions are codified in the shape of a
tree. In order to create this tree, we must specify which nodes

will be terminal (leaves) and which will be non-terminal. The
difference is that some of them will be able to have offspring
and the others will not.

 OUTPUT
Training

Set

INPUT
Training

Set

Training
Process

ANN

RULE
Extraction RULES

FIG. 1: RULE EXTRACTION PROCESS

When terminal and non-terminal operators are specified, it
is necessary to specify their types: each node will have a
type, and the non-terminal ones will require a specific type to
their offspring [25]. This ensures that the trees thus generated
satisfy the user�s grammar. Besides, both specified operator
sets must comply with two requirements: closure and
sufficiency, i.e. it must be possible to build correct trees with
the specified operators, and that the solution to the problem
(the expression we are looking for) can be expressed by
means of those operators. Depending on the problem to be
solved, mathematical and trigonometrical functions (sine,
cosine, square root,�), logic operators (AND, OR, NOT, IF-
ELSE) on real and Boolean numbers have been used as
operators, together with the typical operations +, -, *, and %
which is the protected division (avoid dividing by zero).
Thus, logic operators have been basically selected for
classification tasks, dispending with mathematical operations.
On the contrary, it is necessary to use them for prediction,
due to the nature of the outputs of the ANNs which deal with
this type of problem.

V. RESULTS

A. Classification problems

ANNs have shown their extreme usefulness for tasks in
which having an input sequence we must decide whether
those values correspond to a certain classification. As it was
debated before, various problems of medical diagnosis have
been used in order to train ANNs so that they produce it.

The first data set used was the detection of lethal hepatitis
cases. For this purpose we used a data base obtained from
UCI [26]. It contains 155 examples for two classifications: 32
deaths, and 123 alive cases. There are 19 attributes, 13 of
which are Boolean while 6 have discreet values. An ANN
was trained with these examples, obtaining an adjustment of
100% of cases. The ANN has a multi-layer architecture, with
one hidden layer with 9 neurons and with tangent hyperbolic
activation functions.

0-7803-7278-6/02/$10.00 ©2002 IEEE

The extraction of rules has been applied to this ANN, with
the following operators:

Constants: 20 random values in the range [0,1]
Variables: 19 inputs
Operators: <, >, =, AND, OR, NOT, IF-ELSE, on Boolean

and real values (threshold 0.5).

The adjustment value obtained is the correct classification
of 98.75% of cases. The rules obtained are represented in the
equation (1).

 (IF X2 THEN 0.88265634
ELSE (IF ((IF X2 THEN 0.88595235
 ELSE X18)<0.62471390)
 THEN (IF (IF ((IF X6 THEN 0.98004091
 ELSE 0.62053287)>0.93807793)
 THEN (NOT X12)
 ELSE X7)
 THEN X18
 ELSE 0.88265634)
 ELSE (IF X13 THEN X18 (1)
 ELSE 0.23380230)))

TABLE I
COMPARISON TO OTHER EXISTING RULE EXTRACTION METHODS

Method Accuracy Ref.
OUR
C-MLP2LN
k-NN, k=18, Manhattan
FSM + rotations
LDA
Naive Bayes
IncNet + rotations
QDA
1-NN
ASR
FDA
LVQ
CART
MLP with BP
ASI
LFC
Default

98.75 %
96.1 %
90.2 %
89.7 %
86.4 %
86.3 %
86.0 %
85.8 %
85.3 %
85.0 %
84.5 %
83.2 %
82.7 %
82.1 %
82.0 %
81.9 %
79.4 %

[24]
[24]
[24]
[27]
[27]
[28]
[27]
[27]
[27]
[27]
[27]
[27]
[27]
[27]
[27]

The next set of data corresponds to the detection of breast
cancer. We also have a data base obtained from UCI [26]. It
contains 699 examples for two classifications: 458 cases of
benign cancer (65.5%) and 241 cases of malign cancer
(34.5%). There are 9 attributes, all of which are discreet in
character.

Various ANNs have been trained, however, 100% of
classifications was never reached. The rate of success was
98.28% with one hidden layer with 7 neurons and neurons
with linear activation function. The same architecture with
tangent hyperbolic activation functions has improved the
success rate, with 98.68%.

