GPSQL Miner: SQL-Grammar Genetic Programming in Data Mining

Celso Y. Ishida, AuroraT. R. Pozo

Computer Science Department - Federal University of Parana
PO Box: 19081, Centro Politémico - Jardim das Américas
81531990 Curitiba, Parana, Braal

ci shi da@ nf . uf pr. br,

aur ora@ nf . uf pr. br

FONE: +55 (41)-267-5244 FAX: +55(41)-361-3205

Abstract - The present work describes GPSQL Miner, a
Genetic Programming system for mining relational
databases. This gstem uses Grammar Genetic
Programming for classfication’s task and one of its main
featuresisthe representation of the dasdfiers. The system
uses SQL grammar, which facilitates the evaluation
process once the data are in relational databases. The
tod was tested with some databases and the results were
compared with other algorithms. These first experiments
had shown promising resultsfor the dassification task.

. INTRODUCTION

The arrent information age is charaderized by an
extraordinary expansion of data that is being generated and
stored about al kinds of human endeavors. An increasing
propation of this data is recorded in the form of computer
database. The avail ability of very large volumes of such data
has creaed a problem of how to extrad from them useful,
task-oriented knowledge [1].

Reseaches from different aress reaognize that a new
generation of intelligent tools for automated data mining is
needed to ded with large databases [2]. This work presents
GPSQL Miner, a system that alows mining relational
databases using a Genetic Programming (GP) approach and
SQL fedures. A Database Management System (DBMS)
does al memory and data managements.

This work deds with the dasdficaion task performed in
Data Mining. Given a set of clasdfied examples, the goa of
the dasdfication task is to find a logicd description that
corredly clasdfies new cases. In that sense, this logicd
description found can be mnsidered a dassfier. For a better
visualization of the dassfication task, Table | and (1) show
an example of the input receved by a dassficaion system
and the group of rules generated by it [3].

In this paper, we explore the Grammar Oriented GP for
the induction of clasdfiers. GP represents a dasdfier as an
individual and its goal isto find the best clasdfier throughthe
evolution process Some alvantages of GP favor the mining
of large databases, since GP looks for the most promising
solutions by doing a better scanning of the fetching space[4].

0-7803-7282-4/02/$10.00 ©2002 |EEE

TABLE |
INPUT RECEIVED BY A CLASSFICATION SYSTEM

Sex Country Age Buy
(Goal)
M France 25 Yes
M England 21 Yes
F France 23 Yes
F England 34 Yes
F France 30 No
M Germany 21 No
M Germany 20 No
F Germany 18 No
F France 34 No
M France 55 No

IF (Courtry = “Germany”) THEN (Buy = “no”)

IF (Courtry = “England’) THEN (Buy = “yes’)

IF (Courtry = “France” and Age < 25) THEN (Buy = “yes’)

IF (Country = “France” and Age > 25) THEN (Buy = “nad”) (1)

Other interesting feaures of GP are: the posshility of the
system to work with invalid or inexad data, commonly found
in the red world; it is easy to customize it for different
applicaions by modifying operators, creding rew operators
or simply by changing the parameters.

However, Traditional Genetic Programming can generate
invalid solutions and, the seach for the best clasdfier is
prevented or delayed. With the use of a Grammar, GP is able
to generate only valid classfiers through the definition of the
seach space

GPSQL Miner constructs classfiers using the GP
approach and the SQL grammar. The GP technique was
integrated with DBMS to make possble the manipulation of
large volumes of data. This brings innovations with resped to
previous works in the aeg such as LOGENPRO [4] that uses
Grammar GP to mine flat files.

The paper is organized as follows: in Sedion Il we present
related works on this area Sedion Il1 explains the Grammar
Genetic Programming approach. Sedion 1V shows the main
feaures of GPSQL Miner. Sedion V ill ustrates the structure
of the dasdfiers induced. Sedion VI describes the
experiments and the results analysis. Finaly, Sedion VII
concludes the paper.

