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Abstract – An innovative approach to spectral pattern
recognition for multispectral images based on Genetic
Programming is introduced. The problem is faced in
terms of unsupervised pixel classification. The system is
tested on a multispectral image with 31 spectral bands
and 256 · 256 pixels. A good quality clustered output
image is obtained.

I. INTRODUCTION

Remote Sensing [1] [2] [3] consists in deriving information
about Earth’s land and water areas from images taken at a
distance. It relies upon measurement of electro-magnetic
energy reflected or emitted from the objects of interest
at the surface of the Earth. Fields of application include
disaster assessment, urban trends monitoring, pollution
detection, land use development, water management,
erosion assessment, weather forecast, climate changes
studies, forest inventarization, and many others [2] [3].
Given an energy source which illuminates target area,
Remote Sensing can be accomplished by means of the
following steps: record the reflected energy by means of a
sensor, transmit recorded information to a receiving station,
process data into a digital image and, finally, interpret
and analyze this image. This can be made at different
wavelengths, resulting in a multispectral digital image.
As concerns the analysis step, a crucial task is feature
classification. Classification procedures can be broadly
subdivided intosupervisedandunsupervisedclassification.
The objective is to assign all pixels in the image to
particular classes or themes (e.g. water, coniferous
forest, deciduous forest, corn, wheat, etc.). The resulting
classified image is comprised of a mosaic of pixels, each
of which belongs to a particular theme, and is essentially a
thematic “map” of the original image.
A human analyst attempting to classify features in an
image uses the elements of visual interpretation to identify
homogeneous groups of pixels which represent various
features or land cover classes of interest. On the contrary,
digital image classification uses the spectral information
represented by the digital numbers in one or more spectral
bands, and attempts to classify each individual pixel based
on this spectral information. This type of classification is
termedspectral pattern recognition.
Quite recently researchers have started to apply evolution-
ary techniques to fulfill several tasks related to image un-
derstanding. With reference to spectral pattern recognition,

nonetheless, at present only little research is reported in
literature about supervised pixel classification, and, as far
as we know, only one paper deals with unsupervised pixel
classification [4].
This paper introduces an innovative approach based on
Genetic Programming (GP) [5] to unsupervised pixel
classification for multispectral images. Differently from
other unsupervised classification approaches, ours is
capable of automatically determining the most suitable
number of clusters. The paper is organized as follows.
Section II describes the problems of spectral pattern
recognition and of unsupervised pixel classification.
Section III briefly reports on the use of Evolutionary
Algorithms in image understanding and particularly in
spectral pattern recognition. Section IV focuses on our
GP–based approach. In order to assess its feasibility,
section V reports preliminary results on the application of
our tool to a publicly available multispectral image with
31 bands and256 · 256 pixels. The conclusions describe
both the positive features and the current limitations of our
method. Finally, future works are outlined.

