
MINING MULTIPLE COMPREHENSIBLE CLASSIFICATION RULES
USING GENETIC PROGRAMMING

K. C. Tan, A. Tay, T. H. Lee and C. M. Heng

Department of Electrical and Computer Engineering
National University of Singapore

10 Kent Ridge Crescent Singapore 119260

Abstract: Genetic Programming (GP) has been emerged as a
promising approach to deal with classification task in data
mining. This work extends the tree representation of GP to
evolve multiple comprehensible IF-THEN classification rules. In
the paper, we introduce a concept mapping technique for fitness
evaluation of individuals. A covering algorithm that employs an
artificial immune system-like memory vector is utilized to
produce multiple rules as well as to remove redundant rules.
The proposed GP classifier is validated upon nine benchmark
datasets and the simulation results confirm the viability and
effectiveness of the GP approach for solving data mining
problems in a wide spectrum of application domains.

I. INTRODUCTION

Data mining is an automated process of extracting structured
knowledge from databases, which is often referred to as a
particular step in the overall process of discovering useful
knowledge from data, called knowledge discovery from
database (KDD) [6]. In recent years, there have been
numerous attempts to apply evolutionary algorithms (EAs) in
data mining to accomplish various tasks [1-4, 7, 10, 14, 17,
18]. One of the data mining tasks gaining significant
attentions is the rules/knowledge extraction from databases.
Along with other evolutionary algorithms, genetic
programming (GP) has emerged as a promising technique to
discover useful and interesting knowledge from the database.
Genetic programming has been formulated originally as an
autonomous method for breeding computer programs using
tree structures [11].

GP starts with a population of randomly created individuals
that represents the possible solutions to a given problem. The
principle elements of the GP are a set of functions and
terminals that are able to represent the solution of the
problem. The function set may consist of arithmetic
operators, mathematic functions, Boolean operators,
conditional and branch operators etc., whereas the terminal
set may consist of problem specified variables and/or
constant values. For every generation, each individual will be
evaluated for its fitness, and individuals of the next
generation will be produced from the parents selected based
on their fitness value. The population evolves through genetic
reproduction, crossover and mutation over a number of
generations until the termination criteria is met. At the end of
the GP run, the best individual is presented as the solution to
the problem. In this work, we extend the idea of booleanized
attributes [3] and use the Michigan approach to encode the
rules, where each individual encodes only one rule. With this

configuration, a simpler structure that is easy for evaluation
with good comprehensibility could be produced. The
proposed GP classifier is tested on nine sets of data obtained
from UCI Machine Learning Repository, which is a
collection of widely used benchmark and real-world data for
data mining and KDD community.

This paper studies the application of GP in data mining by
evolving a set of comprehensive decision rules with high
classification accuracy. A novel concept mapping technique
is also introduced for efficient fitness evaluation. To evolve a
set of classification rules that are compatible to each other,
i.e., rules that can be used collectively as a whole to classify
the instances without conflicting each other, a covering
algorithm is utilized. The covering algorithm uses an immune
system-like memory vector to hold discovered good rules
such that redundant rules could be checked and removed.
Therefore, the covering algorithm effectively enables the
production of multiple rules for each class when necessary.
The paper is organized as follows: In Section II, the
classification task in data mining is introduced in general.
Section III presents the proposed GP classifier system and
discusses the approach of concept mapping for fitness
evaluation and the covering algorithm. The problem sets used
for validation are presented in Section IV and the simulation
results are analyzed and summarized. Conclusions and future
work are given in Section V.

II. CLASSIFICATION IN DATA MINING

Given a set of classified examples, the goal of classification
is to find a logical description that correctly classifies novel
cases. The three basic requirements of a classifier are
accuracy, simplicity and efficiency [5]. In the classification
task, the discovered knowledge is usually represented in the
form of decision trees or IF-THEN prediction rules, which
have the advantage of being a high-level and symbolic
knowledge representation contributing towards the
comprehensibility of the discovered knowledge. In this paper,
knowledge is presented as multiple IF-THEN rules in a
decision rules list. Such rules state that the presence of one or
more items (antecedents) implies or predicts the presence of
other items (consequents). A typical rule has the form of

Rule: If X1 and X2 and … Xn then Y,

where Xi, ∀ i ∈ {1,2,…,n} is the antecedent that leads to the
prediction of consequent Y.

