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Abstract: Genetic Programming (GP) has been emerged as a 
promising approach to deal with classification task in data 
mining. This work extends the tree representation of GP to 
evolve multiple comprehensible IF-THEN classification rules. In 
the paper, we introduce a concept mapping technique for fitness 
evaluation of individuals. A covering algorithm that employs an 
artificial immune system-like memory vector is utilized to 
produce multiple rules as well as to remove redundant rules. 
The proposed GP classifier is validated upon nine benchmark 
datasets and the simulation results confirm the viability and 
effectiveness of the GP approach for solving data mining 
problems in a wide spectrum of application domains. 
 

I.  INTRODUCTION 
 
Data mining is an automated process of extracting structured 
knowledge from databases, which is often referred to as a 
particular step in the overall process of discovering useful 
knowledge from data, called knowledge discovery from 
database (KDD) [6]. In recent years, there have been 
numerous attempts to apply evolutionary algorithms (EAs) in 
data mining to accomplish various tasks [1-4, 7, 10, 14, 17, 
18]. One of the data mining tasks gaining significant 
attentions is the rules/knowledge extraction from databases. 
Along with other evolutionary algorithms, genetic 
programming (GP) has emerged as a promising technique to 
discover useful and interesting knowledge from the database. 
Genetic programming has been formulated originally as an 
autonomous method for breeding computer programs using 
tree structures [11].  
 
GP starts with a population of randomly created individuals 
that represents the possible solutions to a given problem. The 
principle elements of the GP are a set of functions and 
terminals that are able to represent the solution of the 
problem. The function set may consist of arithmetic 
operators, mathematic functions, Boolean operators, 
conditional and branch operators etc., whereas the terminal 
set may consist of problem specified variables and/or 
constant values. For every generation, each individual will be 
evaluated for its fitness, and individuals of the next 
generation will be produced from the parents selected based 
on their fitness value. The population evolves through genetic 
reproduction, crossover and mutation over a number of 
generations until the termination criteria is met. At the end of 
the GP run, the best individual is presented as the solution to 
the problem. In this work, we extend the idea of booleanized 
attributes [3] and use the Michigan approach to encode the 
rules, where each individual encodes only one rule. With this 

configuration, a simpler structure that is easy for evaluation 
with good comprehensibility could be produced. The 
proposed GP classifier is tested on nine sets of data obtained 
from UCI Machine Learning Repository, which is a 
collection of widely used benchmark and real-world data for 
data mining and KDD community. 
 
This paper studies the application of GP in data mining by 
evolving a set of comprehensive decision rules with high 
classification accuracy. A novel concept mapping technique 
is also introduced for efficient fitness evaluation. To evolve a 
set of classification rules that are compatible to each other, 
i.e., rules that can be used collectively as a whole to classify 
the instances without conflicting each other, a covering 
algorithm is utilized. The covering algorithm uses an immune 
system-like memory vector to hold discovered good rules 
such that redundant rules could be checked and removed. 
Therefore, the covering algorithm effectively enables the 
production of multiple rules for each class when necessary. 
The paper is organized as follows: In Section II, the 
classification task in data mining is introduced in general. 
Section III presents the proposed GP classifier system and 
discusses the approach of concept mapping for fitness 
evaluation and the covering algorithm. The problem sets used 
for validation are presented in Section IV and the simulation 
results are analyzed and summarized. Conclusions and future 
work are given in Section V. 
 

II.  CLASSIFICATION IN DATA MINING 
 
Given a set of classified examples, the goal of classification 
is to find a logical description that correctly classifies novel 
cases. The three basic requirements of a classifier are 
accuracy, simplicity and efficiency [5]. In the classification 
task, the discovered knowledge is usually represented in the 
form of decision trees or IF-THEN prediction rules, which 
have the advantage of being a high-level and symbolic 
knowledge representation contributing towards the 
comprehensibility of the discovered knowledge. In this paper, 
knowledge is presented as multiple IF-THEN rules in a 
decision rules list. Such rules state that the presence of one or 
more items (antecedents) implies or predicts the presence of 
other items (consequents). A typical rule has the form of  
 

