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Abstract - The present work describes GPSQL M iner, a 
Genetic Programming system for mining relational 
databases. This system uses Grammar Genetic 
Programming for classification’s task and one of its main 
features is the representation of the classifiers. The system 
uses SQL grammar, which facili tates the evaluation 
process, once the data are in relational databases. The 
tool was tested with some databases and the results were 
compared with other algor ithms. These first experiments 
had shown promising results for the classification task. 

 

I . INTRODUCTION 

 
The current information age is characterized by an 

extraordinary expansion of data that is being generated and 
stored about all kinds of human endeavors. An increasing 
proportion of this data is recorded in the form of computer 
database. The availabilit y of very large volumes of such data 
has created a problem of how to extract from them useful, 
task-oriented knowledge [1]. 

Researches from different areas recognize that a new 
generation of intelli gent tools for automated data mining is 
needed to deal with large databases [2]. This work presents 
GPSQL Miner, a system that allows mining relational 
databases using a Genetic Programming (GP) approach and 
SQL features. A Database Management System (DBMS) 
does all memory and data managements.  

This work deals with the classification task performed in 
Data Mining. Given a set of classified examples, the goal of 
the classification task is to find a logical description that 
correctly classifies new cases. In that sense, this logical 
description found can be considered a classifier. For a better 
visualization of the classification task, Table I and (1) show 
an example of the input received by a classification system 
and the group of rules generated by it [3]. 

In this paper, we explore the Grammar Oriented GP for 
the induction of classifiers. GP represents a classifier as an 
individual and its goal is to find the best classifier through the 
evolution process. Some advantages of GP favor the mining 
of large databases, since GP looks for the most promising 
solutions by doing a better scanning of the fetching space [4].  

 
TABLE I  

INPUT RECEIVED BY A CLASSIFICATION SYSTEM 
 
 

Sex Country Age Buy 
(Goal) 

M France 25 Yes 
M England 21 Yes 
F France 23 Yes 
F England 34 Yes 
F France 30 No 
M Germany 21 No 
M Germany 20 No 
F Germany 18 No 
F France 34 No 
M France 55 No 

 

 

 
 

Other interesting features of GP are: the possibilit y of the 
system to work with invalid or inexact data, commonly found 
in the real world; it is easy to customize it for different 
applications by modifying operators, creating new operators 
or simply by changing the parameters. 

However, Traditional Genetic Programming can generate 
invalid solutions and, the search for the best classifier is 
prevented or delayed. With the use of a Grammar, GP is able 
to generate only valid classifiers through the definition of the 
search space.  

  GPSQL Miner constructs classifiers using the GP 
approach and the SQL grammar. The GP technique was 
integrated with DBMS to make possible the manipulation of 
large volumes of data. This brings innovations with respect to 
previous works in the area, such as LOGENPRO [4] that uses 
Grammar GP to mine flat files. 

The paper is organized as follows: in Section II we present 
related works on this area. Section II I explains the Grammar 
Genetic Programming approach. Section IV shows the main 
features of GPSQL Miner. Section V ill ustrates the structure 
of the classifiers induced. Section VI describes the 
experiments and the results analysis. Finally, Section VII 
concludes the paper. 
 
 

  IF (Country = “Germany”) THEN (Buy = “no”) 
  IF (Country = “England”) THEN (Buy = “yes”) 
  IF (Country = “France” and Age ≤ 25) THEN (Buy = “yes”) 
  IF (Country = “France” and Age > 25) THEN (Buy = “no”) (1) 
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II. RELATED WORK 

 
Data mining and Grammar GP approaches are new 

research areas. Only a few works were developed integrating 
both. One of them is LOGENPRO (The LOgic to grammar 
based GENetic PROgramming system) [4] 

LOGENPRO is a system for data mining developed to 
match the power of implicit parallel search of GP and the 
power of first order logic. The main features relating to the 
learning of rules are:  

1) The system used an adjusted grammar to specify the 
structure of the rule. Each rule is an individual represented by 
its derivation tree and it has the following form: if 
antecedents then consequent. In general, the antecedent is a 
set of attributes descriptors and the consequent is the goal 
attribute.  

2) The dropping condition is a tailor-made genetic 
operator created especially for the task of learning rules. This 
operator automatically selects one descriptor attribute and 
changes it to any. For example, the rule:  

If sepal_length=0.5 and sepal_width between (1, 1.50) and 
petal_length = 50 then class = Iris-setosa  

After to suffer the action from the operator can be 
modified to:  

If sepal_length=0.5 and sepal_width between (1, 1.50) and 
any then class = Iris-setosa.  