0-7803-7282-4/02/$10.00 ©2002 IEEE

One reason of using classification rules instead of decision
tree is that each rule can be seen as an independent piece of
knowledge. New rules can be added to an existing rule set
without disturbing those already there. Multiple rules can be
combined together to form a set of decision rules. This set of
decision rules is usually listed according to the “quality” of
the rules, with the best rule listed first. When the decision
rules list is use to predict a new instance, the best rule will be
considered first. If the rule does not match the instance, i.e.,
the antecedents of the rule do not satisfy the value of the
attributes in the instance, then the next rule will be
considered. At the case where none of the rules in the
decision list satisfies the new instance, the predetermined
default prediction will be used. The default prediction class is
the largest class in the training set in this case (the class with
the largest number of instances). The basic structure of the
decision rules list could be built as follows:

IF (antecedents)1 THEN class1
ELSE IF (antecedents)2 THEN class2
… ELSE default class

The discovered decision rules can be evaluated according to
several criteria, such as classification accuracy rate on
unlabeled instances (testing set), degree of confidence in the
prediction, comprehensibility, and interestingness.
Classification accuracy is the major metric to evaluate the
performance of a classifier. Comprehensibility measures how
clear and easy a rule is for human to understand and take
action on it accordingly. Rules that are incomprehensible to
human are often useless in the sense of data mining and
knowledge discovery because such rules are not beneficial to
the user. Interestingness measures surprisingness
(unexpectedness), usefulness and novelty of the discovered
knowledge [8]. As compared to classification accuracy and
comprehensibility, the interestingness of a rule is still more
difficult to measure. This paper only considers the predictive
accuracy of the decision rules and comprehensibility of the
rules.

III. THE GENETIC PROGRAMMING CLASSIFIER

A. Flowchart o f GP Classifier
The GP used in this paper is based upon a modified version
of steady state GP [1]. Fig. 1 depicts the complete learning
flow of the GP Classifier. The GP starts with an initial
population. The initial population is created with ‘ramped-
half-and-half’ method [11]. The elitism preserving strategy is
used to ensure that some best individuals of current
generation will survive in the next generation according to
the elitism rate, e. The tournament selection scheme with
tournament size of 2 is implemented to reduce the selection
pressure and for good convergence. After the genetic
operations (i.e. crossover, mutation and reproduction) are
applied to the individuals, the genetically modified
individuals together with the preserved elitist will form the

new population. These individuals will pass through a
covering algorithm to penalize the redundant individuals and
to promote the individuals that cover the solution space well.
The working principle of the token competition will be
discussed later in Section 3.5. In addition to passing the
outcome of token competition directly into the new
generation, individuals that are able to seize any token
(instance) will be added into a rule vector as shown in Fig. 1.

Fig. 1 Flowchart of the proposed genetic programming classifier

The rule vector is similar to the memory-cell concept in
artificial immune system [9], which is used to maintain a
memory on previously found good solutions. The rule vector
is maintained such that no redundant rules may exist and
previously encountered good rules are memorized for
subsequent competition. All individuals in the rule vector and
current population will participate in the token competition
performed to ensure that there will be no redundant rule in
the rule vector. The complete GP process is performed for
every class of the dataset, that is, for an n class problem, there
will be n GP run. The rule vector of every GP run is
combined into a global decision list vector. At the end of the
training process, the global decision list vector will be
presented as the final solution to a problem. The GP-based
classifier developed in this work, namely, Genetic
Programming Classifier (GPc) is capable of evolving a
classification rules list, which is implemented in Java™ and
is based on the Groovy Java Genetic Programming (gjprog)
package. The GPc is then integrated into the Waikato
Environment for Knowledge Analysis (WEKA) [16], a Java-
based public domain data mining package, which is used as
the experiment and analysis environment in this work.

