

GPSQL Miner: SQL-Grammar Genetic Programming in Data Mining

Celso Y. Ishida, Aurora T. R. Pozo

Computer Science Department - Federal University of Paraná
PO Box: 19081, Centro Politécnico - Jardim das Américas

81531-990 Curitiba, Parana, Brazil
cishida@inf.ufpr.br, aurora@inf.ufpr.br

FONE: +55 (41)-267-5244 FAX: +55 (41)-361-3205

Abstract - The present work describes GPSQL M iner, a
Genetic Programming system for mining relational
databases. This system uses Grammar Genetic
Programming for classification’s task and one of its main
features is the representation of the classifiers. The system
uses SQL grammar, which facili tates the evaluation
process, once the data are in relational databases. The
tool was tested with some databases and the results were
compared with other algor ithms. These first experiments
had shown promising results for the classification task.

I . INTRODUCTION

The current information age is characterized by an

extraordinary expansion of data that is being generated and
stored about all kinds of human endeavors. An increasing
proportion of this data is recorded in the form of computer
database. The availabilit y of very large volumes of such data
has created a problem of how to extract from them useful,
task-oriented knowledge [1].

Researches from different areas recognize that a new
generation of intelli gent tools for automated data mining is
needed to deal with large databases [2]. This work presents
GPSQL Miner, a system that allows mining relational
databases using a Genetic Programming (GP) approach and
SQL features. A Database Management System (DBMS)
does all memory and data managements.

This work deals with the classification task performed in
Data Mining. Given a set of classified examples, the goal of
the classification task is to find a logical description that
correctly classifies new cases. In that sense, this logical
description found can be considered a classifier. For a better
visualization of the classification task, Table I and (1) show
an example of the input received by a classification system
and the group of rules generated by it [3].

In this paper, we explore the Grammar Oriented GP for
the induction of classifiers. GP represents a classifier as an
individual and its goal is to find the best classifier through the
evolution process. Some advantages of GP favor the mining
of large databases, since GP looks for the most promising
solutions by doing a better scanning of the fetching space [4].

TABLE I

INPUT RECEIVED BY A CLASSIFICATION SYSTEM

Sex Country Age Buy
(Goal)

M France 25 Yes
M England 21 Yes
F France 23 Yes
F England 34 Yes
F France 30 No
M Germany 21 No
M Germany 20 No
F Germany 18 No
F France 34 No
M France 55 No

Other interesting features of GP are: the possibilit y of the
system to work with invalid or inexact data, commonly found
in the real world; it is easy to customize it for different
applications by modifying operators, creating new operators
or simply by changing the parameters.

However, Traditional Genetic Programming can generate
invalid solutions and, the search for the best classifier is
prevented or delayed. With the use of a Grammar, GP is able
to generate only valid classifiers through the definition of the
search space.

 GPSQL Miner constructs classifiers using the GP
approach and the SQL grammar. The GP technique was
integrated with DBMS to make possible the manipulation of
large volumes of data. This brings innovations with respect to
previous works in the area, such as LOGENPRO [4] that uses
Grammar GP to mine flat files.

The paper is organized as follows: in Section II we present
related works on this area. Section II I explains the Grammar
Genetic Programming approach. Section IV shows the main
features of GPSQL Miner. Section V ill ustrates the structure
of the classifiers induced. Section VI describes the
experiments and the results analysis. Finally, Section VII
concludes the paper.

 IF (Country = “Germany”) THEN (Buy = “no”)
 IF (Country = “England”) THEN (Buy = “yes”)
 IF (Country = “France” and Age ≤ 25) THEN (Buy = “yes”)
 IF (Country = “France” and Age > 25) THEN (Buy = “no”) (1)

0-7803-7282-4/02/$10.00 ©2002 IEEE

II. RELATED WORK

Data mining and Grammar GP approaches are new

research areas. Only a few works were developed integrating
both. One of them is LOGENPRO (The LOgic to grammar
based GENetic PROgramming system) [4]

LOGENPRO is a system for data mining developed to
match the power of implicit parallel search of GP and the
power of first order logic. The main features relating to the
learning of rules are:

1) The system used an adjusted grammar to specify the
structure of the rule. Each rule is an individual represented by
its derivation tree and it has the following form: if
antecedents then consequent. In general, the antecedent is a
set of attributes descriptors and the consequent is the goal
attribute.