3) Creation of a specific fitness function to evaluate each 
rule. The fitness function of LOGENPRO is based on the 
support-confidence framework [5]. The function considers 
support (measures the coverage of rule) and confidence factor 
(is the confidence of the consequent will be true under the 
antecedents). 

 
Our proposal is quite different from LOGENPRO [4]. We 

do not use confidence and support measures. GPSQL Miner’s 
language is not based on rule schemata. Instead, the user 
determines the tables and attributes that must be used. Next, 
we summarize the main differences between the two 
approaches: 

1) LOGENPRO represents an individual as a rule, while 
GPSQL Miner represents an individual as a full classifier (set 
of rules) for all the classes. 

2) The grammar of LOGENPRO produces rules with fixed 
number of attributes. GPSQL Miner produces a grammar for 
the generation of classifiers formed by rules of any number of 
attributes. 

3) In GPSQL Miner, the grammar is automatically created 
from the user specification; however, the user can modify it. 
In order to assist the grammar modification, an analysis file is 
generated automatically, which facilit ates the construction of 
an adequate grammar for each problem. 

Next section discusses the grammar genetic programming 
approach.  
 

III. GRAMMAR GENETIC PROGRAMMING 

 
Darwin’s Natural Selection Theory shows that, in nature, 

the individuals that better adapt to the environment that 
surrounds them have a greater chance of survival [8]. They 
pass their genetic characteristics to their descendents and 
after several generations, only the best individuals survive. 

GP is the application of these concepts in computers, to 
automatically induce programs. It was introduced by John 
Koza [9], based on the idea of Genetic Algorithms presented 
by John Holland [10]. 

Instead of a population of beings, in GP we have a 
population of computer programs. And the goal of the GP 
algorithm is to generate better solutions through natural 
selection. In order to do that, we start with a random 
population and, generation after generation, apply the so-
called genetic operators to simulate the evolution process. A 
special heuristic function called fitness is used to guide the 
algorithm in the process of selecting individuals.  

GP can also be seen as a search technique, applied on a 
universe of all possible computer programs that can be 
generated in a certain language. The outcome of this search is 
the program that better solves a given problem. 

The purpose of this section is to present basic concepts of 
grammar-oriented GP. It starts with an overview of the GP 
Algorithm [9]. 

A. GP Algorithm Overview 

First, an initial population of computer programs is 
randomly generated (generation 0). After that, the algorithm 
enters a loop that is executed. It consists of two major tasks: 

- Evaluate each program, by the use of a fitness function, 
that is defined accordingly to the problem. 

- Create a new population by the selection of individuals 
based on their fitness values and applying genetic operators, 
such as: reproduction, crossover and mutation.  

At the end of each cycle, a new generation of computer 
programs is generated which substitutes the previous one. 
This process is repeated until a solution is found or until the 
maximum number of generations is reached. 

B. Derivation tree 

An abstract syntax tree is the most commonly used 
structure for representing programs in GP [9]. Other possible 
structures include graphs [11], linear genomes [12] and 
grammar-based derivation trees [4] [13]. 

 Derivation trees offer two important advantages over 
other structures. First, it allows the algorithm to be context-
free, in the sense that it represents an abstraction from the 
programming language and the program’s format. Second, it 
restricts the destructive effect of genetic operators over 
programs, not allowing the creation of syntactically incorrect 
code. 
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In this approach, the derivation trees are constructed based 
on a context-free grammar that is written in BNF (Backus-
Naur form), as shown in (2). 

 
Each node of the derivation tree can either be a terminal, 

such as the variable “x” , or a non-terminal “<exp>” (2). 
Unlike terminals, which have an independent value, a non-
terminal depends on the evaluation of its components. 

To generate a valid computer program from a given 
grammar, non-terminals have to be randomly chosen and 
substituted for their values until a point where all l eaf-nodes 
on the derivation tree are terminals. These operations are 
called productions. Figure (3) shows an example of a 
derivation tree created with the grammar in (2). 

 

C. Applying the Genetic Operators 

Through the evolution process, genetic operators 
recombine programs by making modifications directly on 
their derivation trees. 

 In reproduction no change is made: the individual is 
simply replicated to the next generation. It is equivalent to the 
asexual reproduction of beings. 

