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Abstract - A new evolutionary computation method named
Genetic Network Programming (GNP) was proposed recently. In
this paper, an online learning method for GNP is proposed. This
method uses Q learning to improve its state transition rules so
that it can make GNP adapt to the dynamic environments effi-
ciently.

I. INTRODUCTION

Evolutional processes of organisms are very complicated
and sophisticated. They are based on the mechanisms such as
learning, selection and evolution, so that they can harmonize
well with environments.

“Genetic Algorithm (GA)[1]” and “Genetic Programming
(GP)[2]” are typical methods that are based on the evolutional
processes of organisms. Because the conventional control
theory should obey the rules that are predefined in advance
and it cannot be adapted to the dynamical environment rapidly,
the evolutionary computation overcoming the above problems
attracts the attention.

GA and GP which have been mainly applied to optimization
problems represent solutions as a string and a tree structure,
respectively and evolve them. GP was devised later in order
to expand the representation ability of GA and to solve more
complex problems. But, GP might be difficult to search for
a solution because of the bloat of its tree structure, which
expands the depth of the tree unnecessarily although it is
sometimes useful for expanding a search space and find a
solution.

Recently, a new evolutionary computation method named
“Genetic Network Programming (GNP)” was proposed[3]-[4].
GNP that is an expansion of GA and GP represents solutions
as a network structure. Because GNP can memorize the
past action sequences in the network flow and can deal with
Partially Observable Markov Decision Process (POMDP)
well, GNP was applied to complicated agent systems in-
volving uncertainty such as decision-making problems. But,
conventional GNP are based on “offline learning”, that is, after
GNP is carried out to some extent, it is evaluated and evolved
according to rewards given by an environment. However,
the adaptation to dynamical environments might be difficult
because if the changes of an environment occurred, offline
learning must do many trials to evaluate GNP and evolve it
again and again, therefore, it cannot keep up with the changes
of environments quickly.

In this paper, Q learning[5] which is one of the famous

online learning method in reinforcement learning field is
introduced for the online learning of GNP. GNP changes its
node transition rules considering the rewards given one after
another, so that it can change its solution (behavior sequences)
immediately after environmental changes that cause a bad
result. The reason for applying Q learning to online learning
of GNP is described in section 2.

In this paper, Prisoner’s dilemma game is used for sim-
ulations and the performance of online learning is studied.
Prisoner’s dilemma game needs two players and they compete
with each other to get high scores. First, GNP having a game
strategy competed with the famous strategies of Prisoner’s
dilemma game and showed the good performances (scores).
Then, two GNPs competed with each other and showed
the online adjustment on their strategies considering the
opponent’s strategy in order to get higher scores.

This paper is organized as follows. In the next section,
the details of Genetic Network Programming is described.
Section 3 explains Prisoner’s dilemma game and shows the
results of the simulations. Section 4 is devoted to conclusions.

II. GENETIC NETWORK PROGRAMMING (GNP)

In this section, Genetic Network programming is explained in
detail. GNP is an expansion of GP in terms of gene structures.
The original motivation of developing GNP is based on the
more general representation ability of graphs than that of trees.

A. Basic structure of GNP
First, GP is explained in order to compare it with GNP.

Fig.1 shows a basic structure of GP. GP can be used as a
decision making tree when non-terminal nodes are if -then
type functions and all terminal nodes are some concrete action
functions. A tree is executed from the root node to a certain
terminal node in each iteration, therefore, it might fall into
the deadlocks because the behaviors of agents made by GP
are determined only by the environments at the current time.
Furthermore, GP tree might cause the severe bloat that makes
search for solutions difficult because of the unnecessary
expansion of depth.

Next, the characteristics and abilities of GNP are explained
using Fig.2 which shows the basic structure of GNP. Now, it is
supposed that agent behavior sequences are created by GNP.

(1) GNP has a number of Judgement nodes and Process-
ing nodes connected by directed links with each other like
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networks. Judgement nodes, that are if -then type decision
functions or conditional branch decision functions, return
judgement results for assigned inputs and determine the
next node GNP should take. Processing node determines an
action/processing an agent should take. Contrary to judgement
nodes, processing nodes have no conditional branch. The GNP
we used never causes bloat because of the predefined number
of nodes, although GNP can evolve phenotype/genetypes of
variable length.