2) The dropping condition is a tailor-made genetic
operator created especially for the task of learning rules. This
operator automatically selects one descriptor attribute and
changes it to any. For example, the rule:

If sepal_length=0.5 and sepal_width between (1, 1.50) and
petal_length = 50 then class = Iris-setosa

After to suffer the action from the operator can be
modified to:

If sepal_length=0.5 and sepal_width between (1, 1.50) and
any then class = Iris-setosa.

3) Creation of a specific fitness function to evaluate each
rule. The fitness function of LOGENPRO is based on the
support-confidence framework [5]. The function considers
support (measures the coverage of rule) and confidence factor
(is the confidence of the consequent will be true under the
antecedents).

Our proposal is quite different from LOGENPRO [4]. We

do not use confidence and support measures. GPSQL Miner’s
language is not based on rule schemata. Instead, the user
determines the tables and attributes that must be used. Next,
we summarize the main differences between the two
approaches:

1) LOGENPRO represents an individual as a rule, while
GPSQL Miner represents an individual as a full classifier (set
of rules) for all the classes.

2) The grammar of LOGENPRO produces rules with fixed
number of attributes. GPSQL Miner produces a grammar for
the generation of classifiers formed by rules of any number of
attributes.

3) In GPSQL Miner, the grammar is automatically created
from the user specification; however, the user can modify it.
In order to assist the grammar modification, an analysis file is
generated automatically, which facilit ates the construction of
an adequate grammar for each problem.

Next section discusses the grammar genetic programming
approach.

III. GRAMMAR GENETIC PROGRAMMING

Darwin’s Natural Selection Theory shows that, in nature,

the individuals that better adapt to the environment that
surrounds them have a greater chance of survival [8]. They
pass their genetic characteristics to their descendents and
after several generations, only the best individuals survive.

GP is the application of these concepts in computers, to
automatically induce programs. It was introduced by John
Koza [9], based on the idea of Genetic Algorithms presented
by John Holland [10].

Instead of a population of beings, in GP we have a
population of computer programs. And the goal of the GP
algorithm is to generate better solutions through natural
selection. In order to do that, we start with a random
population and, generation after generation, apply the so-
called genetic operators to simulate the evolution process. A
special heuristic function called fitness is used to guide the
algorithm in the process of selecting individuals.

GP can also be seen as a search technique, applied on a
universe of all possible computer programs that can be
generated in a certain language. The outcome of this search is
the program that better solves a given problem.

The purpose of this section is to present basic concepts of
grammar-oriented GP. It starts with an overview of the GP
Algorithm [9].

A. GP Algorithm Overview

First, an initial population of computer programs is
randomly generated (generation 0). After that, the algorithm
enters a loop that is executed. It consists of two major tasks:

- Evaluate each program, by the use of a fitness function,
that is defined accordingly to the problem.

- Create a new population by the selection of individuals
based on their fitness values and applying genetic operators,
such as: reproduction, crossover and mutation.

At the end of each cycle, a new generation of computer
programs is generated which substitutes the previous one.
This process is repeated until a solution is found or until the
maximum number of generations is reached.

B. Derivation tree

An abstract syntax tree is the most commonly used
structure for representing programs in GP [9]. Other possible
structures include graphs [11], linear genomes [12] and
grammar-based derivation trees [4] [13].

 Derivation trees offer two important advantages over
other structures. First, it allows the algorithm to be context-
free, in the sense that it represents an abstraction from the
programming language and the program’s format. Second, it
restricts the destructive effect of genetic operators over
programs, not allowing the creation of syntactically incorrect
code.

0-7803-7282-4/02/$10.00 ©2002 IEEE

In this approach, the derivation trees are constructed based
on a context-free grammar that is written in BNF (Backus-
Naur form), as shown in (2).

Each node of the derivation tree can either be a terminal,

such as the variable “x” , or a non-terminal “<exp>” (2).
Unlike terminals, which have an independent value, a non-
terminal depends on the evaluation of its components.

To generate a valid computer program from a given
grammar, non-terminals have to be randomly chosen and
substituted for their values until a point where all l eaf-nodes
on the derivation tree are terminals. These operations are
called productions. Figure (3) shows an example of a
derivation tree created with the grammar in (2).