 Mutation is the addition of a new segment of code (a new 
tree) to a randomly selected point of the program. This 
operation helps to maintain diversity in the population, which 
seems to be important to avoid early convergence of the 
algorithm to a single solution. However, there are studies 
showing that mutation can be ignored [9]. 

 Crossover operation takes two parents to generate two 
offspring. A random point of crossover is selected on each 
parent and the sub-trees below these points are exchanged. It 
is equivalent to the sexual reproduction of beings. When 
grammars are used, the crossover operator is restricted and 
only allows the exchange of tree branches that have been 
generated using the same production rule. 

Other operators can be defined, such as inversion 
(permutation), editing and encapsulation [9]. The next section 
discusses how these aspects were used in GPSQL Miner. 

 
 

IV. GPSQL MINER  

 
The name GPSQL Miner is a consequence of its main 

features: GP indicates the use of the Grammar Genetic 
Programming paradigm; SQL point out that the system use 
SQL Commands to represent the classifier. Miner recalls the 
central application of the system: data mining. 

 

 
The aim of GPSQL Miner is the mining of databases by 

exploiting GP techniques, leaving DBMS responsible for data 
manipulation, searching performance and computer main 
memory management. 

To accomplish the goals mentioned above, SQL-Miner has 
three central modules: SQL-BNF, Genetic Programming and 
Oracle-Evaluate, their functions and relationship are 
explained below (4). 
• SQL-BNF: The tool initially reads two configuration 

files: config.gpm and SQL Parameters (*.par). The first 
file sets the main parameters in the Genetic 
Programming module.  
The SQL Parameter is essential because it defines the 
objective of the classification task and the input 
knowledge. This input language allows users declare 
what tables and attributes will be used in the searching, 
as well as, the root, non-terminals and terminals for 
constructing the rules. Using the SQL Parameter file, the 
system reads information of each column in the database 
and creates a BNF file.  

• The GP module will use the BNF file to create the 
individuals and to apply the genetic operators. First, the 
GP module creates the initial population with N 
individuals (N is defined in Config.gpm file). For this 
first generation. After that, the module selects the 

<code>  ::= <exp> 
<exp>  ::= <exp> <op>  <exp> 
<exp>  ::= <var> 
<op>  ::= + | - | * | / 
<var>  ::= x (2) 

                        <code> 
 

                         <exp> 
  
    <exp>      <op>              <exp> 

     <var>                 <exp> <op>   <exp> 
 

         x                     +      <var>             <var> 

        x         *          x 
(3) 

SQL-BNF SQL Parameters 
 

BNF  
File 

 
 
 

GP 
Config  

File 
 
 
 

Oracle Oracle-
Evaluate 

(4) 
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individuals with best fitness. If the best individual is the 
solution, the system displays it. If it is not, it makes a 
new population until the solution is found or the 
maximum number of generations is reached. 

• Oracle-Evaluate: This module is responsible for fitness 
evaluation. The fitness is based on accuracy, that is, the 
percentage of the test set correctly classified, and it is 
computed by accessing the DBMS. The fitness 
evaluation is a simpler process, once the individual is 
based on SQL commands. 

 
 

V. CLASSIFIER 

One of the most important innovations introduced on this 
work is the evolution of SQL commands, as shown in the 
classifier (5). The character S is an abbreviation of SELECT 
and the W is an abbreviation of WHERE.  

In (5) we have 3 rules. After the S it has only the goal 
value (i.e. Iris-viginica and Iris-versicolor) and it is specified 
before the antecedent part (i.e. I.sepal-length < 6.20...).  

The example uses two columns as part of the antecedent 
condition: I.sepal-length and I.sepal-width. It is important to 
note that the alias of the table’s column is specified together 
with the column in the SQL parameters. Therefore, it is not 
necessary to have the FROM part of the command in the 
classifier. This also allows the creation of a smaller individual 
and facilates the evaluation process (fitness computation). 
 
 

VI. EXPERIMENTS AND RESULTS 

 
Experiments were conducted to verify how GPSQL Miner 

compares to other well -known systems that induce rules 
(concepts), including LOGENPRO. The result of other 
algorithms was found in [4] and in order to allow 
comparisons, we used the same methodology. 

We employed three databases sets: Iris, Monk1, Monk3, 
extracted from the UCI Machine Learning Repository [6], 
that show considerable diversity of size, number of classes, 
and number and type of attributes. These data sets are in 
prepositional format and were imported for oracle databases. 