II. SPECTRAL PATTERN RECOGNITION

The aim of spectral pattern recognition is twofold. The first
goal is the division of all the multispectral image pixels
into clusters, based on statistical features of the pixels
themselves. This also results in the identification of the
optimal number of clusters.
The second goal is the association of any found cluster
with the corresponding material it represents. This can be
accomplished based on the fact that the amount of solar
radiation which is reflected, absorbed or transmitted by
any given material varies with wavelength. This important
property of matter makes it possible to identify different
substances or classes and separate them by their spectral
signatures (spectral curves) identifying uniquely any given
material. Huge catalogs exist which contain thousands of
spectral signatures, and experts can tell, based on them and
on their own experience, which material corresponds to a
given spectral curve.
When talking about classes, we need to distinguish be-
tween information classes and spectral classes. Informa-
tion classes are those categories of interest that the analyst
is actually trying to identify in the imagery, such as dif-
ferent kinds of crops, different forest types or tree species,
different geologic units or rock types, etc. Spectral classes
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are groups of pixels that are uniform (or near–similar) with
respect to their brightness values in the different spectral
channels of the data. The objective is to match the spectral
classes in the data to the information classes of interest.
Rarely is there a simple one–to–one match between these
two types of classes. Rather, unique spectral classes may
appear which do not necessarily correspond to any infor-
mation class of particular use or interest to the analyst. Al-
ternatively, a broad information class (e.g. forest) may con-
tain a number of spectral sub–classes with unique spectral
variations. Using the forest example, spectral sub–classes
may be due to variations in age, species and density, or
perhaps as a result of shadowing or variations in scene il-
lumination. It is the analyst’s job to estimate the utility of
the different spectral classes and their correspondence to
useful information classes.
Common classification procedures can be broken down
into two broad subdivisions based on the method used:
supervised and unsupervised classification. Basic step
in classification is the choice of a decision rule. This
can be either parametric or non–parametric. The former
are based on known statistical properties, like mean
vector and covariances; examples of deriving classification
techniques are maximum likelihood, Bayes, Ward [1].
The latter, instead, rely on (non)linear functions or
mathematical/geometrical subdivision of the feature space,
and result in classification techniques known as minimum
distance to means, nearest neighbor, parallelepiped box,
and so on [1].
In supervised classification, the task of determining
the right number of clusters is left to analysts. In
fact, the analyst identifies in the imagery homogeneous
representative samples of the different surface cover types
(information classes) of interest. These samples are
referred to as training areas. The selection of appropriate
training areas is based on the analyst’s familiarity with
the geographical area and his/her knowledge of the actual
surface cover types present in the image. Thus, the
analyst is “supervising” the categorization of a set of
specific classes. The numerical information in all spectral
bands for the pixels comprising these areas are used to
“train” the system to recognize spectrally similar areas
for each class. A special algorithm (of which there are
several variations) is used to determine the numerical
“signatures” for each training class. Once the algorithm
has determined the signatures for each class, each pixel
in the image is compared to these signatures and labeled
as the class it most closely “resembles” digitally. Thus,
in a supervised classification we are first identifying the
information classes which are then used to determine the
spectral classes which represent them. The main drawback
of such a method is that determining a good truth ground
may be a very difficult task, since analysts must be sure
that any pixel belonging to it is fully representative of the
material related to the cluster, and does not contain any
feature typical of another material. This may take place
because if pixel resolution is not sufficiently high, different
elements may be contained in a same pixel. For example,

in a pixel representing a3 · 3 meters area, we might have a
road, a car and tree branches together. This gives origin to
the so–called pixel unmixing problem [3].
Unsupervised classification in essence reverses the
supervised classification process. Spectral classes are
grouped first, based solely on the numerical information in
the data, and are then matched by the analyst to information
classes when possible. As regards the clusterization phase,
classical iterative programs, calledclustering algorithms,
are typically used to determine the natural (statistical)
groupings or structures in the data. Firstly, the analyst
must specify how many groups or clusters are to be looked
for in the data. In addition to specifying the desired
number of classes, the analyst may also specify parameters
related to the separation distance among the clusters and
the variation within each cluster. The final result of this
iterative clustering process may result in some clusters
that the analyst will want to subsequently combine, or
clusters that should be broken down further; each of these
situations requires a further application of the clustering
algorithm. Once clustering has terminated, matching
between the found clusters and the materials they represent
must be carried out. This constitutes a very critical task for
unsupervised classification, and is accomplished thanks to
spectral signatures achieved and to analyst’s experience.

