
A Massively Parallel GP Engine in VLSI

Sven E Eklund
Computer Science Department
Dalarna University, SWEDEN

sven.eklund@ieee.org

Abstract - In this paper we propose the implementation of a
massively parallel GP model in hardware in order to speed up
the genetic algorithm. This fine-grained diffusion architecture
consists of a large amount of independent processing nodes that
evolve a large number of small, overlapping subpopulations.
Every node has an embedded CPU that executes a linear
machine code GP representation at a rate of up to 20,000
generations per second.

I. BACKGROUND

Genetic Algorithms (GA) and Genetic Programming (GP)
are groups of stochastic search algorithms which were
discovered during the 1960’s, inspired by evolutionary
biology. Over the past decades GA and GP have proven to
work well on a variety of problems with little a-priori
information about the search space [11]. However, in order
for them to solve hard, human-competitive problems, like
those suggested in [12], they require vast amounts of
computer power, sometimes involving more than 1015-17

operations.

II. PARALLEL GA

It is a well-known fact that the genetic algorithm is
inherently parallel, a fact that could be used to speed up the
calculations of GP. The basic algorithm by Holland [9] is
very parallel, but also has a frequent need for communication
and is based on centralized control, which is not desirable in
a parallel implementation.

An efficient architecture for GP should of course be
optimized for the calculations and communication involved
in the algorithm. However, it has also to be flexible enough to
work efficiently with a variety of applications, which have
different function sets. Also, the architecture should be
scalable so that larger and harder problems can be addressed
with more computing hardware.

By distributing independent parts of the genetic algorithm
to several processing elements which work in parallel, it is
possible to speedup the calculations. Traditionally, the
parallel models have been categorized by the method by
which the population is handled. The choice between a global
and a distributed population is basically a decision on
selection pressure, since smaller populations result in faster
(sometimes premature) convergence. However, the choice
also has a major effect on the communication need of the
algorithm.

Bethke [5] made one of the first investigations of parallel
implementations of GA in 1976. He described a global
population with a partial exchange of individuals in
successive generations. In 1981 Grefenstette described four
different parallel implementations of GA, with both
distributed and global populations [8].

One of the first real implementations of parallel GA was
made by Tanese in 1987. She conducted studies of different
topologies and migration rates on a distributed population
model on a 64 processor N-CUBE system. In some
experiments she reported super-linear speedup compared to
sequential GA [16].

II.I. The Farming Model

With a global population the algorithm has direct access to
all the individuals in the population, either by a global
memory or by some type of communication topology, which
connects several distributed memories. This parallel model is
often referred to as the farmer-model or the master-slave-
model [6]. A central unit, a farmer or master, controls the
selection of individuals from the global population and is
assisted by workers or slaves that perform the evaluation of
the individuals.

Figure 1 – The Farming model

This model has been reported to scale badly when the
number of processing elements grow, due to the
communication overhead of the algorithm [1], [2]. This is
however heavily dependent on the ratio between
communication time and computation time.

By dividing the population into more independent
subpopulations, two alternative parallel models can be
identified. Based on the size and number of subpopulations,
they are referred to as coarse-grained or fine-grained
distributed population models. When dealing with very large
populations, which are common in hard, human-competitive
problems, these models are better suited since their overall
communication capacity scale better with growing population
size.

Slaves

Master

0-7803-7282-4/02/$10.00 ©2002 IEEE

II.II. The Island Model

The coarse-grained, distributed population model, also
known as the island model, consists of a number of
subpopulations or “demes” that evolve rather independently
of each other. With some migration frequency they exchange
individuals between each other over a communication
topology.

Figure 2 – The island model with seven demes in a ring topology

The island model is a very popular parallel model, mainly
because it is very easy to implement on a local network with
standard workstations (cluster). A major drawback of the
island model is that it modifies the basic genetic algorithm
and introduces new parameters, for instance the migration
policy and the network topology. Today, there exists little or
no theory on how to adjust those parameters [7]. Also, a
system based on the island model is physically quite large, a
fact that exclude many applications.