C. Applying the Genetic Operators

Through the evolution process, genetic operators
recombine programs by making modifications directly on
their derivation trees.

 In reproduction no change is made: the individual is
simply replicated to the next generation. It is equivalent to the
asexual reproduction of beings.

 Mutation is the addition of a new segment of code (a new
tree) to a randomly selected point of the program. This
operation helps to maintain diversity in the population, which
seems to be important to avoid early convergence of the
algorithm to a single solution. However, there are studies
showing that mutation can be ignored [9].

 Crossover operation takes two parents to generate two
offspring. A random point of crossover is selected on each
parent and the sub-trees below these points are exchanged. It
is equivalent to the sexual reproduction of beings. When
grammars are used, the crossover operator is restricted and
only allows the exchange of tree branches that have been
generated using the same production rule.

Other operators can be defined, such as inversion
(permutation), editing and encapsulation [9]. The next section
discusses how these aspects were used in GPSQL Miner.

IV. GPSQL MINER

The name GPSQL Miner is a consequence of its main

features: GP indicates the use of the Grammar Genetic
Programming paradigm; SQL point out that the system use
SQL Commands to represent the classifier. Miner recalls the
central application of the system: data mining.

The aim of GPSQL Miner is the mining of databases by

exploiting GP techniques, leaving DBMS responsible for data
manipulation, searching performance and computer main
memory management.

To accomplish the goals mentioned above, SQL-Miner has
three central modules: SQL-BNF, Genetic Programming and
Oracle-Evaluate, their functions and relationship are
explained below (4).
• SQL-BNF: The tool initially reads two configuration

files: config.gpm and SQL Parameters (*.par). The first
file sets the main parameters in the Genetic
Programming module.
The SQL Parameter is essential because it defines the
objective of the classification task and the input
knowledge. This input language allows users declare
what tables and attributes will be used in the searching,
as well as, the root, non-terminals and terminals for
constructing the rules. Using the SQL Parameter file, the
system reads information of each column in the database
and creates a BNF file.

• The GP module will use the BNF file to create the
individuals and to apply the genetic operators. First, the
GP module creates the initial population with N
individuals (N is defined in Config.gpm file). For this
first generation. After that, the module selects the

<code> ::= <exp>
<exp> ::= <exp> <op> <exp>
<exp> ::= <var>
<op> ::= + | - | * | /
<var> ::= x (2)

 <code>

 <exp>

 <exp> <op> <exp>

 <var> <exp> <op> <exp>

 x + <var> <var>

 x * x
(3)

SQL-BNF SQL Parameters

BNF
File

GP
Config

File

Oracle Oracle-
Evaluate

(4)

0-7803-7282-4/02/$10.00 ©2002 IEEE

individuals with best fitness. If the best individual is the
solution, the system displays it. If it is not, it makes a
new population until the solution is found or the
maximum number of generations is reached.

• Oracle-Evaluate: This module is responsible for fitness
evaluation. The fitness is based on accuracy, that is, the
percentage of the test set correctly classified, and it is
computed by accessing the DBMS. The fitness
evaluation is a simpler process, once the individual is
based on SQL commands.

V. CLASSIFIER

One of the most important innovations introduced on this
work is the evolution of SQL commands, as shown in the
classifier (5). The character S is an abbreviation of SELECT
and the W is an abbreviation of WHERE.

In (5) we have 3 rules. After the S it has only the goal
value (i.e. Iris-viginica and Iris-versicolor) and it is specified
before the antecedent part (i.e. I.sepal-length < 6.20...).

The example uses two columns as part of the antecedent
condition: I.sepal-length and I.sepal-width. It is important to
note that the alias of the table’s column is specified together
with the column in the SQL parameters. Therefore, it is not
necessary to have the FROM part of the command in the
classifier. This also allows the creation of a smaller individual
and facilates the evaluation process (fitness computation).

VI. EXPERIMENTS AND RESULTS

Experiments were conducted to verify how GPSQL Miner

compares to other well -known systems that induce rules
(concepts), including LOGENPRO. The result of other
algorithms was found in [4] and in order to allow
comparisons, we used the same methodology.