[I. RELATED WORK

Data mining and Grammar GP approaches are new
reseach areas. Only a few works were developed integrating
both. One of them is LOGENPRO (The LOgic to grammar
based GENetic PROgramming system) [4]

LOGENPRO is a system for data mining developed to
match the power of implicit paralel seach of GP and the
power of first order logic. The main feaures relating to the
leaning of rules are:

1) The system used an adjusted grammar to spedfy the
structure of the rule. Each rule is an individua represented by
its derivation tree ad it has the following form: if
antecedents then consequent. In general, the antecedent is a
set of attributes descriptors and the consequent is the goal
attribute.

2) The dropping condition is a tailor-made genetic
operator creaed espedally for the task of leaning rules. This
operator automaticdly seleds one descriptor attribute and
changesit to any. For example, therule:

If sepal_length=0.5 and sepal_width between (1, 1.50) and
petal_length = 50 then class= Iris-setosa

After to suffer the adion from the operator can be
modified to:

If sepal_length=0.5 and sepal_width between (1, 1.50) and
any then class= Iris-setosa.

3) Credion of a spedfic fitnessfunction to evaluate eab
rule. The fitness function of LOGENPRO is based on the
suppart-confidence framework [5]. The function considers
suppat (measures the coverage of rule) and confidence factor
(is the confidence of the mnsequent will be true under the
antecalents).

Our proposal is quite different from LOGENPRO [4]. We
do not use mnfidence and suppat measures. GPSQL Miner's
language is not based on rule schemata. Instead, the user
determines the tables and attributes that must be used. Next,
we summarize the main differences between the two
approaches:

1) LOGENPRO represents an individua as a rule, while
GPSQL Miner represents an individual as afull classfier (set
of rules) for al the dasss.

2) The grammar of LOGENPRO produces rules with fixed
number of attributes. GPSQL Miner produces a grammar for
the generation of classfiers formed by rules of any number of
attributes.

3) In GPSQL Miner, the grammar is automaticdly creaed
from the user spedfication; however, the user can modify it.
In order to asdst the grammar modification, an analysisfileis
generated automaticdly, which fadlit ates the construction of
an adequate grammar for ead problem.

Next sedion discusses the grammar genetic programming

approach.

0-7803-7282-4/02/$10.00 ©2002 | EEE

[1l. GRAMMAR GENETIC PROGRAMMING

Darwin's Natural Seledion Theory shows that, in neture,
the individuals that better adapt to the environment that
surrounds them have agreaer chance of survival [8]. They
pass their genetic charaderistics to their descendents and
after several generations, only the best individuals survive.

GP is the gplicaion of these mncepts in computers, to
automaticdly induce programs. It was introduced by John
Koza[9], based on the ideaof Genetic Algorithms presented
by JohnHolland [10].

Instead of a population of beings, in GP we have a
population of computer programs. And the goal of the GP
algorithm is to generate better solutions through raetural
seledion. In order to do that, we start with a random
population and, generation after generation, apply the so-
cdled genetic operators to simulate the evolution process A
spedal heuristic function cdled fitnessis used to guide the
algorithm in the processof seledingindividuals.

GP can also be seen as a seach technique, applied on a
universe of all posshle computer programs that can be
generated in a cetain language. The outcome of this fachis
the program that better solves a given problem.

The purpose of this ®dion is to present basic concepts of
grammar-oriented GP. It starts with an overview of the GP
Algorithm [9].

A. GP Algorithm Overview

First, an initia population of computer programs is
randomly generated (generation 0). After that, the dgorithm
enters aloopthat is exeauted. It consists of two magjor tasks:

- Evaluate eab program, by the use of a fitness function,
that is defined acaordingy to the problem.

- Creae anew population by the seledion of individuals
based on their fitness values and applying genetic operators,
such as: reproduction, crosover and mutation.

At the end of ead cycle, a new generation of computer
programs is generated which substitutes the previous one.
This processis repeaed until a solution is found or urtil the
maximum number of generationsis readed.

B. Derivation tree

An abstrad syntax tree is the most commonly used
structure for representing programs in GP [9]. Other possble
structures include graphs [11], linea genomes [12] and
grammar-based derivation trees [4] [13].

Derivation trees offer two important advantages over
other structures. Firgt, it allows the dgorithm to be context-
freg in the sense that it represents an abstradion from the
programming language and the program’s format. Second, it
restricts the destructive dfed of genetic operators over
programs, not allowing the aedion of syntadicdly incorred
code.