0-7803-7282-4/02/$10.00 ©2002 IEEE

B. Function and Terminal sets
For the GP classifier to be capable of evolving a classification
rule, two Boolean operators, AND and NOT, are used. These
two functions are sufficient to build a basic classification rule
in the form of, e.g.,

If antecedent1 AND (NOT antecedent2) AND … then
consequent.

The classification rules that are built up of AND and NOT
can then combined to form the decision rules list (the OR
effect). This can be effectively realized with a covering
algorithm, such as token competition. The terminal set
contains all possible attribute-value pairs of a given dataset.
That is, the terminal set (T) is defined as,

T = {attr1-value11, attr1-value12, … attr1-value1n,
 attr2-value21, attr2-value22,…, attr2-value2n,
 …, attrm-valuem1, attrm-valuem2,…, attrm-valuemn}

where m is the number of attributes in the dataset and n is the
number of values for each respective attribute. To avoid
redundant and conflicting nodes exist in the same tree, these
terminals are built into a table and only one attribute-value
pair can be selected from each attribute entry for a tree
structure. Each individual is encoded as a single rule. The
population is structured such that all individuals in a
particular GP run predict the same class (there will be n GP
run for n classes). With this structure, there is no encoding
needed for the class value.

C. Fitness Function
The fitness function evaluates the quality of each rule or
individual, which is based on the evaluation function
previously proposed by [12]. The fitness function is defined
as,

() ()1 2

tp tn
fitness

tp w fn tn w fp
= ×

+ +
 (1)

The tp, fp, tn and fn stands for true positive, false positive,
true negative and false negative, respectively. These are four
possible outcomes or concepts resulted from classifying an
instance. The true positive and true negative are correct
classifications, while false positive and false negative are
incorrect classifications. Consider a two-class case with
classes yes and no, for example,

True positive (tp): the rule predicts that the class is yes
(positive) and the class of the given instance is indeed yes
(positive).
False positive (fp): the rule predicts that the class is yes
(positive) but the class of the given instance is in fact no
(negative).
True negative (tn): the rule predicts that the class is no
(negative) and the class of the given instance is indeed no
(negative).

False negative (fn): the rule predicts that the class is no
(negative) but the class of the given instance is in fact yes
(positive).

These observations can be presented as a confusion matrix
shown in Table 1. The fitness function has a value between 0
and 1. The weights (w1 and w2) enable the dependency of
fitness function on different concepts (i.e., tp, fp, tn and fn) to
be controlled effectively, especially when the classifier is
used to deal with datasets that have variety of characteristics
from different domains, as in this experiment. With w1 = 1.0
and w2 = 1.0, the first part of the fitness function is known as
sensitivity and the second part is known as specificity. In
medical domain, these two parameters are used as
performance measures of a classifier test [12]. The weights
are controlled such that decreasing w1 or increasing w2 will
usually improve the prediction accuracy but increase the
tendency of over-fitting (i.e., increase in number of rules).
The range of 0.2–1 for w1 and the range of 1–20 for w2 are
found to be reasonable settings for most cases.

TABLE 1 CONFUSION MATRIX OF CONCEPTS
Predicted class

Yes No

Yes tp fn Actual class
No fp tn

D. The Concept Map
For rule evaluation, the use of concept map is proposed in
this paper. For every GP run, once the concept table of a
terminal on the training cases is built, the concept table is
stored in the memory for future reference. This reduces the
need to rescan the training set and thus makes the fitness
evaluation more efficient.

The derivation of concept map is as follows: The problem
space is restricted to 2-class problem. Therefore, an n-class
problem must be solved as n 2-class problem. As described
earlier in the section, the whole population in a single GP run
represents one predicted class. For example, assume a six-
class dataset with class {1, 2, 3, 4, 5, 6}. When the GP is run
for class 1, positive instances are instances with class 1, and
negative instances are instances with class other than 1, i.e.,
{2, 3, 4, 5, 6}. With this setup, 2 properties can be observed:

(1) An antecedent with positive concept (tp or fp) when

‘AND’ together with another antecedent with negative
concept (tn or fn) will always produce a negative
concept.