(2) GNP is booted up from the start node that is predefined
in advance arbitrarily and there are no terminal nodes. After
the start node, the next node is determined according to the
connections of the nodes and judging results of judgement
nodes. In this way, GNP system is carried out according to the
network flow without any terminal, so the network structure
itself has a memory function of the past actions of an agent.
Therefore, the determination of the next node is influenced by
the node transitions of the past.

(3) GNP can evolve appropriate connections so that it can
judge environments and process functions efficiently. GNP
can determine what kind of judgement and processing should
be done now by evolving the network structure.

(4) GNP can have time delays. di is the time delay GNP
spends on judgement or processing and dij is the one GNP
spends on transitions from node i to j. In the real world
problems, some time is spent when judging or processing
and also transferring from one node to the next node. For

example, when a man is walking and there is a puddle before
him, he will avoid it. At that time, it takes some time to
judge the puddle (di of judgement node), to put judgement
into action (dij of transition from judgement to processing)
and to avoid the puddle (di of processing node). However, di

and dij are not used in this paper because the purpose of the
simulations using Prisoner’s dilemma game is to make and
change strategies adapting to the opponent behavior and the
time spent for judgement or processing does not need to be
considered. Time delay is necessary in the case of practical
applications. When various judgements and processes are
done, GNP should change its structure considering the time it
spends. Time delay is listed in each node gene which will be
described later because it is the unique attribute of a node.

There have been developed some graph based evolutional
methods such as PADO (Parallel Algorithm Discovery and
Orchestration)[6] and EP (Evolutionary Programming)[7].
PADO has both start node and end node in the network
and it mainly represents a static program. EP is used for
the automatic synthesis of Finite State Machines and in all
states, state transitions for all inputs have to be determined,
therefore, the structure becomes complicated if the number
of nodes increase. On the other hand, GNP uses necessary
information only for judging the environments, i.e., it can deal
with POMDP. Therefore, GNP could be compact even if the
system to solve is large enough.

B. Genotype expression of GNP node

The whole structure of GNP is determined by the combina-
tion of the following node genes. A genetic code of node i is
represented as Fig.3.

node i Ki Ci di Ni1 di1 .....Qi1 Qi1 Qi1

Nij dij Qij Qij Qij.....

.....

.....

A

A

B

B

C

C .....

Fig.3 genotype expression of node i

where, Ki : Judgement/Processing classification

0 : Processing node

1 : Judgement node

Ci : content of Judgement/Processing

di : time delay spent for

judgement/processing

Nij : transition from node i to node j

Nij = 0 : infeasible (no connection)

Nij = 1 : feasible

dij : time delay spent for the transition

from node i to j

QA
ij , Q

B
ij , Q

C
ij . . . : transition Q values from node i to j
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Ki represents the node type, Ki=0 means Processing node,
Ki=1 means Judgement node. Ci means the content GNP
judges or processes and they are represented as unique num-
bers. di is the time delay spent for judgement or processing.
Nij shows whether the transition from node i to j (1 ≤ j ≤ n
(each node has a unique number from 1 to n, respectively
when the sum of nodes is n)) is feasible or not. Nij=0 means
infeasible, Nij=1 means feasible. dij means time delay spent
for the transition from node i to j. QA

ij , Q
B
ij , Q

C
ij . . . means

transition Q values from node i to j. Judgement node has
plural judging results. For example, if a result of judgement is
“A”, GNP uses QA

ij to select a transition, if the result is “B”, it
uses QB

ij . Therefore, the number of QA
ij , Q

B
ij, Q

C
ij , . . . are the

same as the number of the results at judgement nodes. On the
other hand, processing node has only QA

ij because there are no
conditional branches when processing.

C. Online learning of GNP

Because the conventional learning method for GNP is
“offline learning”, it is evaluated by the rewards given by the
environment after GNP is carried out to some extent. Offline
learning for GNP includes “selection”, “mutation”, and
“crossover”. Online learning for GNP is based on Q learning
and changes its node transition rules considering the rewards
given one after another. That is, each node has a probability
of plural transitions to the other nodes and transition Q values
are calculated by using Q learning. GNP selects the transition
according to the Q values. Agents can learn and adapt to
changes of the environments through this processes.