In this approach, the derivation trees are constructed based
on a @ntext-free grammar that is written in BNF (Badkus-
Naur form), as siown in (2).

<code> = <exp>

<exp> = <exp> <op> <exp>
<exp> = <var>

<op> =] <)

<var> =X @

Eadh node of the derivation tree ca either be atermina,
such as the variable “x”, or a non-termina “<exp>" (2).
Unlike terminals, which have an independent value, a non-
terminal depends on the evaluation of its components.

To generate a valid computer program from a given
grammar, non-terminals have to be randomly chosen and
substituted for their values until a point where dl | ed-nodes
on the derivation tree ae terminals. These operations are
cdled productions. Figure (3) shows an example of a
derivation tree ceaed with the grammar in (2).

<code>

<e|x>
/ p\

<exp> <op> <Rp

j AN
var> <eXp> <Op> <9(p>
)|(+ <V|ar>

‘Vfr >
X
(©)

C. Applying the Genetic Operators

Through the evolution process genetic operators
recombine programs by making modificaions diredly on
their derivation trees.

In reproduction no change is made: the individua is
simply replicated to the next generation. It is equivalent to the
asexual reproduction of beings.

Mutation is the aldition of a new segment of code (a new
tre@ to a randomly seleded pdnt of the program. This
operation helps to maintain diversity in the population, which
seams to be important to avoid ealy convergence of the
algorithm to a singe solution. However, there ae studies
showing that mutation can be ignored [9].

0-7803-7282-4/02/$10.00 ©2002 |EEE

Crosover operation takes two parents to generate two
offspring. A random point of crossover is €leded on eadh
parent and the sub-trees below these points are exchanged. It
is equivalent to the sexual reproduction of beings. When
grammars are used, the aossover operator is restricted and
only allows the exchange of tree branches that have been
generated using the same production rule.

Other operators can be defined, such as inversion
(permutation), editing and encgpsulation [9]. The next sedion
discusses how these aspeds were used in GPSQL Miner.

IV. GPSQL MINER

The name GPSQL Miner is a cnsequence of its main
fedures. GP indicaes the use of the Grammar Genetic
Programming paradigm; SQL point out that the system use
SQL Commands to represent the dassfier. Miner recdls the
central application of the system: data mining.

L Paramet L-BNF BNF
= ANEES ’ = » File
4— | onade [4¢— Config
Evauate GP File
4

The @am of GPSQL Miner is the mining of databases by
exploiting GP techniques, leaving DBMS responsible for data
manipulation, seaching performance axd computer main
memory management.

To acaomplish the goals mentioned above, SQL-Miner has
three catra modules. SQL-BNF, Genetic Programming and
Orade-Evauate, their functions and relationship are
explained below (4).

* SQL-BNF: The tod initially reads two configuration

files: config.gpm and SQL Parameters (*.par). The first
file sets the main parameters in the Genetic
Programming module.
The SQL Parameter is esential becaise it defines the
objedive of the dasdficdion task and the input
knowledge. This input language dlows users dedare
what tables and attributes will be used in the seaching,
as well as, the root, non-terminals and terminals for
constructing the rules. Using the SQL Parameter file, the
system reads information of ead column in the database
and creaes a BNF file.

« The GP module will use the BNF file to creae the
individuals and to apply the genetic operators. Firgt, the
GP module aedes the initial population with N
individuals (N is defined in Config.gpm file). For this
first generation. After that, the module seleds the

individuals with best fitness If the best individual is the
solution, the system displays it. If it is not, it makes a
new population urtil the solution is found o the
maximum number of generationsis readed.

» Orade-Evauate: This module is responsible for fitness
evaluation. The fitnessis based on acaragy, that is, the
percentage of the test set corredly clasdfied, and it is
computed by accessng the DBMS. The fitness
evaluation is a simpler process once the individual is
based on SQL commands.

V. CLASSFIER

One of the most important innovations introduced on this
work is the evolution of SQL commands, as $own in the
clasgfier (5). The charader Sis an abbreviation of SELECT
and the W is an abbreviation of WHERE.