(2) Two antecedents with same concept on an instance when
‘AND’ together will learn the same concept again.

Additionally, a rule will never have two antecedents that
when used separately, will predict a given instance with
different classes. That is, for the antecedents {A, B}, the
following will never happen and hence can be set as don’t
care (X):

A (tp) AND B (tn) A (fp) AND B (fn)

0-7803-7282-4/02/$10.00 ©2002 IEEE

A (tp) AND B (fp) A (tn) AND B (fn)
The NOT function is reflected with very simple property as
well. A NOT to an antecedent will cause a positive instance
become negative instance (Xp ↔ Xn) and true concept
become false concept (tX ↔ fX), and vice versa. These
observations are summarized into Table 2 named concept
maps, which are used to program the execution of function
AND and NOT, respectively. Therefore the AND and NOT
functions implemented in the paper are different from
conventional logical AND and NOT.

TABLE 2: THE CONCEPT MAP (A) AND (B) NOT
 (A) (B)

E. Covering Algorithm
The token competition (TC) technique proposed by Wong
and Leung (2000) is employed as an alternative niche
approach to promote the diversity and to evolve multiple
rules. Multiple rules that cover the same instances of training
set increase the tendency of premature convergence. Most of
the time, only a few of these rules are useful and cover most
of the instances while most others are redundant. The TC is
an effective way to eliminate redundant rules and its working
principle is as follows: In token competition, instance in the
training set is called token or resource. Instances that are
covered by an individual are the territory of that individual.
Territories may overlap and all individuals should try their
best to prevent others from sharing their territory. Individuals
of current generation and existing individuals in the rule
vector will compete for tokens to survive, following the token
competition algorithm. Individuals that seize tokens less than
the total number of tokens in its territory will be penalized.
Individuals that are failed to seize any token will soon extinct
from the population. That is, the more tokens an individual
can seize, the more likely it will survive. The penalization is
done by adjusting the fitness according to eqn. 2. Fig. 2
shows the pseudo code of the modified token competition
used in this paper.

 __
_

token countadjusted fitness fitness
ideal count

= × (2)

The ideal_count is the maximum number of token in an
individual’s territory, that is, the total instances in the training
set that match the individual. However, because of the
existence of competition, an individual usually will not be
able to seize all available tokens. The actual number of
tokens that are successfully taken by an individual is reflected
by its token_count value. At the end of the token competition,
all individual will be re-evaluated according to the
token_count to ideal_count ratio as shown in eqn. 2. As such,
individuals that are able to get tokens up to their respective
ideal count will maintain their original fitness. For
individuals that are only successful in seizing part of the

tokens, the token_count to ideal_count ratio will penalize
them accordingly. Those individuals that success in the token
competition will be added into the rule vector and wait for
new individuals from the next generation for another round of
competition. Note that the TC algorithm allows any
individuals that are able to get at least a token to survive to
the next generation and in the rule vector. This in many cases
will cause the size of the rule vector to increase significantly.
This is an unwanted situation because it will decrease the
effectiveness of token competition. As such, the token
competition is set so that an individual would only survive if
its ratio of token_count to the total number of training
instances (N) is greater than the predefined minimum support.

That is, if _token count min_support
N

< , then the individual

should be considered as bad individual and thus be removed.

Set the flag of all instances to –1
Set ideal_count and token_count of all individuals to 0
For all individuals in the population and individuals in the rule vector, do

For all instances in the training set, do
If instance is in the territory of individual

ideal_count ß ideal_count + 1
If this instance haven’t been seized by any individual

Flag as token
Else

Challenge the owner of the instance by fitness
Flag as token if fitter, otherwise leave it alone

Repeat for the next instance
Repeat for the next individual
Calculate the token_count of each individual by scanning the flags
Adjust the fitness of all individuals

Fig. 2 Pseudo code of Token Competition

IV. CASE STUDY

A. Problem Sets
To evaluate the performance of the proposed GP classifier,
the system is applied to some selected artificial as well as
real-world datasets from the UCI machine learning
repository. Table 3 summarizes the datasets used in this
work.

