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Abstract - In this paper we propose the implementation of a
massively parallel GP model in hardware in order to speed up
the genetic algorithm. This fine-grained diffusion architecture
consists of a large amount of independent processing nodes that
evolve a large number of small, overlapping subpopulations.
Every node has an embedded CPU that executes a linear
machine code GP representation at a rate of up to 20,000
generations per second.

I. BACKGROUND

Genetic Algorithms (GA) and Genetic Programming (GP) 
are groups of stochastic search algorithms which were 
discovered during the 1960’s, inspired by evolutionary 
biology. Over the past decades GA and GP have proven to 
work well on a variety of problems with little a-priori
information about the search space [11]. However, in order 
for them to solve hard, human-competitive problems, like 
those suggested in [12], they require vast amounts of 
computer power, sometimes involving more than 1015-17

operations.

II. PARALLEL GA

It is a well-known fact that the genetic algorithm is 
inherently parallel, a fact that could be used to speed up the 
calculations of GP. The basic algorithm by Holland [9] is 
very parallel, but also has a frequent need for communication 
and is based on centralized control, which is not desirable in 
a parallel implementation.

An efficient architecture for GP should of course be
optimized for the calculations and communication involved 
in the algorithm. However, it has also to be flexible enough to 
work efficiently with a variety of applications, which have 
different function sets. Also, the architecture should be 
scalable so that larger and harder problems can be addressed 
with more computing hardware.

By distributing independent parts of the genetic algorithm 
to several processing elements which work in parallel, it is 
possible to speedup the calculations. Traditionally, the 
parallel models have been categorized by the method by 
which the population is handled. The choice between a global 
and a distributed population is basically a decision on 
selection pressure, since smaller populations result in faster 
(sometimes premature) convergence. However, the choice 
also has a major effect on the communication need of the 
algorithm.

Bethke [5] made one of the first investigations of parallel 
implementations of GA in 1976. He described a global 
population with a partial exchange of individuals in 
successive generations. In 1981 Grefenstette described four 
different parallel implementations of GA, with both 
distributed and global populations [8].

One of the first real implementations of parallel GA was 
made by Tanese in 1987. She conducted studies of different 
topologies and migration rates on a distributed population 
model on a 64 processor N-CUBE system. In some 
experiments she reported super-linear speedup compared to 
sequential GA [16].

II.I. The Farming Model

With a global population the algorithm has direct access to 
all the individuals in the population, either by a global 
memory or by some type of communication topology, which 
connects several distributed memories. This parallel model is 
often referred to as the farmer-model or the master-slave-
model [6]. A central unit, a farmer or master, controls the 
selection of individuals from the global population and is 
assisted by workers or slaves that perform the evaluation of 
the individuals.

Figure 1 – The Farming model

This model has been reported to scale badly when the 
number of processing elements grow, due to the 
communication overhead of the algorithm [1], [2]. This is 
however heavily dependent on the ratio between 
communication time and computation time.

By dividing the population into more independent 
subpopulations, two alternative parallel models can be 
identified. Based on the size and number of subpopulations,
they are referred to as coarse-grained or fine-grained
distributed population models. When dealing with very large
populations, which are common in hard, human-competitive
problems, these models are better suited since their overall 
communication capacity scale better with growing population 
size.

Slaves

Master

0-7803-7282-4/02/$10.00 ©2002 IEEE



II.II. The Island Model

The coarse-grained, distributed population model, also
known as the island model, consists of a number of 
subpopulations or “demes” that evolve rather independently 
of each other. With some migration frequency they exchange 
individuals between each other over a communication 
topology.

Figure 2 – The island model with seven demes in a ring topology

The island model is a very popular parallel model, mainly 
because it is very easy to implement on a local network with 
standard workstations (cluster). A major drawback of the 
island model is that it modifies the basic genetic algorithm 
and introduces new parameters, for instance the migration 
policy and the network topology. Today, there exists little or 
no theory on how to adjust those parameters [7]. Also, a 
system based on the island model is physically quite large, a 
fact that exclude many applications.