S Iris-viginica
W |.sepal-length < 6.20
AND |.sepal-width between 1.65and 3.10
S Iris-versicolor
W |.sepal-length < 6.95
S Irisviginica ®)

In (5) we have 3 rules. After the S it has only the goal
value (i.e. Iris-viginica and Iris-versicolor) and it is edfied
before the anteceadent part (i.e. I.sepal-length < 6.20...).

The example uses two columns as part of the antecalent
condition: |.sepal-length and |.sepal-width. It isimportant to
note that the dias of the table’s column is pedfied together
with the @lumn in the SQL parameters. Therefore, it is not
necesssry to have the FROM part of the command in the
clasgfier. Thisaso alowsthe aedion of a smaller individual
and fadl ates the evaluation process(fitnesscomputation).

VI. EXPERIMENTSAND RESULTS

Experiments were anducted to verify how GPSQL Miner
compares to aher well-known systems that induce rules
(concepts), including LOGENPRO. The result of other
algorithms was found in [4] and in order to allow
comparisons, we used the same methodd ogy.

We employed three databases sts. Iris, Monkl, Monk3,
extraded from the UCI Machine Leaning Repository [6],
that show considerable diversity of size, number of classes,
and number and type of attributes. These data sets are in
prepositional format and were imported for orad e databases.

The system was exeauted 25 times for al databases. To
eath run, the parameters were kept constant. All the
parameters used to ead database can be found in the

appendix.

0-7803-7282-4/02/$10.00 ©2002 |EEE

A. IrisPlant Database.

The Iris Plant Database has 3 classes: Iris-setosa, Iris-
versicolor and Iris-viginica axd 150 registers. In ead run,
67% or 100 registers are randomly chosen to compose the
training base and 50 dhers form the test base.

Results from this experiment are showed in Table II, there
we can verify the mean acaracy of some dgorithms. If we
compared the GPSQL Miner with the similar system,
LOGENPRO, our system is alittl e more predse (4%).

TABLE Il
THE CLASSIFICATION ACCURACY OF DIFFERENT
APPROACHESON THE IRISPLANTSDATABASE

Approach Accuracy
LOGENPRO 91.04%
C4.5 938 %
ID3 94.2 %
GPSQL Miner 95.04 %
Nearest Neighbor 96.0 %
Neural Net 96.7 %

B. Monk' sProblem

Others experiments were performed on the Monk database
[7]. The MONK’s problems are a olledion of three binary
classficaion problems over a six-attribute discrete domain.
There ae threedata sets for this problem [4]: Monk1, Monk2
and Monk3.

The monk1 data set is compaosed by [4]:

e Traning set: 124 with 62 paitive examples and
62 negative examples.

e The testing set contains 216 pgaitive and 216
negative examples.

e There ae no misclasdficaions.

The Table Ill, second column, shows the results of the
algorithms. The GPSQL-Miner has 100% of acarracy for the
training base, and 9961% for the test set, a littl e lower than
LOGENPRO.

The monk2 data set is compaosed by [4]:

e Traning set: 169 with 105 paitive examples and
64 negative examples.

e The testing set contains 190 paitive and 142
negative examples.

e There ae no misclasgficaions.

The third column of Table Ill shows the results of the
algorithms. The system has 71.62% acaracy for the test set,
against 60% for it is smilar LOGENPRO.

The monk3 data set has [4]:

e Traning set: 122 examples with 62 paitive and
60 negative examples.

e The testing set contains 204 paitive axd 228
negative examples.

* There ae 5% misclassficaions.

Table Ill, fourth column, shows the results of the
algorithms. This time, again, GPSQL Miner is little better
than LOGENPRO.

We can see that, in general, GPSQL Miner has better
results than LOGENPRO. However, there ae some
approaches with even better behavior, such as neural nets. In
spite of this, the results are very encouraging and show that
GPSQL Miner has a goodinduction behavior.