TABLE 3 PROBLEM COM PLEXITY OF THE DATASETS TESTED
Dataset Attribute class Instances missing
Weather 4 2 14 no
Contact-lenses 4 3 24 no
Zoo 17 7 101 no
Breast-Cancer 9 2 286 yes
Monks-1 6 2 432 no
Monks-2 6 2 432 no
Monks-3 6 2 432 no
Mushroom 22 2 8124 yes
Nursery 8 5 12960 no

All experiments are carried out using split test with 2/3 of
dataset as training set, and 1/3 as test set. Numeric attributes
are discretized to nominal values before feeding to the GP
classifier. All datasets are experimented with 30 independent
runs using the GP classifier (except only 15 runs for the
problem of nursery). Table 4 lists the common parameter
settings used for all problems. Table 5 lists the GP parameters
that are set according to the problem complexity. The fitness

 tp fp tn Fn
tp tp X X fn
fp fp tn X
tn tn X
fn fn

tp fn
fp tn
tn fp
fn tp

0-7803-7282-4/02/$10.00 ©2002 IEEE

of an individual is computed using the complete training set
as fitness cases. The decision rules list obtained by the GP
classifier is evaluated using the test set. It can be observed
that the parameter settings vary greatly with the problem.
Most of the experiments are done with most common settings
of GP since tuning GP parameters for every problem is
particularly difficult as the problem domains vary greatly
with different set of data.

TABLE 4 COMMON PARAMETER SETTING FOR GP CLASSIFIER
Parameter Setting
Function set AND, NOT
Terminal set All possible attribute-value pairs
Tree initialisation method Ramped-half-and-half
Fitness cases All instances of training set
Maximum crossover depth 17
Mutation probability 0.1
Crossover probability 0.9
Reproduction probability 0.1
Elitism rate 0.05
Minimum support 0.01

TABLE 5 SETTINGS BASED ON PROBLEM COMPLEXITY

Dataset Population
size

Maximum
generation

Initial tree
depth

w1 w2

Weather 10 10 2-3 0.5 2
Contact-lenses 25 25 2-3 0.5 2
Zoo 25 25 2-6 1.0 1
Breast-Cancer 50 50 2-6 1.0 1
Monks-1 50 50 2-6 0.5 10
Monks-2 50 25 2-6 0.2 12
Monks-3 50 25 2-6 0.5 2
Mushroom 50 50 2-6 0.5 8
Nursery 100 50 2-8 0.5 20

B. Results and Analysis
Table 6 shows the classification accuracies, average number
of rules and typical run time for each problem. For clean data,
where there is no missing value and have explicit knowledge
(such as the zoo dataset), the GP classifier can evolve the
expected rules easily with high classification accuracy.
Decision rules list with perfect accuracy can be achieved
easily for these datasets. The GPc is found robust to the
existence of missing values in the datasets (breast-cancer and
mushroom datasets). The missing value is simply assigned as
negative concept and without any special handling technique,
the GPc is able to tolerate the missing values with some
degradation to the classification accuracy. All datasets except

zoo dataset found number of rules greater than their
respective number of class to represent the dataset. Without
the covering algorithm, GPc will produce only one rule per
class, which is insufficient for good classification in most
cases. Generally, the accuracy increases as the number of
rules grows. However, having too many rules to represent a
dataset is not preferable in a practical extent. Therefore, the
number of rules is restricted with the trade off on accuracy.
One notable result seems contrary to this aspect is that for
monk2 problem, the classification accuracy (58.85%) is
obtained with a relative large number of rules. This is mainly
because the hidden knowledge of this problem is difficult to
be represented using the usual ‘if-and-then’ rules. Our
approach tends to evolve a large number of rules (average of
34) to represent the hidden fact of the problem. However,
because of the minimum support setting used to limit the
number of rules the system should hold, the rules evolved are
not enough to represent the whole dataset. The best accuracy
(75.46%) for this problem is achieved with 67 rules by setting
the minimum support to 0. The results on breast-cancer
dataset are particularly focused because relatively low
accuracy had been achieved for this problem. This can be
considered as a hard problem and should challenge any
classification approach as most of the previous studies
reported relatively high classification error. The default
accuracy (classification without rule, which always classify
instances as major class) is 67%. The average accuracy
obtained here is 70.65% with 12 rules, and the best accuracy
is 73.47%, as can be seen from Table 6. Although the
accuracies are low, these results are comparable to the results
of some previous studies (65 – 78%) obtained from the ‘past
usage’ section in the dataset.