II.III. The Diffusion Model

The fine-grained distributed population model, often
referred to as the diffusion model, cellular GA or massively
parallel GA, distributes its individuals evenly over a topology
of processing elements. It can be interpreted as a global
population laid out on a structure of processing elements,
where the spatial distribution of individuals defines the
subpopulations. The subpopulations overlap so that every
processing node belongs to several subpopulations, which
makes the communication implicit and continuous and
enables fit individuals to “diffuse” throughout the population
in contrast to the explicit migration of the island model.
Selection and genetic operations are only performed within
these local neighborhoods [4].

Figure 3 – The diffusion model with a linear topology

The diffusion model is well suited for VLSI
implementation since the nodes are simple, regular and

mainly use local communication. Since every node has its
own local communication links over the selected topology
(1D, 2D, hypercube, etc), the communication bandwidth of
the system can be made to scale nicely with a growing
number of nodes. Further, the nodes operate synchronously in
a SIMD-like manner and have small, distributed memories,
which also make the diffusion model suitable for
implementation in VLSI.

III. IMPLEMENTATION

We believe that the massively parallel diffusion model is a
promising model to implement efficiently, scaleable and
flexible in hardware. A hardware implementation could also
be made compact enough to be portable and possible to
integrate, for instance, in mobile applications. In [15] several
other advantages of the diffusion model are concluded, most
notably the absence of a migration parameter and a
potentially higher parallelism than in other parallel models.

Implemented in hardware the algorithm can execute very
fast and will benefit directly from Moore’s law. Machine
code representation of the individuals, being one of the
fastest ways to evaluate fitness [3], will further increase the
performance making the implementation efficient.

Integrating a CPU in the diffusion node to evaluate the GP
representation makes the system scale with a growing
number of nodes. Since additional communication links also
are introduced when the number of nodes grow, the system
can balance communication with computation.

Finally, the use of machine code representation, an
integrated CPU, and implementing the system in an FPGA
will make the system highly flexible. Adapting it to different
applications is simply done by changing the CPU’s
instruction set and recompiling the VHDL code with the
appropriate fitness calculations.

III.I. Implementation

Lacking the explicit migration parameter of the island
model, the diffusion model still has a number of parameters
that need to be determined in order to optimize performance.
In our first implementation of the diffusion model, we
followed some of the recommendations made by Baluja [4].

The communication between nodes in the system is based
on the X-net topology, a two-dimensional torus grid with
extra diagonal links. The neighborhood consists of the center
node and the eight nearest neighbors (Moore neighborhood).
See figure 4.

Communication
links

Subpopulations

Subpopulations

Areas with individuals belonging to two subpopulations

Individuals

0-7803-7282-4/02/$10.00 ©2002 IEEE

Figure 4 – Torus topology and the Moore neighbourhood

Please note that since all neighborhoods overlap in two
dimensions, the black center node to the right in figure 4 will
also belong to eight other adjacent neighborhoods.

Every node consist of four major parts, a CPU, a memory,
a control block and a simple router as shown in figure 5. All
nodes work in a synchronous SIMD-mode.

Figure 5 – The four blocks of the diffusion node

The memory holds two individuals, A and B, represented
by linear machine code. The maximum length of the
individuals can be varied between 64-256 words of
instructions depending on the application.

The router connects the node to its neighboring nodes,
enabling the node to send/read both fitness values and
machine code to/from selected neighbors. Please note that
every node not only is at the center of its own neighborhood,
but also is part of eight other neighborhoods as their north,
north-west, west, etc, neighbor.

The CPU is based on the 8-bit PIC16Cxx architecture
fitted with an extra integer multiplier and executes all
instructions in one cycle [14].

The control block controls the three parts described above
and performs the genetic algorithm. The selection is done as
a binary tournament between two randomly chosen
individuals amongst the ten individuals received by the router
(two local and eight neighborhood individuals).

The one-point crossover is done synchronously in a SIMD-
like manner by reading two individuals from the router and
writing them to the memory. Please note that every node
sends a randomly chosen A/B-individual to every node in its
neighborhood. It is, however, the receiving node that

determines which of the ten received individuals that will
participate in the crossover operation, based on the result of
the tournament.