TABLE I
THE CLASSIFICATION ACCURACY OF DIFFERENT
APPROACHESON THE MONK DATABASE

Approach Monk1 Monk?2 Monk3
AQ15GA 100% 86.8 % 100%
AQL17-DCI 100% 100% 94.2%
AQR 95.9 % 79.7 % 87%

Asdstant Profesgonal 100% 813% 100%
Badkpropagation 100% 100% 93.1%
CN2 100% 69.0 % 89.1%
GPSQL Miner 99.61 % 71.62 % 96.5 %
ID3 98.6 % 67.9% 94.4%
LOGENPRO 100 % 60 % 95.4 %

VIlI. CONCLUSIONS

In this work, we present GPSQL Miner, a system that uses
the Grammar Genetic Programming paradigm for the
classfication task. We have pointed out some strong points of
the todl: the representation of the dassfiersin format of SQL
commands; the exploitation of DBMS fadiliti es and safety in
handling data; and the use of GP to look for the most
promising solutions and scanning of the fetching space

We notice that the grammar GP approach was very
important to make the implementation of GPSQL Miner
possble. A database environment can have alot of tables and
seaching for concepts without a guideline is very difficult.
As the user must spedfy the relationship among the tables,
GPSQL Miner is flexible becaise we can use other attributes
to make relations between tables, besides the foreign and
primary keys. We have observed that a grammar must be
spedfic for ead problem in order to get better results.
Creding the BNF file based on the database itself helps to
congtrain the grammar acrdingly.

Even though the system has not been tested with many
databases, the experiment results sows that the tod has a
very good kehavior as an inductive system and that it is
adequate for data mining and KDD tasks. Future works
include (@) the goplication of the system in a larger number of
domains, (b) exploration of the system parameters such as the
crosover and mutation and (¢) improvements in the BNF
file

0-7803-7282-4/02/$10.00 ©2002 |EEE

(1
(2]

(3]
(4]
(5]

(6]

(8]

(9
(10
(1Y

(12

(13

REFERENCES

Michaski, R.S.; Kaufman, K.A. Data Mining and Knowledge
Discovery: A Review of Isaies and a Multistrategy Approach. 1997.
Mannila, H. Methods and Problems in Data Mining. Proceadings of
International. Conference on Database Theory (ICDT'97), Delphi,
Greece, January 1997, F. Afrati and P. Kolaitis (ed.), p. 41-55.

Freitas, A; Lavington, S. H. Mining very large databases with parallel
processng. Boston: Kluwer Academic, 1998 208p

Wong, M. L.; Leung, K. S. Data Mining using Grammar based Genetic
Programming and applications. Boston: Kluwer Academic, 200Q
Agrawal, R; Imielinski, T.; Swami, A. Mining Assciation Rules
Between Sets of Items in Large Databases. In Proceedings of the 199:
International Conference on Management of Data (SIGMOD 93), pp.
207-216.

Blake, C. L.; Merz, C.J. UCI Repository of Madhine Learning Data
Bases. Available in
<http://www.ics.uci.edw/~mlearn/MLRepository.html> Irvine, CA:
University of California, Departament of Information and Computer
Science, 1998

Thrun, S. B.; et a. The Monk’s Problems: A Performance Comparison
of Different Learning Algoritmos. Technicd Report CMU-CS-91-197,
Carnegie Mellon University.

Darwin, C. On the Origin of Species by Means of Natural Selection or
the Preservation of Favored Races in the Strugge for Life. Murray,
London, UK, 1859

Koza, J. R. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press 1992

Holland, J. H. Adaptation in Natural and Artificial Systems. University
of Michigan Press Second Edition: MIT Press 1992

Teller, A. & Veoso, M. Program Evolution for Data Mining. The
International Journal of Expert Systems, 8(3):216-236, 1995

Banzhaf, W., Nordin, P. et al Genetic Programming ~ An Introduction:
On the Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann Publishers, 1998

Whigham, P. A. Grammaticd Bias for Evolutionary Learning. PhD
thesis. Schod of Computer Science, University of New South Wales,
Australian Defense Force Academy, 1996