C. Performance Comparisons
The performance of the proposed GPc model was compared
to other classification methods. The results are shown in
Table 7 for the same nine datasets. The first seven classifiers,
which are Decision Table, K-nearest neighborhood (IBk),
ID3, J48, Naïve Bayes, One rule (OneR) and multi-layer
perceptron neural network with back-propagation (NN) are
included in the WEKA package for comparison. The J48 is a
classifier that generates an unpruned or a pruned C4.5
decision tree [15]. All these classifiers are applied with their
default settings as provided in the WEKA.

TABLE 6 CLASSIFICATION ACCURACY RATES AND NUMBER OF RULES OBTAINED BY GPC
Accuracy (%) Dataset Test

instances
Correctly classified

instances Best Avg Stddev
Run time (s) Number of

rules
Weather 14 14 100.00 98.57 1.01 26 5
Contact 24 22 100.00 92.08 5.60 30 7
Zoo 35 33 100.00 94.29 4.03 264 7
Breast-Cancer 98 69 73.47 70.65 1.99 116 12
Monk1 147 120 100.00 81.63 12.99 147 13
Monk2 147 87 75.46 58.85 11.99 89 34
Monk3 147 145 100.00 98.78 0.86 69 6
Mushroom 2713 2574 97.21 94.86 1.66 255 8
Nursery 4407 3687 86.79 83.67 2.21 1847 20

0-7803-7282-4/02/$10.00 ©2002 IEEE

TABLE 7 PERFORMANCE COMPARISON OF GPC TO OTHER CLASSIFICATION METHODS
Dataset Decision Table IBk ID3 J48 Naïve Bayes OneR NN GA GbGP GPc
Weather 85.71 100 100 100 92.86 71.43 100 - - 100
Contact 87.5 100 100 91.67 95.83 70.83 100 - - 100
Zoo 91.43 97.14 100 97.14 97.14 34.28 97.14 82.4 - 100
Breast-Cancer 73.47 69.39 mv 73.47 69.39 68.37 71.43 71.03 - 73.47
Monk1 100 97.96 87.07 100 77.55 77.55 100 - 100 100
Monk2 66.67 57.82 35.37 66.67 61.22 66.67 100 - 60 75.46
Monk3 100 100 100 100 98.64 84.35 100 - 95.4 100
Mushroom 100 100 mv 100 95.69 98.44 100 - - 97.21
Nursery 94.35 96.60 96.39 96.19 91.04 70.37 99.93 - - 86.79

mv – missing values error (the classifier is not able to process missing values)

The results from Genetic Algorithm (GA) and grammar-
based genetic programming (GbGP) are obtained from [13]
and [18], respectively. Table 7 does not include the complete
results for the GA and GbGP as they were not provided in
their respective publication. The ID3 has two “mv” because
this algorithm was unable to handle dataset with missing
values. The best classification accuracies for each dataset are
highlighted in bold font. It can be seen that the OneR method
performed well on 2-class problems. However, for dataset
with larger number of class to be predicted, the classification
accuracy dropped significantly, as can be seen for the zoo
dataset. The NN classifier shows impressive results on all the
datasets, but generally, the training time is much longer than
all other methods and there is no comprehensible rules
generated by the NN compared. The results for GPc shown in
Table 7 are the best results obtained for each dataset. As can
be seen, the proposed GP classifier performs comparatively
well to other classification algorithms on the datasets tested.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a GP classifier that implements the
technique of concept mapping with enhanced representation
of booleanized attributes and token competition to evolve
multiple rules per class in data mining. The GP classifier has
been applied to several selected datasets from UCI Machine
Learning Repository, which shows that GP with simple tree
structure (contains only AND and NOT function) is sufficient
to represent solutions for classification tasks. The proposed
GP classifier also demonstrates its capability of discovering
comprehensible rules from datasets without background
knowledge on that dataset. This feature is particularly
important in learning the preliminary information for further
guidance in the data mining process. Despite a few low
performances on certain datasets, the GP classifier has been
demonstrated to be a very promising approach in data mining.
Future work includes further validations of the GP classifier
upon a variety of datasets and refinements to the proposed GP
classifier for better classification performance and accuracy.