III. EVOLUTIONARY ALGORITHMS IN
SPECTRAL PATTERN RECOGNITION

There exist many techniques for exploiting the spectral
content of multispectral imagery. We can recall here at
least Tassel Cap, Atmospherically Resistant Vegetation
Index, Normalized Difference Vegetation Index, Principal
Component Analysis [1]. Unfortunately these techniques
face difficulties when the number of bands increases. It is
beyond the scope of this paper to explain into details why
it is, suffice it to say here that many of these methods are
based on band ratioing, and that, givenB bands, there exist
B·(B−1) different possible ratios. As the number of bands
increases the number of possible combinations becomes
rapidly unmanageable. So, approaches based on innovative
methods, which can help to automize as much as possible
the classification task, are welcome.
Quite recently, researchers have started to take into account
approaches based on heuristic techniques like Evolutionary
Algorithms. With reference to this latter category, in the
following we briefly describe some recent developments.
Please note that all of the papers are recent indeed, and the
oldest one dates back to 1998, and since then interest in the
technique has been increasing.
Viana and Malpica [6] use Genetic Algorithms (GAs) to
project a high dimensional space (hyperspectral space) to
one with few dimensions in unsupervised classification.
Firstly, since the experience shows that bands that are close
in the spectrum have redundant information, groups of
adjacent bands are taken and a GA is applied in order to
obtain the best representative feature for each group, in the
sense of maximizing the separability among clusters. Then
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the GA is applied again, but this time context information
is included in the process.
Yu et alii [7] use a feature selection technique based on
GAs to reduce the dimensionality of the feature space
and to select features on224–band Remote Sensing data
generated from the NASA/JPL Airborne Visible/InfraRed
Imaging Spectrometer (AVIRIS). GAs are combined with
Fuzzy Nearest Neighbours Classifiers.
Hung et alii [4] perform unsupervised learning for
multispectral image pixel classification by means of a
hybrid technique based on GAs and on Differential
Competitive Learning performed by an Artificial Neural
Network.
Benson at alii [8] examine the evolution of automatic target
detection algorithms and their application to the detection
of shipping in spaceborne Synthetic Aperture Radar (SAR)
imagery. They apply GP which turns out superior to other
techniques used in the field.
Stanhope and Daida [9] use GP for both the generation of
rules for the target/clutter supervised classification on a set
of infrared military vehicles images obtained with SAR,
and for the identification of tanks in a set of SAR images.
To perform these tasks, previously defined feature sets are
generated on the various images, and GP is used to select
relevant features and methods of analyzing these features.
Brumby et alii [10] apply a GP algorithm to image feature
extraction in Remote Sensing. They aim at finding open
waters amidst vegetation. They claim theirs are just
preliminary results, and are investigating the GP algorithm
parameter space, and the relative importance of crossover
and mutation. Their work is based on supervised learning,
and on a truth plane.
Fonlupt [11] applies GP to the ocean color problem. This
consists in evaluating ocean components concentration
(phytoplankton, sediment and yellow substance) from
sunlight reflectance values at selected wavelengths in the
visible band. He performs supervised learning. Two
different sets of experiments are carried out, related to
open ocean and coastal waters respectively. GP results to
outperform traditional polynomial fits.
Howard and Roberts [12] use a staged GP strategy to
automate the task of visual inspection of images aimed to
detect objects of interest. They evolve a ship detector for
SAR images of the English Channel and a recognizer of
motorized vehicles in infrared imagery. Also their method
is based on supervised learning.
Rauss et alii [13] describe an initial use of GP as a
discovery engine that performs supervised classification
from 28–band spectral imagery, aiming at discovering
which bands are the most useful for a specific classification
task. Their system finds out, for example, that for grass
only 18 out of the 28 bands are helpful.

IV. OUR GP APPROACH

In the present paper we introduce an innovative approach to
unsupervised spectral pattern recognition based on GP. An
important problem when performing unsupervised learning

is that we do not knowa priori which the right number of
clusters is. Differently from the classical methods, in our
approach such a number is found by the system rather than
being set by the human analyst. Therefore, the aim of our
automatic system for unsupervised pixel classification is to
find both the most suitable number of clusters for the image
and the coordinates of any cluster center.
Our method leaves cluster matching task to experts,
nonetheless our system allows to provide them with
spectral signatures for all clusters we find in the image, thus
easing their job.
We have decided to make use of GP because it allows to
easily evolve individuals with different numbers of clusters.
Also a GA would be able to perform the same task, but
it would be more awkward to manage the existence of
individuals with different numbers of clusters (thus, with
different genotype lengths).
Actually, to effectively face the problem at hand our
approach is based on an adaptation of the canonical GP
scheme as explained in the following.
Each individual in the population is a tree: its root contains
information about the number of clusters, and as many
pointers to cluster information nodes as there are clusters.
Any given cluster information node has below it exactly
B nodes,B being the number of frequency bands in the
multispectral image. Any such band node contains an
integer number. More specifically, the set of node types
making up trees is very simple: it consists of the three types
Numberof clusters, ClusterandBand. The root node can
only be aNumberof clusters, yielding an integer value
nc in the range[ncmin , ncmax ]; this value expresses the
number of clusters for the pixel classification represented
by the tree. Under aNumberof clustersnode onlyCluster
nodes are allowed, and their number is exactlync. Any
Cluster node has exactlyB Band nodes under it, each
of them being a terminal node with a constant integer
value and representing one of the coordinates of the cluster
center.
This means that any tree has just three levels, and that
the structure is strongly constrained. Figure 1 reports the
example of a tree. It is the GP’s task to find out the
most suitable number of clusters and the most adequate
coordinates in the hyperspace for any such cluster center.