II.III. The Diffusion Model

The fine-grained distributed population model, often 
referred to as the diffusion model, cellular GA or massively 
parallel GA, distributes its individuals evenly over a topology 
of processing elements. It can be interpreted as a global 
population laid out on a structure of processing elements, 
where the spatial distribution of individuals defines the 
subpopulations. The subpopulations overlap so that every 
processing node belongs to several subpopulations, which 
makes the communication implicit and continuous and 
enables fit individuals to “diffuse” throughout the population 
in contrast to the explicit migration of the island model. 
Selection and genetic operations are only performed within
these local neighborhoods [4].

Figure 3 – The diffusion model with a linear topology

The diffusion model is well suited for VLSI 
implementation since the nodes are simple, regular and 

mainly use local communication. Since every node has its 
own local communication links over the selected topology
(1D, 2D, hypercube, etc), the communication bandwidth of 
the system can be made to scale nicely with a growing 
number of nodes. Further, the nodes operate synchronously in 
a SIMD-like manner and have small, distributed memories, 
which also make the diffusion model suitable for 
implementation in VLSI.

III. IMPLEMENTATION

We believe that the massively parallel diffusion model is a
promising model to implement efficiently, scaleable and 
flexible in hardware. A hardware implementation could also
be made compact enough to be portable and possible to 
integrate, for instance, in mobile applications. In [15] several 
other advantages of the diffusion model are concluded, most 
notably the absence of a migration parameter and a 
potentially higher parallelism than in other parallel models.

Implemented in hardware the algorithm can execute very 
fast and will benefit directly from Moore’s law. Machine
code representation of the individuals, being one of the 
fastest ways to evaluate fitness [3], will further increase the 
performance making the implementation efficient.

Integrating a CPU in the diffusion node to evaluate the GP 
representation makes the system scale with a growing
number of nodes. Since additional communication links also 
are introduced when the number of nodes grow, the system 
can balance communication with computation.

Finally, the use of machine code representation, an 
integrated CPU, and implementing the system in an FPGA 
will make the system highly flexible. Adapting it to different 
applications is simply done by changing the CPU’s 
instruction set and recompiling the VHDL code with the 
appropriate fitness calculations.

III.I. Implementation

Lacking the explicit migration parameter of the island
model, the diffusion model still has a number of parameters
that need to be determined in order to optimize performance.
In our first implementation of the diffusion model, we 
followed some of the recommendations made by Baluja [4].

The communication between nodes in the system is based 
on the X-net topology, a two-dimensional torus grid with
extra diagonal links. The neighborhood consists of the center 
node and the eight nearest neighbors (Moore neighborhood).
See figure 4.
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Figure 4 – Torus topology and the Moore neighbourhood

Please note that since all neighborhoods overlap in two 
dimensions, the black center node to the right in figure 4 will 
also belong to eight other adjacent neighborhoods.

Every node consist of four major parts, a CPU, a memory, 
a control block and a simple router as shown in figure 5. All 
nodes work in a synchronous SIMD-mode.

Figure 5 – The four blocks of the diffusion node

The memory holds two individuals, A and B, represented 
by linear machine code. The maximum length of the 
individuals can be varied between 64-256 words of 
instructions depending on the application.

The router connects the node to its neighboring nodes,
enabling the node to send/read both fitness values and 
machine code to/from selected neighbors. Please note that 
every node not only is at the center of its own neighborhood, 
but also is part of eight other neighborhoods as their north, 
north-west, west, etc, neighbor.

The CPU is based on the 8-bit PIC16Cxx architecture
fitted with an extra integer multiplier and executes all 
instructions in one cycle [14].

The control block controls the three parts described above 
and performs the genetic algorithm. The selection is done as 
a binary tournament between two randomly chosen 
individuals amongst the ten individuals received by the router 
(two local and eight neighborhood individuals).

The one-point crossover is done synchronously in a SIMD-
like manner by reading two individuals from the router and 
writing them to the memory. Please note that every node 
sends a randomly chosen A/B-individual to every node in its
neighborhood. It is, however, the receiving node that 

determines which of the ten received individuals that will
participate in the crossover operation, based on the result of 
the tournament.