Rule:  If  X1  and  X2  and … Xn  then  Y, 
 
where Xi, ∀ i ∈ {1,2,…,n} is the antecedent that leads to the 
prediction of consequent Y. 
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One reason of using classification rules instead of decision 
tree is that each rule can be seen as an independent piece of 
knowledge. New rules can be added to an existing rule set 
without disturbing those already there. Multiple rules can be 
combined together to form a set of decision rules. This set of 
decision rules is usually listed according to the “quality” of 
the rules, with the best rule listed first. When the decision 
rules list is use to predict a new instance, the best rule will be 
considered first. If the rule does not match the instance, i.e., 
the antecedents of the rule do not satisfy the value of the 
attributes in the instance, then the next rule will be 
considered. At the case where none of the rules in the 
decision list satisfies the new instance, the predetermined 
default prediction will be used. The default prediction class is 
the largest class in the training set in this case (the class with 
the largest number of instances). The basic structure of the 
decision rules list could be built as follows: 
 

IF (antecedents)1  THEN  class1 
ELSE IF (antecedents)2  THEN  class2 
…  ELSE default class 

 
The discovered decision rules can be evaluated according to 
several criteria, such as classification accuracy rate on 
unlabeled instances (testing set), degree of confidence in the 
prediction, comprehensibility, and interestingness. 
Classification accuracy is the major metric to evaluate the 
performance of a classifier. Comprehensibility measures how 
clear and easy a rule is for human to understand and take 
action on it accordingly. Rules that are incomprehensible to 
human are often useless in the sense of data mining and 
knowledge discovery because such rules are not beneficial to 
the user. Interestingness measures surprisingness 
(unexpectedness), usefulness and novelty of the discovered 
knowledge [8]. As compared to classification accuracy and 
comprehensibility, the interestingness of a rule is still more 
difficult to measure. This paper only considers the predictive 
accuracy of the decision rules and comprehensibility of the 
rules. 
 

III.  THE GENETIC PROGRAMMING CLASSIFIER 
 
A. Flowchart o f GP Classifier 
The GP used in this paper is based upon a modified version 
of steady state GP [1]. Fig. 1 depicts the complete learning 
flow of the GP Classifier. The GP starts with an initial 
population. The initial population is created with ‘ramped-
half-and-half’ method [11]. The elitism preserving strategy is 
used to ensure that some best individuals of current 
generation will survive in the next generation according to 
the elitism rate, e. The tournament selection scheme with 
tournament size of 2 is implemented to reduce the selection 
pressure and for good convergence. After the genetic 
operations (i.e. crossover, mutation and reproduction) are 
applied to the individuals, the genetically modified 
individuals together with the preserved elitist will form the 

new population. These individuals will pass through a 
covering algorithm to penalize the redundant individuals and 
to promote the individuals that cover the solution space well. 
The working principle of the token competition will be 
discussed later in Section 3.5. In addition to passing the 
outcome of token competition directly into the new 
generation, individuals that are able to seize any token 
(instance) will be added into a rule vector as shown in Fig. 1. 
 

 
Fig. 1  Flowchart of the proposed genetic programming classifier 

 
The rule vector is similar to the memory-cell concept in 
artificial immune system [9], which is used to maintain a 
memory on previously found good solutions. The rule vector 
is maintained such that no redundant rules may exist and 
previously encountered good rules are memorized for 
subsequent competition. All individuals in the rule vector and 
current population will participate in the token competition 
performed to ensure that there will be no redundant rule in 
the rule vector. The complete GP process is performed for 
every class of the dataset, that is, for an n class problem, there 
will be n GP run. The rule vector of every GP run is 
combined into a global decision list vector. At the end of the 
training process, the global decision list vector will be 
presented as the final solution to a problem. The GP-based 
classifier developed in this work, namely, Genetic 
Programming Classifier (GPc) is capable of evolving a 
classification rules list, which is implemented in Java™ and 
is based on the Groovy Java Genetic Programming (gjprog) 
package. The GPc is then integrated into the Waikato 
Environment for Knowledge Analysis (WEKA) [16], a Java-
based public domain data mining package, which is used as 
the experiment and analysis environment in this work. 
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B. Function and Terminal sets 
For the GP classifier to be capable of evolving a classification 
rule, two Boolean operators, AND and NOT, are used. These 
two functions are sufficient to build a basic classification rule 
in the form of, e.g., 
 

If antecedent1 AND (NOT antecedent2) AND … then 
consequent. 