We employed three databases sets: Iris, Monk1, Monk3,
extracted from the UCI Machine Learning Repository [6],
that show considerable diversity of size, number of classes,
and number and type of attributes. These data sets are in
prepositional format and were imported for oracle databases.

The system was executed 25 times for all databases. To
each run, the parameters were kept constant. All the
parameters used to each database can be found in the
appendix.

A. Iris Plant Database.

The Iris Plant Database has 3 classes: Iris-setosa, Iris-
versicolor and Iris-viginica and 150 registers. In each run,
67% or 100 registers are randomly chosen to compose the
training base and 50 others form the test base.

Results from this experiment are showed in Table II , there
we can verify the mean accuracy of some algorithms. If we
compared the GPSQL Miner with the similar system,
LOGENPRO, our system is a littl e more precise (4%).

TABLE II
THE CLASSIFICATION ACCURACY OF DIFFERENT

APPROACHES ON THE IRIS PLANTS DATABASE

Approach Accuracy
LOGENPRO 91.04 %
C4.5 93.8 %
ID3 94.2 %
GPSQL Miner 95.04 %
Nearest Neighbor 96.0 %
Neural Net 96.7 %

B. Monk’s Problem

Others experiments were performed on the Monk database
[7]. The MONK’s problems are a collection of three binary
classification problems over a six-attribute discrete domain.
There are three data sets for this problem [4]: Monk1, Monk2
and Monk3.

The monk1 data set is composed by [4]:
• Training set: 124 with 62 positive examples and

62 negative examples.
• The testing set contains 216 positive and 216

negative examples.
• There are no misclassifications.

The Table III , second column, shows the results of the
algorithms. The GPSQL-Miner has 100% of accuracy for the
training base, and 99.61% for the test set, a littl e lower than
LOGENPRO.

The monk2 data set is composed by [4]:
• Training set: 169 with 105 positive examples and

64 negative examples.
• The testing set contains 190 positive and 142

negative examples.
• There are no misclassifications.

The third column of Table III shows the results of the
algorithms. The system has 71.62% accuracy for the test set,
against 60% for it is similar LOGENPRO.

The monk3 data set has [4]:
• Training set: 122 examples with 62 positive and

60 negative examples.
• The testing set contains 204 positive and 228

negative examples.
• There are 5% misclassifications.

S Iris-viginica
W I.sepal-length < 6.20
 AND I.sepal-width between 1.65 and 3.10
S Iris-versicolor
W I.sepal-length < 6.95
S Iris-viginica (5)

0-7803-7282-4/02/$10.00 ©2002 IEEE

Table III , fourth column, shows the results of the
algorithms. This time, again, GPSQL Miner is littl e better
than LOGENPRO.

We can see that, in general, GPSQL Miner has better
results than LOGENPRO. However, there are some
approaches with even better behavior, such as neural nets. In
spite of this, the results are very encouraging and show that
GPSQL Miner has a good induction behavior.

TABLE III
THE CLASSIFICATION ACCURACY OF DIFFERENT

APPROACHES ON THE MONK DATABASE

Approach Monk1 Monk2 Monk3
AQ15-GA 100 % 86.8 % 100 %
AQ17-DCI 100 % 100 % 94.2%
AQR 95.9 % 79.7 % 87%
Assistant Professional 100 % 81.3 % 100 %
Backpropagation 100 % 100 % 93.1%
CN2 100 % 69.0 % 89.1%
GPSQL Miner 99.61 % 71.62 % 96.5 %
ID3 98.6 % 67.9 % 94.4%
LOGENPRO 100 % 60 % 95.4 %

VII. CONCLUSIONS

In this work, we present GPSQL Miner, a system that uses

the Grammar Genetic Programming paradigm for the
classification task. We have pointed out some strong points of
the tool: the representation of the classifiers in format of SQL
commands; the exploitation of DBMS faciliti es and safety in
handling data; and the use of GP to look for the most
promising solutions and scanning of the fetching space.

We notice that the grammar GP approach was very
important to make the implementation of GPSQL Miner
possible. A database environment can have a lot of tables and
searching for concepts without a guideline is very diff icult.
As the user must specify the relationship among the tables,
GPSQL Miner is flexible because we can use other attributes
to make relations between tables, besides the foreign and
primary keys. We have observed that a grammar must be
specific for each problem in order to get better results.
Creating the BNF file based on the database itself helps to
constrain the grammar accordingly.