The system was executed 25 times for all databases. To 
each run, the parameters were kept constant. All the 
parameters used to each database can be found in the 
appendix. 

A. Iris Plant Database. 

The Iris Plant Database has 3 classes: Iris-setosa, Iris-
versicolor and Iris-viginica and 150 registers. In each run, 
67% or 100 registers are randomly chosen to compose the 
training base and 50 others form the test base.  

Results from this experiment are showed in Table II , there 
we can verify the mean accuracy of some algorithms. If we 
compared the GPSQL Miner with the similar system, 
LOGENPRO, our system is a littl e more precise (4%).    

 
 

TABLE II 
THE CLASSIFICATION ACCURACY OF DIFFERENT 

APPROACHES ON THE IRIS PLANTS DATABASE 
 
 

Approach Accuracy 
LOGENPRO 91.04 % 
C4.5 93.8 % 
ID3 94.2 % 
GPSQL Miner 95.04 % 
Nearest Neighbor 96.0 % 
Neural Net 96.7 % 

B. Monk’s Problem 

Others experiments were performed on the Monk database 
[7]. The MONK’s problems are a collection of three binary 
classification problems over a six-attribute discrete domain. 
There are three data sets for this problem [4]: Monk1, Monk2 
and Monk3.  

The monk1 data set is composed by [4]: 
• Training set: 124 with 62 positive examples and 

62 negative examples.  
• The testing set contains 216 positive and 216 

negative examples. 
•  There are no misclassifications.  

The Table III , second column, shows the results of the 
algorithms. The GPSQL-Miner has 100% of accuracy for the 
training base, and 99.61% for the test set, a littl e lower than 
LOGENPRO. 

The monk2 data set is composed by [4]: 
• Training set: 169 with 105 positive examples and 

64 negative examples.  
• The testing set contains 190 positive and 142 

negative examples. 
•  There are no misclassifications.  

The third column of Table III shows the results of the 
algorithms. The system has 71.62% accuracy for the test set, 
against 60% for it is similar LOGENPRO. 

The monk3 data set has [4]: 
• Training set: 122 examples with 62 positive and 

60 negative examples.  
• The testing set contains 204 positive and 228 

negative examples. 
•  There are 5% misclassifications. 

S  Iris-viginica 
W I.sepal-length < 6.20   
     AND I.sepal-width between 1.65 and 3.10 
S  Iris-versicolor 
W I.sepal-length < 6.95 
S  Iris-viginica (5) 
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Table III , fourth column, shows the results of the 
algorithms. This time, again, GPSQL Miner is littl e better 
than LOGENPRO. 

We can see that, in general, GPSQL Miner has better 
results than LOGENPRO. However, there are some 
approaches with even better behavior, such as neural nets. In 
spite of this, the results are very encouraging and show that 
GPSQL Miner has a good induction behavior. 

 
 

TABLE III 
THE CLASSIFICATION ACCURACY OF DIFFERENT 

APPROACHES ON THE MONK DATABASE 
 
 

Approach Monk1 Monk2 Monk3 
AQ15-GA 100 % 86.8 % 100 % 
AQ17-DCI 100 % 100 % 94.2% 
AQR 95.9 % 79.7 % 87% 
Assistant Professional 100 % 81.3 % 100 % 
Backpropagation 100 % 100 % 93.1% 
CN2 100 % 69.0 % 89.1% 
GPSQL Miner 99.61 % 71.62 % 96.5 % 
ID3 98.6 % 67.9 % 94.4% 
LOGENPRO 100 % 60 % 95.4 % 

 
 

VII. CONCLUSIONS 

 
In this work, we present GPSQL Miner, a system that uses 

the Grammar Genetic Programming paradigm for the 
classification task. We have pointed out some strong points of 
the tool: the representation of the classifiers in format of SQL 
commands; the exploitation of DBMS faciliti es and safety in 
handling data; and the use of GP to look for the most 
promising solutions and scanning of the fetching space.  

We notice that the grammar GP approach was very 
important to make the implementation of GPSQL Miner 
possible. A database environment can have a lot of tables and 
searching for concepts without a guideline is very diff icult. 
As the user must specify the relationship among the tables, 
GPSQL Miner is flexible because we can use other attributes 
to make relations between tables, besides the foreign and 
primary keys. We have observed that a grammar must be 
specific for each problem in order to get better results. 
Creating the BNF file based on the database itself helps to 
constrain the grammar accordingly. 