 
The classification rules that are built up of AND and NOT 
can then combined to form the decision rules list (the OR 
effect). This can be effectively realized with a covering 
algorithm, such as token competition. The terminal set 
contains all possible attribute-value pairs of a given dataset. 
That is, the terminal set (T) is defined as, 
 

T = {attr1-value11, attr1-value12, … attr1-value1n,  
        attr2-value21, attr2-value22,…, attr2-value2n, 
        …, attrm-valuem1, attrm-valuem2,…, attrm-valuemn} 

 
where m is the number of attributes in the dataset and n is the 
number of values for each respective attribute. To avoid 
redundant and conflicting nodes exist in the same tree, these 
terminals are built into a table and only one attribute-value 
pair can be selected from each attribute entry for a tree 
structure. Each individual is encoded as a single rule. The 
population is structured such that all individuals in a 
particular GP run predict the same class (there will be n GP 
run for n classes). With this structure, there is no encoding 
needed for the class value.  
 
C. Fitness Function 
The fitness function evaluates the quality of each rule or 
individual, which is based on the evaluation function 
previously proposed by [12]. The fitness function is defined 
as, 

 
( ) ( )1 2

tp tn
fitness

tp w fn tn w fp
= ×

+ +
 (1) 

The tp, fp, tn and fn stands for true positive, false positive, 
true negative and false negative, respectively. These are four 
possible outcomes or concepts resulted from classifying an 
instance. The true positive and true negative are correct 
classifications, while false positive and false negative are 
incorrect classifications. Consider a two-class case with 
classes yes and no, for example, 
 
True positive (tp): the rule predicts that the class is yes 
(positive) and the class of the given instance is indeed yes 
(positive). 
False positive (fp): the rule predicts that the class is yes 
(positive) but the class of the given instance is in fact no 
(negative). 
True negative (tn): the rule predicts that the class is no 
(negative) and the class of the given instance is indeed no 
(negative). 

False negative (fn): the rule predicts that the class is no 
(negative) but the class of the given instance is in fact yes 
(positive). 
 
These observations can be presented as a confusion matrix 
shown in Table 1. The fitness function has a value between 0 
and 1. The weights (w1 and w2) enable the dependency of 
fitness function on different concepts (i.e., tp, fp, tn and fn) to 
be controlled effectively, especially when the classifier is 
used to deal with datasets that have variety of characteristics 
from different domains, as in this experiment. With w1 = 1.0 
and w2 = 1.0, the first part of the fitness function is known as 
sensitivity and the second part is known as specificity. In 
medical domain, these two parameters are used as 
performance measures of a classifier test [12]. The weights 
are controlled such that decreasing w1 or increasing w2 will 
usually improve the prediction accuracy but increase the 
tendency of over-fitting (i.e., increase in number of rules). 
The range of 0.2–1 for w1 and the range of 1–20 for w2 are 
found to be reasonable settings for most cases. 
 

TABLE 1  CONFUSION MATRIX OF CONCEPTS 
Predicted class 

 
Yes No 

Yes tp fn Actual class 
No fp tn 

 
D. The Concept Map 
For rule evaluation, the use of concept map is proposed in 
this paper. For every GP run, once the concept table of a 
terminal on the training cases is built, the concept table is 
stored in the memory for future reference. This reduces the 
need to rescan the training set and thus makes the fitness 
evaluation more efficient.  
 
The derivation of concept map is as follows: The problem 
space is restricted to 2-class problem. Therefore, an n-class 
problem must be solved as n 2-class problem. As described 
earlier in the section, the whole population in a single GP run 
represents one predicted class. For example, assume a six-
class dataset with class {1, 2, 3, 4, 5, 6}. When the GP is run 
for class 1, positive instances are instances with class 1, and 
negative instances are instances with class other than 1, i.e., 
{2, 3, 4, 5, 6}. With this setup, 2 properties can be observed: 
 
(1) An antecedent with positive concept (tp or fp) when 

‘AND’ together with another antecedent with negative 
concept (tn or fn) will always produce a negative 
concept. 

(2) Two antecedents with same concept on an instance when 
‘AND’ together will learn the same concept again. 