Even though the system has not been tested with many
databases, the experiment results shows that the tool has a
very good behavior as an inductive system and that it is
adequate for data mining and KDD tasks. Future works
include (a) the application of the system in a larger number of
domains, (b) exploration of the system parameters such as the
crossover and mutation and (c) improvements in the BNF
file.

REFERENCES

[1] Michalski, R.S.; Kaufman, K.A. Data Mining and Knowledge

Discovery: A Review of Issues and a Multistrategy Approach. 1997.
[2] Mannila, H. Methods and Problems in Data Mining. Proceedings of

International. Conference on Database Theory (ICDT'97), Delphi,
Greece, January 1997, F. Afrati and P. Kolaiti s (ed.), p. 41-55.

[3] Freitas, A; Lavington, S. H. Mining very large databases with parallel
processing. Boston: Kluwer Academic, 1998. 208p.

[4] Wong, M. L.; Leung, K. S. Data Mining using Grammar based Genetic
Programming and applications. Boston: Kluwer Academic, 2000.

[5] Agrawal, R; Imielinski, T.; Swami, A. Mining Association Rules
Between Sets of Items in Large Databases. In Proceedings of the 1993
International Conference on Management of Data (SIGMOD 93), pp.
207-216.

[6] Blake, C. L.; Merz, C.J. UCI Repository of Machine Learning Data
Bases. Available in
<http://www.ics.uci.edu/~mlearn/MLRepository.html> Irvine, CA:
University of California, Departament of Information and Computer
Science, 1998.

[7] Thrun, S. B.; et al. The Monk’s Problems: A Performance Comparison
of Different Learning Algoritmos. Technical Report CMU-CS-91-197,
Carnegie Mellon University.

[8] Darwin, C. On the Origin of Species by Means of Natural Selection or
the Preservation of Favored Races in the Struggle for Life. Murray,
London, UK, 1859.

[9] Koza, J. R. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[10] Holland, J. H. Adaptation in Natural and Artificial Systems. University
of Michigan Press. Second Edition: MIT Press, 1992.

[11] Teller, A. & Veloso, M. Program Evolution for Data Mining. The
International Journal of Expert Systems, 8(3):216-236, 1995.

[12] Banzhaf, W., Nordin, P. et al Genetic Programming ~ An Introduction:
On the Automatic Evolution of Computer Programs and Its
Applications. Morgan Kaufmann Publishers, 1998.

[13] Whigham, P. A. Grammatical Bias for Evolutionary Learning. PhD
thesis. School of Computer Science, University of New South Wales,
Australian Defense Force Academy, 1996.

0-7803-7282-4/02/$10.00 ©2002 IEEE

APPENDIX – PARAMETERS FOR DATABASES

A. IRIS Database

Number of runs 25
Number of generations 50
Generations equal 20
Population size 300
Tournament size 13
Initialization method 2
Minimum tree height 3
Maximum tree height 30
Maximum crossover height 60
Crossover rate 50
Mutation rate 40
Eliti st strategy Yes
Training Set. 67%
Separate Train class N
BNF file gpsql.bnf
SQL Parameter file iris.par
Precision 0.01

B. Monk Problem

1) Monk1 data set

Number of runs 25
Number of generations 50
Generations equal 20
Population size 300
Tournament size 3
Initialization method 2
Minimum tree height 3
Maximum tree height 30
Maximum crossover height 60
Crossover rate 50
Mutation rate 40
Eliti st strategy Yes
Training Set. ---
Separate Train class ---
BNF file monk1.bnf
SQL Parameter file monk1.par
Precision 0.001

2) Monk2 data set

Number of runs 25
Number of generations 50
Generations equal 10
Population size 300
Tournament size 3
Initialization method 2
Minimum tree height 3
Maximum tree height 30
Maximum crossover height 60
Crossover rate 50
Mutation rate 40
Eliti st strategy Yes
Training Set. ---
Separate Train class ---
BNF file monk2.bnf
SQL Parameter file monk2.par
Precision 0.001