The mutation is done at instruction level and randomly
replaces one instruction with a randomly generated one.

IV. SIMULATIONS

The design has been simulated both at low level in VHDL
to verify its data path and control signals and at a high level
with a simulator to verify the algorithm and the
representation on real problems.

IV.I. VHDL Simulations

The detailed VHDL simulations have indicated at which
frequency the system can operate and the number of gates
needed per node.

Given an 8-bit CPU architecture with four general purpose
registers, a maximum size of 64 instructions per individual
and 16-point regression problems as applications, the
architecture is able to evolve 20,000 generations per second.
The gate-count per node is around 20,000 gates making it
possible to fit a maximum of 500 nodes (1,000 individuals)
per FPGA (Virtex XC2V10000). If larger populations are
needed, it is very easy to connect several FPGA chips
together.

These simulations also showed that the size of a node is
not dominated by the CPU but by the memory. The CPU
accounts for only about 10 % of the total number of gates per
node, yet the evaluation of the individuals is responsible for
around 90 % of the execution time. An obvious conclusion
would be to integrate two CPU’s per node and evaluate both
individuals in parallel. This would almost double the
performance of the system but only increase the gate count
by less than 10 %.

IV.II. Application Simulations

We found the VHDL simulations very encouraging and
also wanted to simulate the design, the algorithm and the
linear GP representation at a higher level to make sure that
the architecture would work on real applications.

A custom made simulator was developed for the diffusion
model, allowing the manipulation of its most important
parameters, including the topology, neighborhood size,
selection algorithm and the linear machine code
representation.

During these simulations we used three different regression
problems as test problems; the DeJong test-suite function #1
(1), the classic Rosenbrock function (2) and a function
suggested by Nordin (3) [13].

CPU
Control

Block

MemoryRouter

0-7803-7282-4/02/$10.00 ©2002 IEEE

∑
=

=
3

1

2
321),,(

j
jxxxxf (1)

() ()2
1

2

2
2
121 1100),(xxxxxf −+−= (2)

() 2
1

3
2

4
121 35),(xxxxxf −+= (3)

The functions were resampled in 10 random points every
10 generations and the sum of absolute error in function
estimation in these points was used as raw fitness measure.
The algorithm described in the implementation section above
was used in the experiments as well as the parameters of
Table 1.

TABLE I
PARAMETER SETUP

Parameter Value
Population size (DeJong function) 8,192
Population size (Rosenbrock and Nordin) 18,432
Crossover frequency 70 %
Crossover type 1-point
Mutation frequency 30 %
Selection algorithm Binary tournament
Maximum code length 64 words
Function set : ADD W, Fi

SUB W, Fi
MUL W, Fi
MOV W, Fi
MOV Fi, W
MOV const, W

Registers W, F0-F3
Constants 0 .. 31
Maximum number of generations 3,000
Number of runs 100

These high-level simulations were also successful.
Averaged over 100 runs, each of the three regression
problems (DeJong, Rosenbrock and Nordin) were solved
with perfect solutions in 136, 718 and 658 generations
respectively. In figure 6, 7 and 8 three example plots from
each of the three experiments are shown. The plots show the
error of the best individual of the population as a function of
the generation number.

DeJong Test Function #1

0
50

100
150
200
250
300
350
400
450

1 300
Generation

E
rr

o
r

Figure 6 – Three error plots for the DeJong test function problem

Rosenbrock Test Function

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 300
Generation

E
rr

o
r

Figure 7 – Three error plots for the Rosenbrock test function problem

Nordin Test Function

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 400Generation

E
rr

o
r

Figure 8 – Three error plots for the Nordin test function problem

0-7803-7282-4/02/$10.00 ©2002 IEEE

V. CONCLUSIONS

We have described a hardware implementation of the
massively parallel diffusion model using a linear machine
code representation. During both high level simulations and
detailed VHDL simulations this design has shown to be
efficient on a series of regression problems. Simulations have
also indicated that the design can be fine tuned to gain even
more performance.