 
Additionally, a rule will never have two antecedents that 
when used separately, will predict a given instance with 
different classes. That is, for the antecedents {A, B}, the 
following will never happen and hence can be set as don’t 
care (X): 

A (tp) AND B (tn) A (fp) AND B (fn) 

0-7803-7282-4/02/$10.00 ©2002 IEEE



A (tp) AND B (fp) A (tn) AND B (fn) 
The NOT function is reflected with very simple property as 
well. A NOT to an antecedent will cause a positive instance 
become negative instance (Xp ↔ Xn) and true concept 
become false concept (tX ↔ fX), and vice versa. These 
observations are summarized into Table 2 named concept 
maps, which are used to program the execution of function 
AND and NOT, respectively. Therefore the AND and NOT 
functions implemented in the paper are different from 
conventional logical AND and NOT.  
 

TABLE 2: THE CONCEPT MAP (A) AND (B) NOT 
  (A)   (B) 

 
 
 
 
 

 
 

 
E. Covering Algorithm 
The token competition (TC) technique proposed by Wong 
and Leung (2000) is employed as an alternative niche 
approach to promote the diversity and to evolve multiple 
rules. Multiple rules that cover the same instances of training 
set increase the tendency of premature convergence. Most of 
the time, only a few of these rules are useful and cover most 
of the instances while most others are redundant. The TC is 
an effective way to eliminate redundant rules and its working 
principle is as follows: In token competition, instance in the 
training set is called token or resource. Instances that are 
covered by an individual are the territory of that individual. 
Territories may overlap and all individuals should try their 
best to prevent others from sharing their territory. Individuals 
of current generation and existing individuals in the rule 
vector will compete for tokens to survive, following the token 
competition algorithm. Individuals that seize tokens less than 
the total number of tokens in its territory will be penalized. 
Individuals that are failed to seize any token will soon extinct 
from the population. That is, the more tokens an individual 
can seize, the more likely it will survive. The penalization is 
done by adjusting the fitness according to eqn. 2. Fig. 2 
shows the pseudo code of the modified token competition 
used in this paper. 

 __
_

token countadjusted fitness fitness
ideal count

= ×  (2) 

The ideal_count is the maximum number of token in an 
individual’s territory, that is, the total instances in the training 
set that match the individual. However, because of the 
existence of competition, an individual usually will not be 
able to seize all available tokens. The actual number of 
tokens that are successfully taken by an individual is reflected 
by its token_count value. At the end of the token competition, 
all individual will be re-evaluated according to the 
token_count to ideal_count ratio as shown in eqn. 2. As such, 
individuals that are able to get tokens up to their respective 
ideal count will maintain their original fitness. For 
individuals that are only successful in seizing part of the 

tokens, the token_count to ideal_count ratio will penalize 
them accordingly. Those individuals that success in the token 
competition will be added into the rule vector and wait for 
new individuals from the next generation for another round of 
competition. Note that the TC algorithm allows any 
individuals that are able to get at least a token to survive to 
the next generation and in the rule vector. This in many cases 
will cause the size of the rule vector to increase significantly. 
This is an unwanted situation because it will decrease the 
effectiveness of token competition. As such, the token 
competition is set so that an individual would only survive if 
its ratio of token_count to the total number of training 
instances (N) is greater than the predefined minimum support. 

That is, if _token count min_support
N

< , then the individual 

should be considered as bad individual and thus be removed. 
 

Set the flag of all instances to –1 
Set ideal_count  and token_count  of all individuals to 0 
For all individuals in the population and individuals in the rule vector, do 

For all instances in the training set, do 
If instance is in the territory of individual 

ideal_count ß ideal_count + 1 
If this instance haven’t been seized by any individual  

Flag as token 
Else  

Challenge the owner of the instance by fitness 
Flag as token if fitter, otherwise leave it alone 

Repeat for the next instance 
Repeat for the next individual 
Calculate the token_count  of each individual by scanning the flags 
Adjust the fitness of all individuals  

Fig. 2  Pseudo code of Token Competition 
 

IV.  CASE STUDY 
 
A. Problem Sets  
To evaluate the performance of the proposed GP classifier, 
the system is applied to some selected artificial as well as 
real-world datasets from the UCI machine learning 
repository. Table 3 summarizes the datasets used in this 
work. 
 