3) Monk3 data set

Number of runs 25
Number of generations 50
Generations equal 10
Population size 500
Tournament size 13
Initialization method 2
Minimum tree height 3
Maximum tree height 30
Maximum crossover height 60
Crossover rate 40
Mutation rate 50
Eliti st strategy Yes
Training Set. ---
Separate Train class ---
BNF file monk3.bnf
SQL Parameter file monk3.par
Precision 0.01

APPENDIX – BNF FILE

A. IRIS Database

#productions
S -> <classifier>
<classifier> -> <r> <r> <r> <r> <r> <r> <r> S <hypotesis>
<r> -> S <hypotesis> W <cond>
<cond> -> <cond> AND <cond>
<hypotesis> -> 'Iris-setosa' | 'Iris-versicolor' | 'Iris-viginica'
<cond> -> I.SEPAL_LENGTH <rel_I.SEPAL_LENGTH>
<rel_I.SEPAL_LENGTH> -> <Noperator> <value_I.SEPAL_LENGTH>
<rel_I.SEPAL_LENGTH> -> between <value_I.SEPAL_LENGTH> and
<value_I.SEPAL_LENGTH>
<value_I.SEPAL_LENGTH> -> 5 | 5.1 | 6.3 | 5.7 | 6.7 | 5.5 | 5.8 | 6.4 | 4.9 |
5.6 | 6 | 6.1 | 5.4 | 4.8 | 6.5 | 4.6 | 5.2 | 6.9 | 7.7 | 6.2 | 4.4 | 5.9 | 6.8 | 7.2 | 4.7 |
6.6 | 4.3 | 7.3 | 7.6 | 7.9 | 7.4 | 7.1 | 7 | 5.3 | 4.5
<cond> -> I.PETAL_WIDTH <rel_I.PETAL_WIDTH>
<rel_I.PETAL_WIDTH> -> <Noperator> <value_I.PETAL_WIDTH>
<rel_I.PETAL_WIDTH> -> between <value_I.PETAL_WIDTH> and
<value_I.PETAL_WIDTH>
<value_I.PETAL_WIDTH> -> 3 | 2.8 | 3.2 | 3.1 | 3.4 | 2.9 | 2.7 | 2.5 | 3.3 | 3.8
| 3.5 | 2.6 | 2.3 | 2.2 | 3.7 | 2.4 | 3.6 | 3.9 | 2 | 4 | 4.1 | 4.2 | 4.4
<cond> -> I.PETAL_LENGTH <rel_I.PETAL_LENGTH>
<rel_I.PETAL_LENGTH> -> <Noperator> <value_I.PETAL_LENGTH>
<rel_I.PETAL_LENGTH> -> between <value_I.PETAL_LENGTH> and
<value_I.PETAL_LENGTH>
<value_I.PETAL_LENGTH> -> 1.5 | 1.4 | 4.5 | 5.1 | 1.3 | 1.6 | 5.6 | 4 | 4.7 |
4.9 | 1.7 | 4.8 | 4.4 | 5 | 4.2 | 3.9 | 4.1 | 5.7 | 6.1 | 5.8 | 5.5 | 4.6 | 1.2 | 3.5 | 3.3 |
6.7 | 6 | 5.9 | 5.4 | 5.3 | 5.2 | 4.3 | 1.9 | 1 | 6.9 | 6.6 | 3.6 | 3.7 | 3.8 | 6.4 | 6.3 | 3 |
1.1
<cond> -> I.PETAL_WIDTH <rel_I.PETAL_WIDTH>
<rel_I.PETAL_WIDTH> -> <Noperator> <value_I.PETAL_WIDTH>
<rel_I.PETAL_WIDTH> -> between <value_I.PETAL_WIDTH> and
<value_I.PETAL_WIDTH>
<value_I.PETAL_WIDTH> -> 0.2 | 1.3 | 1.5 | 1.8 | 1.4 | 2.3 | 0.3 | 1 | 0.4 | 0.1
| 2.1 | 2 | 1.2 | 1.9 | 1.6 | 1.1 | 2.5 | 2.2 | 2.4 | 1.7 | 0.5 | 0.6
<Noperator> -> = | != | > | < | >= | <=

0-7803-7282-4/02/$10.00 ©2002 IEEE

	CEC Main Menu
	CEC Table of Contents
	CEC Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