The value of the best adjustment obtained for this latter
ANN is a right classification in 99.71% of cases (using the
outputs produced by the ANN). However, in order to draw a
right comparison to other rule extraction techniques, the
algorithm is directly applied to the set of initial input-output
patterns (dispensing with the ANN outputs). In this case, the
global adjustment value obtained is the correct classification
of 99.28% of cases. The rules obtained are the following (2):

 (IF (((0.9<X1) OR (IF (X1>0.4)
 THEN (((0.3>X7) AND (X1<>X4)) AND (X6>0.2))
 ELSE FALSE))
 OR (((0.3<X2) AND (X5>0.4))
 AND (IF (X9<>X4)
 THEN (X1<>X4)
 ELSE (X3>0.4))))
THEN (IF ((X3>0.4) OR (X5>0.4))
 THEN (0.0<>X6)
 ELSE ((0.9<X1) OR (0.4<X6)))
ELSE (IF (IF (0.4>X8)
 THEN (0.3>X3)
 ELSE (X3=0.6))
 THEN (0.9<X1)
 ELSE (IF (X3>0.4)
 THEN (IF (0.3<>X4)
 THEN (0.4>X8)
 ELSE (0.4<X6)) (2)
 ELSE (X3>X5))))

TABLE II
COMPARISON TO OTHER EXISTING RULE EXTRACTION METHODS

Method Accuracy Ref.
OUR
C-MLP2LN
IncNet
k-NN
Fisher LDA
MLP with BP
LVQ
Bayes (pairwise dependent)
Naive Bayes
DB-CART
LDA
LFC, ASI, ASR
CART

99.28 %
99.0 %

97.1
97.0
96.8
96.7
96.6
96.6
96.4
96.2
96.0

94.4-95.6
93.5

[24]
[28]
[24]
[27]
[27]
 [27]
[27]
[27]
[29]
[27]
[27]
[29]

B. Forecast of time series

It is necessary to use recurrent ANN architectures for the
prediction of time series and for modelling this type of
problems. The extraction of rules from recurrent architecture
ANNs poses an additional challenge, since these ANNs are
characterised by their huge capacity of representation and
distributed knowledge among their connections. This can be
specifically applied to time and dynamic problems. The
problem to be solved will be the prediction of a classical
random laboratory time series: the Mackey-Glass series [30].

0-7803-7278-6/02/$10.00 ©2002 IEEE

The following results show that the rules to be obtained from
this ANN should incorporate mechanisms for treating time
values. Therefore, non-terminal nodes representing
mathematical and trigonometrical operations will be used,
together with input variables at previous n moments (Xn).
Most of these time series cases are structures with a single
input and a single output. The input corresponds to a number
value of the t moment, while the system�s output is the
prediction of the number value at t+1. This shows the level of
complexity dealt with by the rule-extraction algorithm.

The Mackey-Glass equation is an ordinary differential
delay equation (3).

)(
)(1

)(tbx
τtx
τtax

dt
dx

c −
−+

−=

Choosing τ = 30, the equation becomes chaotic, and only
short-term predictions are feasible.

Integrating the equation (3) in the rank [t, t + δt] we obtain:

+
∆+
∆−=∆+)(

2
2)(tx

tb
tbttx









−+

−+
−∆++

−∆+
∆+

∆
)τ(1

)τ(
)τ(1

)τ(
2
α

tx
tx

ttx
ttx

tb
t

cc

The first step is obtaining a recurrent ANN which emulates
the behaviour of the series. In order to achieve that, different
activation functions were used. The tangent hyperbolic is the
one which yields best results. Besides, three neurons of this
type with total interconnection were used. The training files
used correspond to the first 200 values of the time series
(Fig.3). The RANN resulting from the training process which
has yielded the least medium square error (MSE=0.000072)
may be seen in Fig.2.

FIG. 2: RANN THAT EMULATE THE MACKEY-GLASS FUNCTION

Once we have obtained the RANN, we try to obtain by
means of symbolic regression the rules which direct its
functioning. For this purpose we have used a test file
containing the first 1000 values of the time series. These
1000 values are transferred to the RANN, obtaining the
corresponding outputs. Using the input-output file, we run the
GP algorithm. Different combinations of terminal and non-
terminal elements have been tried, and the following have
been used:

Arithmetic functions: +, -, *, % (protected division)
Constants: 10 random values in the range [0,1]
Variables: : Xn, Xn-1, Xn-2, Xn-3

The GP parameters which have been selected due to their
best results are:

Selection algorithm: Tournament
Crossover rate: 95% Mutation rate: 4%
Population size: 1000 individuals
Parsimony level: 0.0001

Besides, the elitist strategy has been used, not allowing the
loss of the best individual.