TABLE 3  PROBLEM COM PLEXITY OF THE DATASETS TESTED 
Dataset Attribute class Instances missing 
Weather 4 2 14 no 
Contact-lenses  4 3 24 no 
Zoo 17 7 101 no 
Breast-Cancer 9 2 286 yes 
Monks-1 6 2 432 no 
Monks-2 6 2 432 no 
Monks-3 6 2 432 no 
Mushroom 22 2 8124 yes 
Nursery 8 5 12960 no 

 
All experiments are carried out using split test with 2/3 of 
dataset as training set, and 1/3 as test set. Numeric attributes 
are discretized to nominal values before feeding to the GP 
classifier. All datasets are experimented with 30 independent 
runs using the GP classifier (except only 15 runs for the 
problem of nursery). Table 4 lists the common parameter 
settings used for all problems. Table 5 lists the GP parameters 
that are set according to the problem complexity. The fitness 

 tp fp tn Fn 
tp tp X X fn 
fp  fp tn X 
tn   tn X 
fn    fn 

tp fn 
fp tn 
tn fp 
fn tp 
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of an individual is computed using the complete training set 
as fitness cases. The decision rules list obtained by the GP 
classifier is evaluated using the test set. It can be observed 
that the parameter settings vary greatly with the problem. 
Most of the experiments are done with most common settings 
of GP since tuning GP parameters for every problem is 
particularly difficult as the problem domains vary greatly 
with different set of data. 
 

TABLE 4  COMMON PARAMETER SETTING FOR GP CLASSIFIER 
Parameter Setting 
Function set AND, NOT 
Terminal set All possible attribute-value pairs 
Tree initialisation method Ramped-half-and-half 
Fitness cases  All instances of training set 
Maximum crossover depth 17 
Mutation probability 0.1 
Crossover probability 0.9 
Reproduction probability 0.1 
Elitism rate 0.05 
Minimum support 0.01 

 
TABLE 5  SETTINGS BASED ON PROBLEM COMPLEXITY 

Dataset Population 
size 

Maximum 
generation 

Initial tree 
depth 

w1 w2 

Weather 10 10 2-3 0.5 2 
Contact-lenses  25 25 2-3 0.5 2 
Zoo 25 25 2-6 1.0 1 
Breast-Cancer 50 50 2-6 1.0 1 
Monks-1 50 50 2-6 0.5 10 
Monks-2 50 25 2-6 0.2 12 
Monks-3 50 25 2-6 0.5 2 
Mushroom 50 50 2-6 0.5 8 
Nursery 100 50 2-8 0.5 20 

 
B. Results and Analysis 
Table 6 shows the classification accuracies, average number 
of rules and typical run time for each problem. For clean data, 
where there is no missing value and have explicit knowledge 
(such as the zoo dataset), the GP classifier can evolve the 
expected rules easily with high classification accuracy. 
Decision rules list with perfect accuracy can be achieved 
easily for these datasets. The GPc is found robust to the 
existence of missing values in the datasets (breast-cancer and 
mushroom datasets). The missing value is simply assigned as 
negative concept and without any special handling technique, 
the GPc is able to tolerate the missing values with some 
degradation to the classification accuracy. All datasets except 

zoo dataset found number of rules greater than their 
respective number of class to represent the dataset. Without 
the covering algorithm, GPc will produce only one rule per 
class, which is insufficient for good classification in most 
cases. Generally, the accuracy increases as the number of 
rules grows. However, having too many rules to represent a 
dataset is not preferable in a practical extent. Therefore, the 
number of rules is restricted with the trade off on accuracy. 
One notable result seems contrary to this aspect is that for 
monk2 problem, the classification accuracy (58.85%) is 
obtained with a relative large number of rules. This is mainly 
because the hidden knowledge of this problem is difficult to 
be represented using the usual ‘if-and-then’ rules. Our 
approach tends to evolve a large number of rules (average of 
34) to represent the hidden fact of the problem. However, 
because of the minimum support setting used to limit the 
number of rules the system should hold, the rules evolved are 
not enough to represent the whole dataset. The best accuracy 
(75.46%) for this problem is achieved with 67 rules by setting 
the minimum support to 0. The results on breast-cancer 
dataset are particularly focused because relatively low 
accuracy had been achieved for this problem. This can be 
considered as a hard problem and should challenge any 
classification approach as most of the previous studies 
reported relatively high classification error. The default 
accuracy (classification without rule, which always classify 
instances as major class) is 67%. The average accuracy 
obtained here is 70.65% with 12 rules, and the best accuracy 
is 73.47%, as can be seen from Table 6. Although the 
accuracies are low, these results are comparable to the results 
of some previous studies (65 – 78%) obtained from the ‘past 
usage’ section in the dataset. 
 