1) Q learning (An off-policy TD control algorithm) : Q
learning calculates Q values which are functions of the state
s and the action a. Q values means the sum of the rewards
an agent gets in the future, and the update processes of them
are implemented as follows. When an agent selects an action
at in state st at time t, the reward rt is given and the state is
changed from st to st+1. As a result, Q(st, at) is updated as
the following equation.

Q(st, at) = Q(st, at)

+ α
[
rt + γ max

a
Q(st+1, a) − Q(st, at)

] (1)

If the step size parameter α decreases according to a certain
schedule, Q values converge on an optimal values after enough
trials. The action selection which has the maximum Q value
becomes the optimal policy. γ is a discount rate which shows
how long an agent considers the future rewards.

If an agent continues to select the actions having maximum
Q value when the learning is not enough, the policy improve-
ment of taking the action is not implemented even though
there are still better action selections. One of the method for
overcoming the above problem is “ε-greedy”. This method
makes the agent select the random action by the probability
of ε, or select the action having maximum Q value by the

probability of 1-ε. ε-greedy is a general method for keeping a
balance between exploitation of experience and exploration.
In this paper, ε-greedy is adopted for the action selections.

2) Relation between GNP and Q learning : In Q learning,
state s is determined by the information an agent can get,
and action a means the actual action it takes. On the other
hand, GNP regards the state of the nodes after judging and
processing as a state and a node transition as an action. The
state s and action a of online learning of GNP are different
from the ones determined by simple Q learning.

3) The reason for applying Q learning :
(1) Once GNP is booted up from the start node, the current

node is transferred one after another without any terminal
nodes. Therefore, the framework of reinforcement learning
that uses the sum of the discounted future rewards are suitable
for online learning of GNP.

(2) TD control needs only a maximum Q value in the next
state, therefore, much memory is not needed and Q value is
updated easily.

(3) Because GNP should search for an optimal solution
independently of the policy (ε-greedy), off-policy is adopted.

4) Node transition and Learning : The following is the out-
line of online learning. In this paper, the transitions from each
node to all the other nodes are possible, namely all Nij=1 in
this paper. The transition begins from the start node that can
be selected from all the nodes arbitrarily and GNP executes the
content of the start node, then GNP selects a transition having
a maximum Q value in all transitions which connect the start
node to the next one. However, by the probability of ε, it se-
lects the random transitions. After a reward is given, Q value
is updated according to the eq.(1). After that, the transitions
continue following the network flow.

The concrete processes are described using Fig.4 that shows
an example of node transitions. There are n nodes including
judgement nodes and processing nodes, and each node has the
number from 1 to n, respectively. At time t, it is supposed that
the current node is node i(1 ≤ i ≤ n). Because node i is the
judgement node, it judges the current environment. In this ex-
ample, the result of the judgement could be A, B or C and now
B is supposed at time t. Then, the state st becomes SB

i , and
the transition is selected according to ε-greedy.

• case 1 : next node is a processing node

If the transition which has QB
ij1

is selected, the next node
is processing node j1. GNP processes what is assigned to it
and gets the reward rt. Then, the time is changed to t + 1 and
the state st+1 becomes sA

j1
decisively because the processing

nodes have no judgement unlike judgement nodes. If QA
j1k1

is
the maximum value among QA

j11
, . . . , QA

j1n, this value is used
to update QB

ij1
. GNP selects the transition to node k1 which

has the maximum Q value as an action at+1 by the probability
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of 1-ε, or selects the random transition by the probability of ε.
In this case, Q value is updated accordingding to the eq.(2).

QB
ij1 = QB

ij1 + α
[
rt + γQA

j1k1
− QB

ij1

]
(2)

• case 2 : next node is a judgement node

If the transition which has QB
ij2

is selected, the next node
is judgement node j2 and GNP judges what is assigned to it.
However, because the actual action is not done at node j2, the
reward rt is not given. The time is changed to t+1 and the
state st+1 could be SA

j2
, SB

j2
or SC

j2
according to the judgement

at node j2. Because it is supposed that the result of the judge-
ment is A in this example, st+1 becomes sA

j2
. If QA

j2k2
is the

maximum value among QA
j21

, . . . , QA
j2n, it is used for updat-

ing QB
ij2

. GNP selects the transition to node k2 which has the
maximum Q value as an action at+1 by the probability of 1-ε,
or selects the random transition by the probability of ε. The
update of Q value is implemented according to eq.(3).