Figure 1: Example of a tree.

The data related to the multispectral image composed by
M ·N pixels inB bands is stored in anM ·N · B matrix
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P , often referred to in literature as “data cube”. Each
elementP (i, j, k) of the cube is an integer value in the
range[0, 255] expressing reflectance value of pixel(i, j)
atk–th wavelength.
Given a tree representing a number ofnc clusters, any
pixel is assigned to one and only one among the clusters,
namely to the clusterz such that the euclidean distance in
B dimensions between the pixel and the centercz of the
clusterz is minimal. In formulae:

assign(i, j) → z if

d((i, j), cz) =
nc

min
z=1

√√√√
B∑

k=1

(P (i, j, k)− cz(k))2

where cz(k) represents the center of clusterz at k–
th wavelength. Let us denote this minimal value with
dmin(i, j). The fitnessφ of a tree is then given by:

φ =
M∑

i=1

N∑

j=1

dmin(i, j) (1)

and the problem becomes a minimization task.

For any pixel the system records the number corresponding
to the cluster it has been assigned to. By doing so, an output
image can be drawn which assigns the same color to all
pixels belonging to the same cluster.
Our program is based on freeware lil–gp Genetic
Programming Software version 1.02 [14], yet strongly
modified to best serve our purposes. Therefore, it is
based on a set of parameters like number of individuals
in the population, number of generations, on several
selection methods and on operators of crossover, mutation
and reproduction, each with an application probability
(breed rate). The software also contains some parameters
concerning internal and external crossover probabilities,
and internal and external mutations as well. By means of
them crossover and mutation points can be chosen more
frequently among either internal nodes or leaves. Other lil–
gp parameters like initial tree depth range and maximum
allowable tree depth are useless in our case, since all legal
trees must have a depth of exactly three levels.
To be sure that any new tree has three levels, a transition
table has been used for mutations, allowing only legal trees
to be generated.
The program gives as output five files containing the output
image, the number of clusters and the position of the
center for each of them, the number of pixels assigned to
any cluster, the spectral signature for each cluster and the
evolution of the genetic system.

V. EXPERIMENTAL RESULTS

We have downloaded a publicly available [15] multispec-
tral image with256 ·256 pixels and 31 spectral bands rang-
ing from 0.400 up to0.700 micrometers, each with0.010
micrometres of width. This means that this image covers
the whole visible band, and only it. As a consequence,