APPENDIX - PARAMETERS FOR DATABASES

IRISDatabase
Number of runs 25
Number of generations 50
Generations equal 20
Population size 300
Tournament size 13
Initi alization method 2
Minimum treeheight 3
Maximum treeheight 30
Maximum crosover height 60
Crosver rate 50
Mutation rate 40
Eliti st strategy Yes
Training Set. 67%
Separate Train class N
BNFfile gpsql.bnf
SQL Parameter file iris.par
Precision 0.01
B. Monk Problem
1) Monk1 data set
Number of runs 25
Number of generations 50
Generations equal 20
Population size 300
Tournament size 3
Initi alization method 2
Minimum treeheight 3
Maximum treeheight 30
Maximum crossover height 60
Crosver rate 50
Mutation rate 40
Eliti st strategy Yes
Training Set.
Separate Train class
BNFfile monk1.bnf
SQL Parameter file monk1.par
Precision 0.001
2) Monk?2 data set
Number of runs 25
Number of generations 50
Generations equal 10
Population size 300
Tournament size 3
Initi alization method 2
Minimum treeheight 3
Maximum treeheight 30
Maximum crossover height 60
Crosver rate 50
Mutation rate 40
Eliti st strategy Yes
Training Set.
Separate Train class
BNFfile monk2.bnf
SQL Parameter file monk?2.par
Precision 0.001

0-7803-7282-4/02/$10.00 ©2002 |EEE

3) Monk3 data set

Number of runs 25
Number of generations 50
Generations equal 10
Population size 500
Tournament size 13

Initi alization method 2
Minimum treeheight 3
Maximum treeheight 30
Maximum crosover height 60
Crosver rate 40
Mutation rate 50

Eliti st strategy Yes
Training Set.
Separate Train class
BNFfile monk3.bnf
SQL Parameter file monk3.par
Precision 0.01

APPENDIX —BNF FILE

A. |RISDatabase

#productions

S -> <classfier>

<clasdfier> -> <r> <r> <r> <r> <r> <r> <r> S <hypotesis>

<r> ->S<hypotesis> W <cond>

<cond> -> <cond> AND <cond>

<hypotesis> ->'lris-setosa | 'Iris-versicolor' | 'lris-viginica

<cond> -> |.SEPAL_LENGTH <rel_I.SEPAL_LENGTH>
<rel_|.SEPAL_LENGTH> -> <Noperator> <value |.SEPAL_LENGTH>
<rel_|.SEPAL_LENGTH> -> between <value_|.SEPAL_LENGTH> and
<value_|.SEPAL_LENGTH>

<value |.SEPAL_LENGTH>->5|5.1|6.3|5.7|6.7|55|5.8|6.4|4.9|
56|6|6.1154]|4.8|65|4.6|/52|6.9|7.7|6.2|44|59|6.8|7.2|4.7|
6.6|43]7.3|76|79|7.4|7.1|7|53]45

<cond> -> |.PETAL_WIDTH <rel_|.PETAL_WIDTH>
<rel_|.PETAL_WIDTH> -> <Noperator> <value_|.PETAL_WIDTH>
<rel_|.PETAL_WIDTH> -> between <value |.PETAL_WIDTH> and
<value |.PETAL_WIDTH>

<value |.PETAL_WIDTH>->3]2.8|3.2|3.1|3.4|29|2.7]25|3.3|3.8
|35]26]23|22|3.7|24|3.6|39|2|4|41|42|44

<cond> -> |.PETAL_LENGTH <rel_|.PETAL_LENGTH>
<rel_|.PETAL_LENGTH> -> <Noperator> <value_|.PETAL_LENGTH>
<rel_|.PETAL_LENGTH> -> between <value |.PETAL_LENGTH> and
<value |.PETAL_LENGTH>

<value |.PETAL_LENGTH>->15|1.4|45|5.1|1.3|1.6|5.6|4|4.7 |
49|1.7|48|44|5|42|39]|4.1|5.7|6.1158|55]|4.6]11.2|3.5]|3.3]
6.7|6|59]54]53|52]|43]19|1|69]6.6|3.6(|3.7|3.8|6.4|6.3|3]|
11

<cond> -> |.PETAL_WIDTH <rel_I|.PETAL_WIDTH>
<rel_|.PETAL_WIDTH> -> <Noperator> <value_|.PETAL_WIDTH>
<rel_|.PETAL_WIDTH> -> between <value_|.PETAL_WIDTH> and
<value |.PETAL_WIDTH>

<value |.PETAL_WIDTH>->0.2|1.3|15|1.8|1.4]|23]0.3|1|04]0.1
|21]12]1.2]19]1.6|1.1|25|2.2]|2.4]|1.7]05]|0.6

<Noperator> ->=|I=| >|<|>=|<=

	CEC Main Menu
	CEC Table of Contents
	CEC Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