C. Performance Comparisons 
The performance of the proposed GPc model was compared 
to other classification methods. The results are shown in 
Table 7 for the same nine datasets. The first seven classifiers, 
which are Decision Table, K-nearest neighborhood (IBk), 
ID3, J48, Naïve Bayes, One rule (OneR) and multi-layer 
perceptron neural network with back-propagation (NN) are 
included in the WEKA package for comparison. The J48 is a 
classifier that generates an unpruned or a pruned C4.5 
decision tree [15]. All these classifiers are applied with their 
default settings as provided in the WEKA. 

 
 

TABLE 6  CLASSIFICATION ACCURACY RATES AND NUMBER OF RULES OBTAINED BY GPC 
Accuracy (%) Dataset Test 

instances 
Correctly classified 

instances Best Avg Stddev 
Run time (s) Number of 

rules 
Weather 14 14 100.00 98.57 1.01 26 5 
Contact 24 22 100.00 92.08 5.60 30 7 
Zoo 35 33 100.00 94.29 4.03 264 7 
Breast-Cancer 98 69 73.47 70.65 1.99 116 12 
Monk1 147 120 100.00 81.63 12.99 147 13 
Monk2 147 87 75.46 58.85 11.99 89 34 
Monk3 147 145 100.00 98.78 0.86 69 6 
Mushroom 2713 2574 97.21 94.86 1.66 255 8 
Nursery 4407 3687 86.79 83.67 2.21 1847 20 
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TABLE 7  PERFORMANCE COMPARISON OF GPC TO OTHER CLASSIFICATION METHODS 
Dataset Decision Table IBk ID3 J48 Naïve Bayes OneR NN GA GbGP GPc 
Weather 85.71 100 100 100 92.86 71.43 100 - - 100 
Contact 87.5 100 100 91.67 95.83 70.83 100 - - 100 
Zoo 91.43 97.14 100 97.14 97.14 34.28 97.14 82.4 - 100 
Breast-Cancer 73.47 69.39 mv 73.47 69.39 68.37 71.43 71.03 - 73.47 
Monk1 100 97.96 87.07 100 77.55 77.55 100 - 100 100 
Monk2 66.67 57.82 35.37 66.67 61.22 66.67 100 - 60 75.46 
Monk3 100 100 100 100 98.64 84.35 100 - 95.4 100 
Mushroom 100 100 mv 100 95.69 98.44 100 - - 97.21 
Nursery 94.35 96.60 96.39 96.19 91.04 70.37 99.93 - - 86.79 

mv – missing values error (the classifier is not able to process missing values) 
 
 
The results from Genetic Algorithm (GA) and grammar-
based genetic programming (GbGP) are obtained from [13] 
and [18], respectively. Table 7 does not include the complete 
results for the GA and GbGP as they were not provided in 
their respective publication. The ID3 has two “mv” because 
this algorithm was unable to handle dataset with missing 
values. The best classification accuracies for each dataset are 
highlighted in bold font. It can be seen that the OneR method 
performed well on 2-class problems. However, for dataset 
with larger number of class to be predicted, the classification 
accuracy dropped significantly, as can be seen for the zoo 
dataset. The NN classifier shows impressive results on all the 
datasets, but generally, the training time is much longer than 
all other methods and there is no comprehensible rules 
generated by the NN compared. The results for GPc shown in 
Table 7 are the best results obtained for each dataset. As can 
be seen, the proposed GP classifier performs comparatively 
well to other classification algorithms on the datasets tested. 

 
 

V.  CONCLUSIONS AND FUTURE WORK 
 

This paper has presented a GP classifier that implements the 
technique of concept mapping with enhanced representation 
of booleanized attributes and token competition to evolve 
multiple rules per class in data mining. The GP classifier has 
been applied to several selected datasets from UCI Machine 
Learning Repository, which shows that GP with simple tree 
structure (contains only AND and NOT function) is sufficient 
to represent solutions for classification tasks. The proposed 
GP classifier also demonstrates its capability of discovering 
comprehensible rules from datasets without background 
knowledge on that dataset. This feature is particularly 
important in learning the preliminary information for further 
guidance in the data mining process. Despite a few low 
performances on certain datasets, the GP classifier has been 
demonstrated to be a very promising approach in data mining. 
Future work includes further validations of the GP classifier 
upon a variety of datasets and refinements to the proposed GP 
classifier for better classification performance and accuracy. 
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