The mutation is done at instruction level and randomly 
replaces one instruction with a randomly generated one.

IV. SIMULATIONS

The design has been simulated both at low level in VHDL 
to verify its data path and control signals and at a high level 
with a simulator to verify the algorithm and the
representation on real problems.

IV.I. VHDL Simulations

The detailed VHDL simulations have indicated at which 
frequency the system can operate and the number of gates 
needed per node.

Given an 8-bit CPU architecture with four general purpose 
registers, a maximum size of 64 instructions per individual 
and 16-point regression problems as applications, the 
architecture is able to evolve 20,000 generations per second. 
The gate-count per node is around 20,000 gates making it 
possible to fit a maximum of 500 nodes (1,000 individuals) 
per FPGA (Virtex XC2V10000). If larger populations are 
needed, it is very easy to connect several FPGA chips 
together.

These simulations also showed that the size of a node is 
not dominated by the CPU but by the memory. The CPU 
accounts for only about 10 % of the total number of gates per 
node, yet the evaluation of the individuals is responsible for 
around 90 % of the execution time. An obvious conclusion 
would be to integrate two CPU’s per node and evaluate both 
individuals in parallel. This would almost double the 
performance of the system but only increase the gate count 
by less than 10 %.

IV.II. Application Simulations

We found the VHDL simulations very encouraging and
also wanted to simulate the design, the algorithm and the
linear GP representation at a higher level to make sure that 
the architecture would work on real applications.

A custom made simulator was developed for the diffusion 
model, allowing the manipulation of its most important 
parameters, including the topology, neighborhood size, 
selection algorithm and the linear machine code 
representation.

During these simulations we used three different regression
problems as test problems; the DeJong test-suite function #1
(1), the classic Rosenbrock function (2) and a function 
suggested by Nordin (3) [13].

CPU
Control

Block

MemoryRouter
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The functions were resampled in 10 random points every 
10 generations and the sum of absolute error in function 
estimation in these points was used as raw fitness measure.
The algorithm described in the implementation section above 
was used in the experiments as well as the parameters of 
Table 1.

TABLE I
PARAMETER SETUP

Parameter Value
Population size (DeJong function) 8,192
Population size (Rosenbrock and Nordin) 18,432
Crossover frequency 70 %
Crossover type 1-point
Mutation frequency 30 %
Selection algorithm Binary tournament
Maximum code length 64 words
Function set : ADD W, Fi

SUB W, Fi
MUL W, Fi
MOV W, Fi
MOV Fi, W
MOV const, W

Registers W, F0-F3
Constants 0 .. 31
Maximum number of generations 3,000
Number of runs 100

These high-level simulations were also successful.
Averaged over 100 runs, each of the three regression
problems (DeJong, Rosenbrock and Nordin) were solved 
with perfect solutions in 136, 718 and 658 generations 
respectively. In figure 6, 7 and 8 three example plots from
each of the three experiments are shown. The plots show the 
error of the best individual of the population as a function of 
the generation number.
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Figure 6 – Three error plots for the DeJong test function problem
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Figure 7 – Three error plots for the Rosenbrock test function problem
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Figure 8 – Three error plots for the Nordin test function problem

0-7803-7282-4/02/$10.00 ©2002 IEEE



V. CONCLUSIONS

We have described a hardware implementation of the 
massively parallel diffusion model using a linear machine 
code representation. During both high level simulations and
detailed VHDL simulations this design has shown to be 
efficient on a series of regression problems. Simulations have 
also indicated that the design can be fine tuned to gain even 
more performance.

VI. FUTURE WORK

Our custom made simulator for the diffusion model has
proven to be a valuable tool in fine tuning the design. We are 
currently optimizing the design for regression problems using 
the simulator with different neighborhoods and selection 
algorithms. Results from these simulations will be available 
during the spring of 2002. During early summer we plan to 
do actual FPGA implementations of the refined model based 
on these simulations.
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