QB
ij2 = QB

ij2 + α
[
QA

j2k2
− QB

ij2

]
(3)

When updating Q values of the transitions to the judgement
nodes, the discount rate γ is fixed to 1, that is, the discount
of the rewards is not done. Online learning of GNP aims to
maximize the sum of discounted rewards when actual actions
are implemented.
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III. SIMULATIONS

In this section, GNP is used as a player of “Prisoner’s
dilemma game”. The aim of this simulation is to confirm the
effectiveness of the proposed online learning of GNP.

A. Prisoner’s dilemma game

• story : The police don’t have enough evidence to indict
two suspects for complicity in a crime. The police ap-
proach each suspect separately. “If either of you remains
silent, the sentence for your crime becomes a two-year
prison in spite of the insufficient evidence. If you con-
fess and your pal remains silent, you are released and the
crime of your pal becomes a five-year prison. But, ei-
ther of you confess, your sentence becomes a four-year
prison.”

TABLE. I
Relation between Sentence and Confession/Silence

Suspect1 Suspect2 Sentence for suspect1
Confession Silence released

Silence Silence 2-year prison
Confession Confession 4-year prison

Silence Confession 5-year prison

From TABLE. I, Profits can be 0, -2, -4 and -5, respectively.
In order to make them be positive numbers, 5 is added to each
profit, then the profit matrix shown in Fig.5 is obtained. Si-
lence is called “Cooperate(C)” because it shortens its prison
term. Confession is called “Defect(D)” because it is done in
order for only one suspect to be released. If the profits de-
scribed by the symbols R, S, T and P in the frame follow in-
equality (4), the dilemma arises. This matrix is the famous one
in many research on Prisoner’s dilemma game. Therefore, the
results in this paper are calculated using Fig.5. In this simula-
tion, players repeat selecting Cooperation or Defect.

T > R > P > S

2R > S + T
(4)

suspect2

suspect1

cooperate(C) defect(D)

cooperate(C)

defect(D)

3 0

5 1

R S

T P

Fig.5 profit matrix (profit for suspect1)

If the players have no information about their opponents
and they select the action only once, Defect is to be taken.
In either case where the opponent takes Cooperation or
Defect, Defect gets a higher profit than Cooperation. How-
ever, as the competition is repeated, and the characteristic
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of the opponent comes out, GNP can develop its strategy
considering the strategies of the opponent and itself of the past.

B. GNP for Prisoner’s dilemma game

The player of Prisoner’s dilemma game is regarded as an
agent using GNP. The nodes of GNP are

• Self-judgement node (judge the action taken by itself)

• Opponent-judgement node (judge the action taken by an
opponent)

• Cooperation processing node (C) (take Cooperation)

• Defect processing node (D) (take Defect)

Fig.6 shows an example of GNP structure for Prisoner’s
dilemma game. In this simulation, although each node is con-
nected to all the other nodes, only a few connections are drawn
in order to see them easily in Fig.6. The thick arrows show an
example of node transitions.
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Fig.6 example of GNP structure

Each transition from judgement node has two Q values,
QC and QD. QC is used when the past action of itself or
the opponent is “cooperation” (judgement result C and the
state becomes sC ). QD is used when the past action of them
is “defect” (judgement result D and the state becomes sD).
On the other hand, each transition from the processing node
has one Q value, which differs from a judgement node. After
processing, if the next node is a self-judgement node, GNP
judges the last action of itself, if an opponent-judgement
node, it judges the one of the opponent. If the same kind
of judgement node is executed again, GNP carries out the
judgement of the action taken two steps before. In case
the same kind of judgement nodes are continued to be
selected, GNP judges previous action one after another. After
processing, if the next node is a processing one, an agent com-
petes using the corresponding processing against the opponent.

