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Abstract — A novel approach for development of inferential
sensors based on integration of three key computational
intelligence approaches (genetic programming, analytical
neural networks, and support vector machines) is proposed.
The advantages of this type of soft sensors are their good
generalization capabilities, increased robustness, explicit
input/output relationships, self-assessment capabilities, and
low implementation and maintenance cost.

1. INTRODUCTION

Soft (or inferential) sensors assume that there is an
empirical relationship between some easily measured and
continuously available process variables and some critical
parameters related to process quality like molecular
distribution. Due to the nature of empirical models, the
development time and cost of soft sensors is significantly
lower in comparison to fundamental model building or
new hardware design. This is the driving force behind the
growing interest in industry toward inferential sensing.

A first wave of soft sensors based on the “classical” back-
propagation neural network approach is in use in different
areas of manufacturing since the early 1990’s [1]. The
common methodology of building neural net soft sensors
and the practical issues of their implementation have been
discussed in detail [2]. However, along with the benefits
that soft sensors have shown in numerous industrial
applications, several performance and long-term operation
issues have appeared. Most of the problems are related to
some limitations that are typical for soft sensors based on
neural nets. Due to their sometimes ineffective, non-
parsimonious structure and poor generalization capability
outside the range of training data, their performance is
very sensitive to specific process conditions. As a result of
this reduced robustness there is a necessity of frequent re-
training. The final effect of all of these problems is an
increased maintenance cost and gradually decreased
performance and credibility.

Robustness toward process variability, industrial data

quality, and inadequate modeling are key issues for
reliable and mass-scale application of inferential sensors.
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Several machine learning approaches have the potential to
contribute to the solution of this important problem.
Stacked analytical neural networks (internally developed
in The Dow Chemical Company) allow very fast model
development of parsimonious black-box models with
confidence limits. Genetic Programming (GP) can
generate explicit functional solutions that are very
convenient for direct on-line implementation in the
existing process information and control systems [3].
Recently, Support Vector Machines (SVM) give
tremendous opportunities for building empirical models
with very good generalization capability [4]. At the same
time, each approach has its own weaknesses that reduces
the implementation space and makes the task for robust
soft sensor design based on separate computational
intelligence techniques difficult.

An alternative, more integrated approach for soft sensor
development is proposed in this paper. It combines a
nonlinear sensitivity and time-delay analysis based on
Stacked Analytical Neural Nets with outlier detection and
condensed data selection driven by the Support Vector
Machines. The derived soft sensor is generated by GP as
an analytical function. The integrated methodology
amplifies the advantages of the individual techniques,
significantly reduces the development time, and delivers
robust soft sensors with low maintenance cost. The
advantages of the proposed methodology have been
demonstrated in several successful applications in The
Dow Chemical Company.

2. INDUSTRIAL REQUIREMENTS FOR
ROBUST SOFT SENSORS

The value and the large potential of soft sensors in more
effective process monitoring and control are well
understood in industry. Unfortunately, the current state of
the art of soft sensors still requires specialized software
(with the inevitable version upgrades), additional efforts
for on-line model performance assessment, and above all,
highly qualified (Ph.D. level) specialists for development
and maintenance. As a result, very often the real
development time and maintenance cost have significantly



exceeded the initial expectations and led to reduced
credibility. In order to address these issues and to define
the design criteria for soft sensors with increased
robustness, an analysis of industrial requirements and
realistic expectations is needed.

There is a very simple and clear criterion for a mass scale
acceptance of soft sensors in industry — they must have
the same level of reliability, ease of use, and maintenance
efforts as the hardware sensors. This is the natural way to
integrate the new technology within the existing work
processes and support infrastructures in manufacturing.
The defined criterion can be separated into the following
key requirements toward soft sensors:

- Robust, fast, and cost effective development process

The assumption is that soft sensor development has to be
more effective than the alternative approaches (hardware
sensor design or fundamental model building). Of special
importance is the requirement to significantly reduce the
development time while improving the consistency and
performance of delivered empirical models. Another
critical factor is to make the development process user-
friendly with minimal tuning parameters and specialized
knowledge.

- Low sensitivity to process changes

Process changes driven by different operating regimes,
equipment upgrades, or product demand fluctuations are
more of a rule than an exception. It is unrealistic to expect
that all the variety of process conditions will be captured
by the training data and reflected in the developed soft
sensor. The potential solution is in modeling approaches
with better extrapolation capabilities at least 20 % outside
the training range.