Even though the system has not been tested with many 
databases, the experiment results shows that the tool has a 
very good behavior as an inductive system and that it is 
adequate for data mining and KDD tasks. Future works 
include (a) the application of the system in a larger number of 
domains, (b) exploration of the system parameters such as the 
crossover and mutation and (c) improvements in the BNF 
file. 

 
 

REFERENCES 

 
[1]  Michalski, R.S.; Kaufman, K.A. Data Mining and Knowledge 

Discovery: A Review of Issues and a Multistrategy Approach. 1997. 
[2] Mannila, H. Methods and Problems in Data Mining. Proceedings of 

International. Conference on Database Theory (ICDT'97), Delphi, 
Greece, January 1997, F. Afrati and P. Kolaiti s (ed.), p. 41-55. 
 

[3] Freitas, A; Lavington, S. H. Mining very large databases with parallel 
processing. Boston: Kluwer Academic, 1998. 208p. 

[4] Wong, M. L.; Leung, K. S. Data Mining using Grammar based Genetic 
Programming and applications. Boston: Kluwer Academic, 2000.  

[5] Agrawal, R; Imielinski, T.; Swami, A. Mining Association Rules 
Between Sets of Items in Large Databases. In Proceedings of the 1993 
International Conference on Management of Data (SIGMOD 93), pp. 
207-216. 

[6] Blake, C. L.; Merz, C.J. UCI Repository of Machine Learning Data 
Bases. Available in 
<http://www.ics.uci.edu/~mlearn/MLRepository.html> Irvine, CA: 
University of California, Departament of Information and Computer 
Science, 1998. 

[7] Thrun, S. B.; et al. The Monk’s Problems: A Performance Comparison 
of Different Learning Algoritmos. Technical Report CMU-CS-91-197, 
Carnegie Mellon University. 

[8] Darwin, C. On the Origin of Species by Means of Natural Selection or 
the Preservation of Favored Races in the Struggle for Life. Murray, 
London, UK, 1859. 

[9] Koza, J. R. Genetic Programming: On the Programming of Computers 
by Means of Natural Selection. MIT Press, 1992. 

[10] Holland, J. H. Adaptation in Natural and Artificial Systems. University 
of Michigan Press. Second Edition: MIT Press, 1992. 

[11] Teller, A. & Veloso, M. Program Evolution for Data Mining. The 
International Journal of Expert Systems, 8(3):216-236, 1995. 

[12] Banzhaf, W., Nordin, P. et al Genetic Programming ~ An Introduction: 
On the Automatic Evolution of Computer Programs and Its 
Applications. Morgan Kaufmann Publishers, 1998. 

[13] Whigham, P. A. Grammatical Bias for Evolutionary Learning. PhD 
thesis. School of Computer Science, University of New South Wales, 
Australian Defense Force Academy, 1996. 

0-7803-7282-4/02/$10.00 ©2002 IEEE



 

APPENDIX – PARAMETERS FOR DATABASES 

A. IRIS Database  

Number of runs 25 
Number of generations 50 
Generations equal 20 
Population size 300 
Tournament size 13 
Initialization method 2 
Minimum tree height 3 
Maximum tree height 30 
Maximum crossover height 60 
Crossover rate 50 
Mutation rate 40 
Eliti st strategy Yes 
Training Set. 67% 
Separate Train class N 
BNF file gpsql.bnf 
SQL Parameter file iris.par 
Precision 0.01 

B. Monk Problem 

1) Monk1 data set 
 

Number of runs 25 
Number of generations 50 
Generations equal 20 
Population size 300 
Tournament size 3 
Initialization method 2 
Minimum tree height 3 
Maximum tree height 30 
Maximum crossover height 60 
Crossover rate 50 
Mutation rate 40 
Eliti st strategy Yes 
Training Set. --- 
Separate Train class --- 
BNF file monk1.bnf 
SQL Parameter file monk1.par 
Precision 0.001 

 
2) Monk2 data set 
 

Number of runs 25 
Number of generations 50 
Generations equal 10 
Population size 300 
Tournament size 3 
Initialization method 2 
Minimum tree height 3 
Maximum tree height 30 
Maximum crossover height 60 
Crossover rate 50 
Mutation rate 40 
Eliti st strategy Yes 
Training Set. --- 
Separate Train class --- 
BNF file monk2.bnf 
SQL Parameter file monk2.par 
Precision 0.001 