C. Simulation results

In this simulation, firstly GNP competes against Tit for Tat
and Pavlov strategy that are the fixed strategies because they
are predefined in advance and not changed. The purpose of
these simulations is to show that GNP can learn the charac-
teristics of the opponents and can change its strategies to get
high scores. Next, two GNPs compete against each other. This
situation can be regarded as a game in a dynamic environment
because GNPs can change their strategies each other. There-
fore, GNPs should adapt to the change of the strategies of the
opponents.

GNP competes under the following conditions.

the number of nodes(N ) : 20
Processing nodes

: 5 per each Processing

Judgement nodes

: 5 per each judgement

discount rate(γ) : 0.99
step size parameter(α) : 0.5

ε : 0.05
reward(r) : obtained by Fig.5

Q values : zero in the initial state

The competition is carried out for the predifined iterations
after Q values are initialized (all Q values are zero at first).
This process is called a trial.

1) Competition between GNP and Tit for Tat :

Tit for Tat :

• take Cooperation at the first iteration

• take the last opponent action from the second iteration

This strategy never loses a game by a wide margin and gets
almost the same average scores as the opponent. Therefore,
Tit for Tat is an admitted strong strategy. Even though the
other strategies lose their scores against the opponent, Tit for
Tat ends its competition with the same average as an oppo-
nent. Therefore, Tit for Tat becomes the strongest strategy as
a whole. In this simulation, the competition between GNP and
Tit for Tat is done. The competition is carried out for 20000
iterations and this trial repeated 100 times. In each trial, the
moving averages over 10 iterations are calculated. Fig.7 shows
the averages of these moving averages over 100 trials. Because
Tit for Tat never loses by a wide margin, the average scores of
GNP and Tit for Tat are almost the same and the lines of them
are overlapped. As the competition proceeds, GNP gradually
gets the high scores. If GNP takes Defect, Tit for Tat takes it
in the next step and the score is diminished.

If GNP continues to take cooperation, Tit for Tat also do
it, therefore, we can infer that GNP learned the cooperative
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strategy in order to get high scores. In the simulation, the
more use of Cooperation node than Defect node is confirmed.

2) Competition between GNP and Pavlov strategy : TA-
BLE. II shows Pavlov strategy. Pavlov strategy decides the
next action according to the combination of the last actions of
both strategies.

TABLE. II

Pavlov strategy

Pavlov Opponent Next action of Pavlov
Cooperation Cooperation Cooperation
Cooperation Defect Defect

Defect Cooperation Defect
Defect Defect Cooperation

Fig.8 shows the result which is calculated by the same pro-
cedure as simulation 1. GNP could win by a wide margin.
GNP realized that it could defeat Pavlov strategy by taking
Defect strategy. If both GNP and Pavlov strategy take Defect,
Pavlov strategy takes Cooperation in the next step. Therefore,
GNP learnd that it should take Defect next in order to get 5
point.

3) Competition between GNPs : Two GNPs which have the
same parameters compete with each other in this simulation.
Fig.9 shows a typical trial in order to study the progress of
scores in detail. The average scores mean the moving averages
over 10 iterations. The characteristic of the result is as fol-
lows. while GNP1 increases its scores, GNP2 decreases them
and while GNP1 decreases its scores, GNP2 increases them.
If GNP1 can win for some time by taking Defect more than
Cooperation, GNP2 intends to take Defect. Then, the scores of
GNP1 decrease. Therefore, GNP1 intends to change its strat-
egy from Defect to Cooperation in order to avoid continuing
to take Defect each other. However, GNP2 becomes to win
thanks to the strategy change of GNP1. GNP1 intends to take
Defect in turn and thus GNP2 intends to take Cooperation in
order to avoid taking Defect each other. This process is re-
peated. From the viewpoint of online learning, this result is
natural.

IV. CONCLUSIONS

In this paper, in order to adapt to dynamic environments
quickly, online learning of GNP is proposed and applied to
players for Prisoner’s dilemma game and confirmed its learn-
ing ability. GNP can make its node transition rules according
to Q values learned by Q learning. As the result of the simu-
lations, GNP increased its score when competing against fixed
strategy (Tit for tat and Pavlov strategy). In the competition
between GNPs where strategies are dynamic, both GNPs can
keep up with the changes of their strategies.

Henceforth, we will integrate online learning and offline
learning so that the performance will be improved much more
and GNP can model the learning mechanisms of organisms
more realistically.
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