- Performance self-assessment capability

Usually soft sensors infer the most critical parameters in
industrial processes and as such require estimates with a
very high level of reliability. It is necessary to include
elements of self-assessment of prediction quality. A
prospective approach is to use combined predictors [5]
and their statistics as a confidence indicator of the soft
sensor’s performance.

- Low cost of ownership and maintenance

The experience from “classical” neural net-based soft
sensors shows that the lion share of maintenance cost is in
frequent-re-training and especially in model re-design.
The expectation is that by using non-black-box models
with increased robustness the need for re-training will be
significantly reduced. Another factor that contributes to
cost of ownership reduction is the ease of on-line
implementation.  Of special interest are the explicit
functional models, generated by GP. They are well
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understood by process engineers, directly applicable in the
control system, and do not require specialized knowledge
for maintenance.

3. SELECTED COMPUTATIONAL
INTELLIGENCE APPROACHES FOR
DEVELOPMENT OF ROBUST SOFT SENSORS

It is very difficult to satisfy the defined requirements for
industrial soft sensors by a specific empirical technique
only. However, several machine learning approaches can
effectively resolve some specific issues and become the
building blocks of an integrated methodology for robust
soft sensor development. Of special interest are the
following three approaches — analytical neural nets,
Support Vector Machines (SVM), and Genetic
Programming (GP).

3.1 Analytical Neural Networks

Analytical neural networks are based on a collection of
individual, feedforward, single layer neural networks
where the weights of the input to hidden layer have been
initialized according to a fixed distribution such that all
hidden nodes are active. The weights of the hidden to
output layer can then be calculated directly using least
squares. Advantages of this method are: it is fast and each
neural network has a well defined, single, global
optimum. Each of these networks have a known Vapnik-
Chernovenkis (VC) dimension, so collections with a given
complexity can be developed and optimum use can be
made of Statistical Learning Theory. Time delays
between inputs are handled through convolution
functions. In addition, the use of a collection of networks
gives more robust models that include confidence limits
based on the standard deviation of stacked neural nets.

Analytical neural networks contribute to the soft sensor
development process by allowing an extensive nonlinear
sensitivity analysis and input feature selection. They
allow for a fast feasibility test of the model development
process and they deliver models that have confidence
limits associated with predicted outputs.

3.2 Support Vector Machines

Support Vector Machines have become an active field of
research in recent years. This type of learning machine
implements the Structural Risk Minimization principle,
which has its foundation in Statistical Learning Theory
and is particularly useful for learning with small sample
sizes[4]. One of the key features is the use of kernel
functions. This enables the method, not only to use non-
linear mappings of the input data, but also overcomes the
curse of dimensionality.  Furthermore, through the



introduction of a special loss function, the e-insensitive
loss, the model is defined in terms of a subset of the
learning data, called the support vectors. Varying the size
of ¢ influences the number of support vectors and
therefore allows direct control over the complexity of the
model.

The SVM method is a very robust method and has a
unique contribution to the soft sensor development by
means of automatic outlier and novelty detection. The fact
that the SVM model is a sparse representation of the
learning data allows the extraction of a condensed data set
based on the support vectors. Finally, by using certain
types of kernels, the extrapolation capabilities of the
model can be increased dramatically, especially by
incorporating prior information [6]. All these features
combined pave the way to the development of robust soft
Sensors.

3.3 Genetic Programming

The third approach of interest to soft sensor development
is GP with its capability for symbolic regression [3]. GP-
generated symbolic regression is a result of simulation of
the natural evolution of numerous potential mathematical
expressions. The final results is a list of “the best and the
brightest” analytical forms according to the selecting
objective function. Of special importance to industry are
the following unique features of GP[7]:

- no a priori modeling assumptions

- derivative-free optimization

- few design parameters

- natural selection of the most important process inputs

- parsimonious analytical functions as a final result.

The last feature has double benefit. On one hand, a simple
soft sensor often has better generalization capability,
increased robustness, and needs less frequent re-training.
On the other hand, process engineers and developers
prefer to use non-black box empirical models and are
much more open to take the risk to implement inferential
sensors based on functional relationships. An additional
advantage is the low implementation cost of such type of
soft sensors. It can be applied directly into the existing
Distributed Control Systems (DCS) avoiding additional
specialized software packages, typical for neural net-
based inferential sensors.

At the same time there are still significant challenges in
implementing industrial soft sensors generated by GP:
function generation with noisy industrial data, dealing
with time delays, sensitivity analysis of large data sets, to
name a few. Of special importance is the main drawback
of GP — the slow speed of model development due to the
inherent high computational requirements of this method.
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For real industrial applications the calculation time is in
order of days, even with the current high-end PCs.