The rule expressed as a mathematical function is the
following:

 ((Xn * ((((((Xn * (Xn * Xn-2)) % Xn-2) * (((0.9834 *

(((((Xn * (Xn-2 % Xn-3)) * Xn-3) * Xn-3) % Xn-3) % (Xn

% Xn-3))) % Xn-3) % ((Xn-2 * Xn-2) % Xn-3))) % Xn-3) *

Xn-2) % Xn-2)) % ((Xn * Xn-2) % Xn-3) * 0.9834))

This function obtains an adjustment value (normalised) on
the 1000 values produced by the RANN of 0.0029. The next
graph compares the values produced by the function forecast
(4) and the RANN forecast.

Error

TestTraining

200 10000
0

0.2

0.4

0.6

0.8

1.0
ANN forecast

Function forecast

FIG. 3: COMPARATIVE BETWEEN THE RANN FORECAST AND THE

FUNCTION FORECAST (4)

VI. CONCLUSIONS

As inferred from the results presented, the GP-based rule
extraction algorithm considerably improves the existing
methods, being applicable to any ANN architecture, whether
recurrent or feed-forward. Depending on the task for which
the ANN has been designed, the types of operators on which
GP works might be varied.

As discussed in the introduction, the four features required
by a rule-extraction system are faithfully approached in this
case:

By means of applying EC, the ANN is treated as a black
box, where only the inputs-outputs it produces are
considered. Therefore, it does not depend on their
architecture or on their training algorithm (requirements 1
and 2 complied with).

1 3

2

1,874

9,979

-0,989

1,742

-8,219

-1,943
1,676 -0,202

-6,081

Input Output

(3)

(4)

0-7803-7278-6/02/$10.00 ©2002 IEEE

The rules extracted from the ANN are so similar to the
ANN�s functioning as the adjustment value produced by the
algorithm (GP), and as expressive as the semantic level used
by the GP�s codified expression trees.

Therefore, we may say that GP-based algorithms fit the
needs of the rule-extraction systems, apart from generating
good results compared to other more specific methods of the
ANN�s architecture and training.

VII. FUTURE WORKS

A possible development of the system is that of applying
GP not only in order to obtain rules, but also operability
ranks of ANNs. It would be like a validation system for an
ANN�s functioning for the problem to be solved. Not only
the initial training set which carries out the adjustment should
be used for this purpose, but also new input data sets should
be created simulating all the possible variations of values
which could enter the ANN. Examining their outputs,
functioning ranks should also be established.

Another future development will be the analysis of the
different parameters intervening in the algorithm�s correct
functioning, according to the type of problem solved by the
ANN. The ANN should be treated not as a black box, but as a
grey one, where, for instance, the ANN�s activation function
is known, being incorporated as one of the mathematical
operators of GP, and analysing which are the rules extracted
by this operator.

In order to accelerate the rule-extraction process, it is
possible to use a network with several computers so that the
search is conducted in a distributed and concurring way,
exchanging rules (sub-trees) among them.

VIII. ACKNOWLEDGEMENTS

This work has been supported in part by the University of
A Coruña project �Extracción de reglas de RNA mediante
CE� and CICYT TIC2000-0120-P4-03 of the Spain
government.

IX. REFERENCES

[1] Tickle, A.B.; Andrews, R.; Golea, M.; Diederich, J. �The truth will
come to light: directions and challenges in extracting the knowledge
embedded within trained artificial neural networks�. IEEE Transaction
on Neural Networks, vol. 9 nº 6, pp 1057-1068, 1998.

[2] Cramer, N.L. �A Representation for the Adaptive Generation of Simple
Sequential Programs�, Grefenstette: Proceedings of First International
Conference on Genetic Algorithms, 1985.

[3] Fujiki C. �Using the Genetic Algorithm to Generate Lisp Source Code
to Solve the Prisoner's Dilemma�, International Conf on GAs, pp. 236-
240, 1987.

[4] Friedberg R.M. �A learning machine: Part I�, IBM Journal of Research
and Development, 2(1) 2-13, 1958.

[5] Friedberg R.M., Dunham B., North J.H. �A learning machine: Part II�,
IBM Journal of Research and Development, 3(3) 282-287, 1959.

[6] Koza J. �Genetic Programming. On the Programming of Computers by
means of Natural Selection�. The Mit Press, Cambridge,
Massachusetts, 1992.

[7] Koza J. �Genetic Programming II: Automatic Discovery of Reusable
Programs�. The Mit Press, Cambridge, Massachusetts, 1994.

[8] Koza J., Forrest H. Bennett III, David Andre, Martin A. Keane.
�Genetic Programming III: Darwinian Invention and Problem Solving�.
Morgan Kaufmann Publishers, San Francisco, California, 1999.