REFERENCES

[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic

Programming: An Introduction on the Automatic Evolution of

Computer Programs and its Applications. San Francisco, CA: Morgan
Kaufmann, 1998.

[2] M. Brameier and W. Banzhaf. A Comparison of Linear Genetic
Programming Neural Networks in Medical Data Mining. IEEE
Transaction on Evolutionary Computation, 5, pp.17-26, 2001.

[3] C. C Bojarczuk, H.S. Lopes, and A.A. Freitas. Genetic Programming
for Knowledge Discovery in Chest-Pain Diagnosis. IEEE Engineering
in Medicine and Biology, July/August, pp. 38-44, 2000.

[4] R. Cattral, F. Oppacher, and D. Deugo. Rule Acquisition with a Genetic
Algorithm. In Proceedings of the 1999 Congress on Evolutionary
Computation, 1, pp. 125-129, 1999.

[5] P. Clark, and T. Niblett. The CN2 induction algorithm. Machine
Learning Journal, 3, pp.261-283, 1989.

[6] U. Fayyad. Data Mining and Knowledge Discovery in Databases:
implications for Scientific Databases. In Proceedings of the ninth
International Conference on Scientific and Statistical Database
Management, pp. 2-11, 1997.

[7] M. V. Fidelis, H. S. Lopes, and A. A. Freitas. Discovering
Comprehensible Classification Rules with a Genetic Algorithm. In
Proc. Of the 2000 Congress on Evolutionary Computation, 1, pp. 805-
810, 2000.

[8] A. A. Freitas. On Rule Interestingness Measures. Knowledge-Based
Systems, 12, pp. 309-315, 1999.

[9] J. E. Hunt, and D. E. Cooke. Learning Using an Artificial Immune
System. Journal of Network and Computer Application, 19, pp. 189-
212. Academic Press, 1996.

[10] J. K. Kishore, L. M. Patnaik, V. Mani, and V. K. Agrawal. Application
of Genetic Programming for Multicategory Pattern Classification. IEEE
Transaction on Evolutionary Computation, 4(3), pp. 242-258, 2000.

[11] J. R. Koza. Genetic Programming: on the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[12] H. S. Lopes, M. S. Coutihno, and W.C. Lima. An Evolutionary
Approach to Simulate Cognitive Feedback Learning In Medical
Domain. In E. Sanchez, T. Shibata and L.A. Zadeh (Eds.), Genetic
Algorithm and Fuzzy Logic Systems: Soft Computing Perspectives, pp.
193-207. Singapore: World Scientific, 1997.

[13] A. Papagelis and D. Kalles. GATree: Genetically Evolved Decision
Trees. In: Proc. of the 12 th IEEE International Conference on Tools
with Artificial Intelligence, pp. 203-206, 2000.

[14] A. R. Polo and M. Hasse. A Genetic Classifier Tool. In Proceedings of
the 20th International Conference of the Chilean Computer Science
Society , pp. 14-23, 2000.

[15] J. R. Quinlan. C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1992.

[16] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. CA: Morgan
Kaufmann Publishers, 1999.

[17] M. L. Wong, W. Lam, K. S. Leung, P.S. Ngan, and J.C.Y. Cheng.
Discovering Knowledge From Medical Databases Using Evolutionary
Algorithms. IEEE Engineering in Medicine and Biology Magazine,
19(4), pp. 45-55, 2000.

[18] M. L. Wong and K. S. Leung. Data Mining Using Grammar Based
Genetic Programming and Applications. London: Kluwer Academic
Publishers, 2000.

0-7803-7282-4/02/$10.00 ©2002 IEEE

	CEC Main Menu
	CEC Table of Contents
	CEC Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