we can evaluate output image quality even empirically, by
looking at it. The image is reported in Figure 2.
As regards the GP parameters, we have chosen a population
size of 100 and a maximum number of generations of
2,000. The breed rates are0.7 for crossover,0.2 for
mutation and0.1 for reproduction. Selection chosen is
tournament with size of five. Internal crossover value
is 0.8, while external crossover value is0.2, meaning
crossover being more probable onClusternodes rather than
on Bandones. Internal and external mutation probabilities
are both set to0.5. The values forncmin andncmax have
been set to 2 and 20, respectively.
A total number of four runs has been carried out up to now
by using different seeds for the random number generator.
All the evolutions show similar evolutions and similar
results in terms of number of clusters and output images.
Figure 3 contains the output image we have obtained at
the end of program execution for the best run (in terms
of lower final fitness) we have performed at present.
More runs would probably get even better quality images.
Nonetheless, the image seems reconstructed with very
good quality, though only experts can say, based on spectral
signatures and on existing catalogs, what any cluster (color
in the output image) represents.
The output image contains 17 different clusters, though
just three of them represent most of the image with38.47,
10.55 and10.52 per cent of the total image respectively.
Other clusters represent smaller parts of the image ranging
from 0.65 to 4.85 per cent each. A qualitative analysis
shows that sky is perfectly separated from the rest of the
image. The tree and its branches can be perfectly identified,
and so can leaves. The metal plate is clearly defined
as well. The bush appears divided into several clusters,
depending on the quantity of incident solar radiation,
so that directly sunlit leaves look different from shaded
ones. The grass is categorized into two different clusters,
depending on whether or not direct sunlight reaches the
area represented by the pixel. The quality of output
image is such that even fallen leaves are visible as small
objects in dark colors, and are different from the grass they
lie on. Following a mechanism typical in multispectral
image analysis, the color associated by our system to any
cluster (thus, to any material) has no correspondence to
the color by means of which we perceive that material
in our visual band. Therefore, as an example, shaded
tree leaves are represented in light blue, while the sunlit
ones (top left in the image) in dark blue and in violet.
Of course, in this case we have perfect knowledge of the
scene and we are familiar with all of its components, so
our brain can easily reconstruct the meaning of any part.
More generally, where multispectral images taken from
airplanes or satellites are considered, understanding of the
output image might be more difficult, so spectral signatures
become really important to tell any area.
An example of multispectral signatures we have achieved
in the best run, and related to cluster number 6, is reported
in Figure 4. The signature shows a band–pass shape
typical of most materials in Remote Sensing, and reaches
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Figure 2: Original image.
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Figure 3: Output image for the best run.

the highest reflectance values in the band between0.490
and 0.600 micrometers. This band corresponds to green
and yellow colors which cover the bands[0.500, 0.578]
and[0.578, 0.592], respectively. Therefore cluster 6 might
represent sunlit grass.
From the evolutionary point of view, Figure 5 shows the
evolution of the best fitness value during the best run
performed. As it can be noted, initial generation starts
with a best value of about178, 000. The decrease in
fitness values shows a first remarkable quasi–linear phase,
until about generation100, when a value of120, 000 is
reached. Then fitness improvement continues more slowly
until generation 800, where a tree with a fitness of about

75, 000 is reached. Since then a new quasi–linear phase
starts in which decrease gets slower and slower until end of
run, when the best value reached is about68, 000.
It is interesting to report here that during first generations
the system provides us with trees having only few clusters
(the best individual in initial generation has just three
clusters). As the number of generation increases, solutions
consisting of a higher and higher number of clusters
are found (four, then five and so on, until a number
of seventeen is found and no further changed for many
generations). This means that as long as evolution
continues, the system reaches higher levels of image details
discrimination.
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VI. CONCLUSIONS AND FUTURE WORK

Aim of the work described in this paper is to test the
feasibility of a Genetic–Programming based approach to
unsupervised spectral pattern recognition for multispectral
images.
The experiments reported here have been conducted by
using a publicly available multispectral image with256 ·
256 pixels and 31 spectral bands.
Achieved results seem positive and encouraging. The
output image is of good quality, and material related to any
obtained cluster can be determined by means of the yielded
spectral signature. Nonetheless we are well aware that
these experiments are just preliminary, and are part of an
undergoing effort. To obtain a better version of our system
and to achieve better results, firstly we need to optimize the
tool from the evolutionary point of view. This means to
search for the most suitable parameter set. To accomplish
this goal, many more runs are needed with the same and
with other images.
This leads us to a current drawback of our system: the
time needed for one experiment is still high (about two
days on a Sun 20 workstation). Therefore, we will do
our best in order to reduce execution time. Firstly, code
shall be optimized to reduce computing time. Secondly, a
parameter set suitable for as many images as possible shall
be found. Thirdly, we shall make use of parallel versions
of Genetic Programming on Multiple Instruction Multiple
Data (MIMD) parallel machines.
From the application point of view, after this tuning phase
with publicly available images, we aim to apply our system
to hyperspectral (about 90 bands,512 · 512 pixels) forestry
images coming from European Space Agency (ESA).
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