4. INTEGRATED METHODOLOGY FOR ROBUST
SOFT SENSOR DEVELOPMENT

The objectives of the proposed integrated methodology
are to satisfy the defined criteria for successful industrial
soft sensors, i.e., to reduce development time, to deliver a
soft sensor with the best generalization capability, and to
minimize the implementation and maintenance cost. The
main blocks of the methodology and the related process of
data reduction are shown in Figure 1.

The main purpose of the first main block is to reduce the
number of inputs to those with the highest sensitivity
toward the output. Another objective is to test via
simulation the hypothesis whether some form of nonlinear
relationship between the selected inputs and the output
exists. This is a critical point in the whole methodology,
because if a neural net model cannot be built, the soft
sensor development process stops here. The conclusion in
this case could be that if a universal approximator, like a
neural net, cannot capture a nonlinear relationship, there
would be no basis for variable dependence and no need to
look for other methods. The sensitivity analysis is based
on stacked Analytical neural nets. A big advantage of this
type of neural nets is the reduced development time.
Within a couple of hours, the most sensitive inputs are
selected, the performance of the best neural net models is
explored, and the data for the computationally intensive
symbolic regression (GP-function generation) step is
prepared. Typically, thirty stacked neural nets are used to
improve generalization and estimate neural net model
agreement error. This step begins with the most complex
structure of all possible inputs. During the sensitivity
analysis, decreasing the number of inputs, gradually
reduces the initial complex structure. The sensitivity of
each structure is the average of the calculated derivatives
on every one of the stacked neural nets. The procedure
performs automatic elimination of the least significant
inputs and generates a matrix of input sensitivity vs. input
elimination.

Another important task performed by the analytical neural
networks is to deal with time delays. The classical
approach to handle time series by neural nets is to add
additional inputs for the previous time steps [8].
Unfortunately, this technique increases the dimensionality
of the neural net significantly. This increase in the
dimensionality of the input vectors has a large impact on
the number of required data points for proper model
identification. The problem is even bigger in the case of
GP modeling. Therefore, it would be desirable to include



information from previous time-steps without increasing
the dimensionality of the input to the
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Figure 1. Main blocks of an integrated methodology for
robust soft sensor development.

network. This can be achieved by performing a
convolution on the input using an appropriately shaped
function. As a result of the first block of the integrated
methodology, the size of the full data set is reduced to the
number of the most sensitive inputs.

The purpose of the next block, based on SVM, is to
further reduce the size of the data set to only those data
points that represent the substantial information about the
nonlinear model. Outliers’ detection is the first task in this
process. For outlier detection, we make use of the fact
that the data points containing important information are
identified by the SVM method as support vectors. When
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the weight of a data point is non-zero, it is a support
vector. The value of a support vector's weight factor
indicates to what extent the corresponding constraint is
violated. Non-zero weight factors hitting the upper and
lower boundary indicate that their constraints are very
difficult to satisfy at the optimal solution. Such data points
are often so unusual with respect to the rest of the
samples, that they might be considered as outliers. An
outlier detection tool, using the SVM method, typically
constructs several models of varying complexity. Data
points with a high frequency of weight values on the
boundaries are assumed to be outliers.

One of the main advantages of using SVM as a modeling
method is that the user has direct control over the
complexity of the model (i.e., the number of support
vectors). The complexity can be controlled implicitly or
explicitly. The implicit method controls the number of
support vectors by controlling the acceptable noise level.
To explicitly control the number of support vectors, one
can either control the ratio of support vectors or the
percentage of non-support vectors. In both cases, a
condensed data set that reflects the appropriate level of
complexity is extracted for effective symbolic regression.

An additional option in this main block is to deliver a soft
sensor based on SVM. Some recent results show [6], that
SVM models based on mixed global and local kernels
have very good extrapolation features. If a soft sensor,
generated by GP does not have acceptable performance
outside the range of training data, the SVM-based
inferential model is a viable on-line solution.

The final block of the integrated methodology for soft
sensor development uses the GP approach to search for
potential analytical relationships in a condensed data set
of the most sensitive inputs. The search space is
significantly reduced by the previous steps and the
effectiveness of GP is considerably improved. The set of
possible functions that can be generated in GP is the set of
all possible functions that can be composed from the list
of available terminals T = {X; , X, , ... X, } and the set of
available functions F = {F, , F,, ...Fy, }.