 

3) Monk3 data set 
 

Number of runs 25 
Number of generations 50 
Generations equal 10 
Population size 500 
Tournament size 13 
Initialization method 2 
Minimum tree height 3 
Maximum tree height 30 
Maximum crossover height 60 
Crossover rate 40 
Mutation rate 50 
Eliti st strategy Yes 
Training Set. --- 
Separate Train class --- 
BNF file monk3.bnf 
SQL Parameter file monk3.par 
Precision 0.01 

 
 

APPENDIX – BNF FILE 

A. IRIS Database  

#productions 
S        -> <classifier> 
<classifier> -> <r> <r> <r> <r> <r> <r> <r> S <hypotesis> 
<r>    -> S <hypotesis> W <cond> 
<cond> -> <cond> AND <cond> 
<hypotesis>   -> 'Iris-setosa' | 'Iris-versicolor' | 'Iris-viginica' 
<cond> -> I.SEPAL_LENGTH <rel_I.SEPAL_LENGTH> 
<rel_I.SEPAL_LENGTH> -> <Noperator> <value_I.SEPAL_LENGTH> 
<rel_I.SEPAL_LENGTH> -> between <value_I.SEPAL_LENGTH> and 
<value_I.SEPAL_LENGTH> 
<value_I.SEPAL_LENGTH> -> 5 | 5.1 | 6.3 | 5.7 | 6.7 | 5.5 | 5.8 | 6.4 | 4.9 | 
5.6 | 6 | 6.1 | 5.4 | 4.8 | 6.5 | 4.6 | 5.2 | 6.9 | 7.7 | 6.2 | 4.4 | 5.9 | 6.8 | 7.2 | 4.7 | 
6.6 | 4.3 | 7.3 | 7.6 | 7.9 | 7.4 | 7.1 | 7 | 5.3 | 4.5 
<cond> -> I.PETAL_WIDTH <rel_I.PETAL_WIDTH> 
<rel_I.PETAL_WIDTH> -> <Noperator> <value_I.PETAL_WIDTH> 
<rel_I.PETAL_WIDTH> -> between <value_I.PETAL_WIDTH> and 
<value_I.PETAL_WIDTH> 
<value_I.PETAL_WIDTH> -> 3 | 2.8 | 3.2 | 3.1 | 3.4 | 2.9 | 2.7 | 2.5 | 3.3 | 3.8 
| 3.5 | 2.6 | 2.3 | 2.2 | 3.7 | 2.4 | 3.6 | 3.9 | 2 | 4 | 4.1 | 4.2 | 4.4 
<cond> -> I.PETAL_LENGTH <rel_I.PETAL_LENGTH> 
<rel_I.PETAL_LENGTH> -> <Noperator> <value_I.PETAL_LENGTH> 
<rel_I.PETAL_LENGTH> -> between <value_I.PETAL_LENGTH> and 
<value_I.PETAL_LENGTH> 
<value_I.PETAL_LENGTH> -> 1.5 | 1.4 | 4.5 | 5.1 | 1.3 | 1.6 | 5.6 | 4 | 4.7 | 
4.9 | 1.7 | 4.8 | 4.4 | 5 | 4.2 | 3.9 | 4.1 | 5.7 | 6.1 | 5.8 | 5.5 | 4.6 | 1.2 | 3.5 | 3.3 | 
6.7 | 6 | 5.9 | 5.4 | 5.3 | 5.2 | 4.3 | 1.9 | 1 | 6.9 | 6.6 | 3.6 | 3.7 | 3.8 | 6.4 | 6.3 | 3 | 
1.1 
<cond> -> I.PETAL_WIDTH <rel_I.PETAL_WIDTH> 
<rel_I.PETAL_WIDTH> -> <Noperator> <value_I.PETAL_WIDTH> 
<rel_I.PETAL_WIDTH> -> between <value_I.PETAL_WIDTH> and 
<value_I.PETAL_WIDTH> 
<value_I.PETAL_WIDTH> -> 0.2 | 1.3 | 1.5 | 1.8 | 1.4 | 2.3 | 0.3 | 1 | 0.4 | 0.1 
| 2.1 | 2 | 1.2 | 1.9 | 1.6 | 1.1 | 2.5 | 2.2 | 2.4 | 1.7 | 0.5 | 0.6 
<Noperator>   -> = | != |  > | < | >= | <= 
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