VI. FUTURE WORK

Our custom made simulator for the diffusion model has
proven to be a valuable tool in fine tuning the design. We are
currently optimizing the design for regression problems using
the simulator with different neighborhoods and selection
algorithms. Results from these simulations will be available
during the spring of 2002. During early summer we plan to
do actual FPGA implementations of the refined model based
on these simulations.

VII. REFERENCES

[1] Abramson, D, & Abela, J, “A Parallel Genetic Algorithm for Solving
the School Timetabling Problem”, In Proceedings of the Fifteenth
Australian Computer Science Conference (ACSC-15), Volume 14, pp
1-11, 1992.

[2] Abramson, D, Mills, G, & Perkins, S, “Parallelization of a Genetic
Algorithm for the Computation of Efficient Train Schedules”,
Proceedings of the 1993 Parallel Computing and Transputers
Conference, pp 139-149, 1993.

[3] Banzhaf, W, Nordin, P, Keller, R, Francone, F, “Genetic
Programming - An Introduction”, ISBN 1-55860-510-X, pp 330-334,
Morgan Kaufmann Publishers Inc, San Francisco and dpunkt Verlag,
Heidelberg, 1998.

[4] Baluja, S, “A Massively Distributed Parallel Genetic Algorithm
(mdpGA)”, CMU-CS-92-196R, Carnegie Mellon University,
Pittsburgh, Pennsylvania, 1992.

[5] Bethke, A. D, “Comparison of Genetic Algorithms and Gradient-
Based Optimizers on Parallel Processors : Efficiency of Use of
Processing Capacity”, Tech. Rep. No. 197, University of Michigan,
Logic of Computers Group, Ann Arbor, MI, 1976.

[6] Cantú-Paz, E, “Designing Efficient Master-Slave Parallel Genetic
Algorithms”, IlliGAL Report No. 97004, University of Illinois at
Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana,
IL, 1997.

[7] Cantú-Paz, E, “A Survey of Parallel Genetic Algorithms”,
Department of Computer Science, Illinois Genetic Algorithms
Laboratory, University of Illinois at Urbana-Champaign, 1998.

[8] Grefenstette, J. J, “Parallel Adaptive Algorithms for Function
Optimization”, Tech. Rep. No. CS-81-19, Vanderbilt University,
Computer Science Department, Nashville, TN, 1981.

[9] Holland, J. H, “Adaptation in Natural and Artificial Systems”, The
University of Michigan Press, Ann Harbor, 1975.

[10] Kohlmorgen, U, Schmeck, H, Haase, K, “Experiences with Fine-
Grained Parallel Genetic Algorithms”, Annals of Operations
Research, forthcoming.

[11] Koza, J, “Genetic Programming: On the Programming of Computers
by Means of Natural Selection”, MIT Press, Cambridge, MA, 1992.

[12] Koza, J, Bennett III, F, Shipman, J, Stiffelman, O, “Building a
Parallel Computer System for $18,000 that Performs a Half Peta-
Flop per Day”, Proceedings of the Genetic and Evolutionary
Computation Conference, pp 1484-1490, 1999.

[13] Nordin, P, Hoffmann, F, Francone, F, Brameier, M, Banzhaf, W,
“AIM-GP and Parallelism”, Proceedings of the Congress on
Evolutionary Computation, pp 1059-1066, 1999.

[14] Penfold, R, A, “Introduction to PIC Microcontrollers”, ISBN
0859343944, 1997.

[15] Schwehm, M, “Parallel Population Models for Genetic Algorithms”,
Universitat Erlangen-Nürnberg, 1996.

[16] Tanese, R, “Distributed Genetic Algorithm”, Proc. of 3rd Int. Conf.
On Genetic algorithms, pp 434-439, 1989.

0-7803-7282-4/02/$10.00 ©2002 IEEE

	CEC Main Menu
	CEC Table of Contents
	CEC Author Index

	Search CD-ROM
	Search Results
	Print

	WCCI CD-ROM Help