[9] Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R.: �Advances
in Knowledge Discovery and Data Mining�. AAAI/MIT Press, 1996

[10] Bonarini A.: ''Evolutionary Learning of Fuzzy Rules: Competition and
Cooperation'', Fuzzy Modelling: Paradigms and Practice, W. Pedrycz
(Ed.), Kluwer Academic Press, Norwell, MA, 1996

[11] Jang J., Sun C. �Functional equivalence between radial basis function
networks and fuzzy inference systems�. IEEE Transactions on Neural
Networks, vol. 4, pp 156-158, 1992.

[12] Buckley J.J., Hayashi Y., Czogala E. �On the equivalence of neural
nets and fuzzy expert systems�, Fuzzy Sets Systems, Nº 53, pp 129-
134, 1993.

[13] Benítez J. M., Castro J. L., Requena I. � Are artificial neural networks
black boxes ? �. IEEE Transactions on Neural Networks, vol. 8, nº 5, pp
1156-1164, 1997.

[14] Andrews R. Diederich J. & Tickle A. �A Survey and Critique of
Techniques For Extracting Rules From Trained Artificial Neural
Networks�. Knowledge Based Systems 8, pp 373-389, 1995.

[15] Andrews R., Cable R., Diederich J., Geva S., Golea M., Hayward R.,
Ho-Stuart C., Tickle A. B. �An evaluation and comparison of
techniques for extracting and refining rules from artificial neural
networks�. Queensland University of Technology, Neurocomputing
Research Centre. QUT NRC Technical report, 1996.

[16] Towell G., Shavlik J. W. �Knowledge-Based Artificial Neural
Networks�. Artificial Intelligence, 70, pp 119-165.

[17] Thrun S. �Extracting rules from networks with distributed
representations�. Advances in Neural Information Processing Systems
(NIPS) 7, G. Tesauro, D. Touretzky, T. Leen (eds), MIT Press.

[18] Pop E., Hayward R., Diederich J. �RULENEG: Extracting Rules from
a Trained ANN by Stepwise Negation�. Queensland University of
Technology, Neurocomputing Research Centre. QUT NRC Technical
report, 1994.

[19] Tickle A. B., Orlowski M., Diedrich J. �DEDEC: A methodology for
extracting rules from trained artificial neural networks�. Queensland
University of Technology, Neurocomputing Research Centre. QUT
NRC Technical report, 1996.

[20] Chalup S., Hayward R., Diedrich J. �Rule extraction from artificial
neural networks trained on elementary number classification task�.
Queensland University of Technology, Neurocomputing Research
Centre. QUT NRC Technical report, 1998.

[21] Visser U., Tickle A., Hayward R., Andrews R. �Rule-Extraction from
trained neural networks: Different techniques for the determination of
herbicides for the plant protection advisory system PRO_PLANT�.
Proceedings of the rule extraction from trained artificial neural
networks workshop, Brighton, UK, pp 133-139. 1996.

[22] Keedwell E., Narayanan A., Savic D. �Creating rules from trained
neural networks using genetic algorithms�. IJCSS, vol. 1, Nº 1, pp 30-
42. 2000.

[23] Wong M.L., Leung K.S.: �Data Mining using Grammar Based Genetic
Programming and Applications�, Kluwer Academic Publishers, 2000.

[24] Duch W., Adamczak R., Grabczewski K.: �A new methodology of
extraction, optimisation and application of crisp and fuzzy logical
rules�, IEEE Transactions on Neural Networks, vol. 11, nº 2, 2000.

[25] Montana D.J.: �Strongly Typed Genetic Programming�, Evolutionary
Computation, The MIT Press, pp. 199-200, Cambridge, MA, 1995.

[26] Mertz C., Murphy P.,: UCI repository of machine learning databases,
http://www.ics.uci.edu/pub/machine-learning-data-bases.

[27] Ster B., Dobnikar A.: �Neural networks in medical diagnosis:
Compararison with other methods�, A. Bulsari et al. eds, Proc. Int.
Conf. EANN�96, pp. 427-430, 1996.

[28] Jankowski N., Kadirkamanathan V.: �Statistical Control of RBF-like
Networks for Classification�, 7th International Conference on Artificial
Neural Networks, pp. 385-390, Lausanne, Switzerland, 1997.

[29] Shang N., Breiman L.: �Distribution based trees are more accurate�,
Int. Conf. On Neural Information Processing, vol. 1, pp. 133-138, Hong
Kong, 1996.

[30] Mackey M., Glass L.: �Oscillation and chaos in physiological control
systems�, Science, 197:287, 1977.

0-7803-7278-6/02/$10.00 ©2002 IEEE

	IJCNN Main Menu
	IJCNN Table of Contents
	IJCNN Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