Various parameter settings control the type and
complexity of equations that are generated. The most
important parameters are the list of available functions as
well as the list of available inputs. Another parameter that
is quite important in controlling the average complexity of
the equations being generated is the probability for
function selection (default value equals 0.6). This
parameter controls what the probability is to grow a
specific branch of a tree by selecting a function or
terminating the branch by selecting a terminal (a number
or a variable) as the next node. The larger this probability



value is, the higher the complexity of the functions being
generated.

The final result of symbolic regression is a list of several
analytical functions and subequations that satisfy the best
solution according to a defined objective function. The
analytical function selection for the final soft sensor on-
line model is still more of an art than a well-defined
procedure. Very often the most parsimonious solution is
not acceptable due to specific manufacturing
requirements. It is preferable to deliver several potential
functions with different levels of complexity and let the
final user make the decision. The generalization
capabilities of each soft sensor are verified for all possible
data sets. Of special importance is the performance
outside the training range. It is also possible to design a
model agreement-type confidence indicator based on
stacked symbolic predictors.

Some of the advantages of the proposed methodology will
be illustrated with an industrial application for an
emission estimation soft sensor.

5. INDUSTRIAL APPLICATION

Soft sensors for emission estimation are one of the most
popular application arecas and a viable alternative to
hardware analyzers. Usually an intensive data collection
campaign is required for empirical model development.
However, during on-line operation the output
measurement is not available and some form of soft
sensor performance self-assessment is highly desirable.
Since it is unrealistic to expect that all possible process
variations will be captured during the data collection
campaign, a soft sensor with increased robustness is
required.

Such type of soft sensors, based on the proposed
integrated methodology, was developed and implemented
in one of The Dow Chemical Company plants in Freeport,
TX. The key results from implementation of the main
blocks are as follows:

A representative data set from eight potential process
input variables and the measured emission as output
included 251 data points for training and 115 data points
for testing. The test data is 140% outside the range of the
training data which by itself is a severe challenge for the
extrapolation capability of the model. As a result of the
nonlinear sensitivity analysis based on the Analytical
Neural Networks, the data set was reduced to five relevant
inputs. The performance of such type of potential model
with five inputs, 10 neurons in the hidden layer, and a
model disagreement indicator based on the standard
deviation of 30 stacked predictors is shown in Figure 2.
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The possibility for nonlinear model building and the
potential of the model agreement indicator for
performance self-assessment are clearly demonstrated.
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Figure 2. Performance of a Stacked Analytical Neural
Net model with model agreement indicator.

The extraordinary extrapolation capability of a potential
empirical model based on SVMs is shown in Figure 3.
The model is based on a mixture of a second order
polynomial global kernel and an RBF local kernel with
width of 0.5 in a ratio of 0.95. An additional benefit from
this phase of the integrated methodology is that the model
is based on 34 support vectors only.

As a result, the representative data set for deriving the
final symbolic regression model is drastically reduced to
only 8.44% of the original training data set. As it is
shown in Figure 4, the performance of the GP-generated
model, based on the condensed data set, is comparable
with the other two approaches.

The initial functional set for the GP includes: {addition,
subtraction, multiplication, division, square, change sign,
square root, natural logarithm, exponential, and power}.
Function generation takes 20 runs with population size of
500, number of generations of 100, number of
reproductions per generation of 4, probability for function
as next node of 0.6, parsimony pressure of 0.05 and
correlation coefficient as optimization criterion. Eight
symbolic predictors with different number of inputs and
nonlinear functions were selected in a stacked model. The
average value is used as the soft sensor prediction and the
standard deviation is used as a model disagreement
indicator. The soft sensor for emission estimation is in
operation in Freeport, TX since August 2001.
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Figure 3. Performance of an SVM model using a mixture
of polynomial and RBF kernels.
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Figure 4. Performance of a Stacked Symbolic Regression
model with model agreement indicator.

6. CONCLUSIONS

A novel integrated methodology for robust inferential
sensing has been defined and successfully applied for fast
and effective development of a soft sensor for emission
estimation in The Dow Chemical Company. The proposed
methodology is based on using different computational
intelligence components (stacked analytical neural nets,
genetic programming, and support vector machines). The
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driving force behind the need of integration is the
requirement of industry for soft sensors with increased
robustness. The illustrated application shows the main
advantage of the proposed methodology — significant
reduction of the training data set by nonlinear sensitivity
analysis and Support Vector Machines. The final on-line
solution, generated by GP, is based on a very compact and
robust stacked empirical model with self-assessment
capability that requires minimal re-training and
maintenance cost. The success of this application in a
complex industrial application demonstrates the great
potential of the integrated approach as a very effective
complement to neural net-based soft sensors.
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