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Abstract—This paper describes a general theoretical model of size
and shape evolution in genetic programming. The proposed model
incorporates a mechanism that is analogous to ballistic accretion in
physics. The model indicates a four-region partition of GP search
space. It further suggests that two of these regions are not
searchable by GP.

I. INTRODUCTION

Are there taboos to what can be expressed in the solutions
derived under genetic programming (GP)?

While current theory has yet to offer a definitive answer, let
alone proof of whether limits do or do not exist, there have been
clues in the literature that point to the existence of taboos. Most
notably, work in the evolution of size and shape has indicated
that GP generates solutions that have an affinity towards
particular sizes and shapes (e.g., [1-3]). Moreover, these findings
suggest that this affinity is significant, which greatly curtails
what can be generated if a solution is not of these shapes and
sizes. Still, the literature suggests that it should still be possible
to do so, even though it becomes increasingly difficult to
generate a solution the further away that solution is from these
preferred sizes and shapes.

My research group and I have been investigating the factors
that contribute towards making a problem GP-hard. We have
hypothesized that one of these factors is the structure that is
implicit in a tree representation. In the process of doing so, we
have discovered regions in the search space that are possibly
taboo to GP. The purpose of this paper, then, is to describe a
model of GP that isolates the consequences of structure, and to
describe these possible regions of taboo.

II. LATTICE-AGGREGATE MODEL

This section describes the proposed model in the context of
previous work upon which the model has been based, followed
by mathematical outlines of how the model works.

A. Background

At its heart, the proposed lattice-aggregate model is a
rewriting system that is applied to a set of positive integers that
bijectively map to locations on a circularly symmetric lattice.
While trees in general are recursively defined in terms of a finite
set [4], trees in GP usually have nodes that are associated with
some type of programmatic content and are typically
implemented in a manner that facilitates computation. While

such implementations of trees are essential towards making GP
operational, we have hypothesized that such implementations
could obscure the salient mechanisms that affect the dynamics
of GP. For that reason then, the contents of the model’s trees
are reduced to nil; only locations of the nodes remain.

The proposed model is analogous to Witten and Sander’s
model for diffusion-limited aggregation [5]. Similarities to
Witten and Sander’s model include the following:
• Initial conditions presuppose the existence of a nucleating center.

In Witten and Sander’s model, there is a nucleating center
upon which subsequent growth occurs. In the proposed
model, there is a nucleating center that includes the root
node, also upon which subsequent growth occurs.

• Growth occurs by randomly occurring collisions. In Witten and
Sander’s model, growth occurs when a (random walk)
particle collides and subsequently sticks to some random
location on the perimeter of the nucleating center. In the
proposed model, a particle sticks to what corresponds as a
random leaf of a nucleating tree.

•  Model presupposes a lattice. In Witten and Sander’s initial
model, a four-connected square lattice was presupposed,
upon which particles traveled. In the proposed model, it can
be shown that a lattice is also presupposed, upon which
growth also occurs.
The proposed model differs from Witten and Sander’s

diffusion-limited model in several ways:
•  Ballistics of particles does not matter. What matters to the

proposed model is that the sites for growth on a nucleating
center are selected at random—how a particle gets there is
not of concern. For Witten and Sander’s initial model, as
well as many of Sander’s subsequent models, the path by
which a particle takes to get to a nucleating center is
paramount.1

•  The particles used are not pixels. The primary unit of growth
in the proposed model is a set. Trees are abstracted into sets
of positive integers, whereupon the value of each integer is
bijective to a location on a lattice.

• The type of lattice is non-rectangular. The lattice that underlies
the proposed model is a three-connected, circularly
symmetric grid, which is distinct from the four connected,
square grid of Witten and Sander’s initial model.

                                                            
1 The type of growth that is characterized by Witten and Sander’s
model is known as ballistic accretion.
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The proposed lattice-aggregate model also shares several
features with Lindenmeyer systems [6]. In particular, the
proposed model can be expressed in terms of a stochastic OL-
system (see [7]). However, this alternative representation is
reserved for a later work.

B. Sketch of Model

The following sketch outlines the model that has been used
to describe the evolution of shape and size for a standard genetic
programming system. The particular sketch that is given here is
valid for binary trees for depths 0 – 26 (presuming that the root
node of a tree is at depth 0).

Let A be a set of positive integers that correspond to the
numbered nodes of a binary tree Τ. The numbering scheme for
this tree is such that the parent of node k is node k/2, and that
the children of node k are nodes 2k and 2k + 1. A binary tree
may subsequently be represented in terms of its nodes’
locations, with its structure being implicit in those locations.2

For example, it is fairly straightforward to show that the
following tree is equivalent to the set A = {1, 2, 3, 6, 7, 12, 13,
14, 15}:

12 13 14 15

1

2 3

6 7

(1)

A particular consequence of numbering nodes in this manner
is that the locations of both internal nodes and leaves are
absolute. It is therefore possible to construct a lattice in which
each number corresponds to a position on this lattice. For
example, the following lattice shows the locations of the first
fifteen positive integers:

1

7

32

65

4

11

10

9

8 15

14

13

12 (2)

The lattice for 2047 nodes looks like the following:

                                                            
2 Note that this numbering scheme is similar to that of a complete
binary tree, as defined by Knuth in [4]. However, unlike a complete
binary tree, the locations given by this numbering scheme are not
assumed to be sequential.

 (3)

Let the root node be defined at depth d = 0. Assuming that Τ
has d > 0, it can be shown that a set A can be decomposed into
two mutually exclusive, non-empty sets J and K such that
• Set J corresponds to the internal nodes of Τ
• Set K corresponds to the leafs of Τ

We define a set B to correspond to a subtree of Τ. Note that
set B is a function of k, whereupon k ∈ A. The smallest possible
subtree, a leaf, can be described as

B1= {k}. (4)

The next smallest subtree, a parent and two nodes, can be
described as

B3= {k, 2k, 2k + 1}. (5)

For the purposes of modeling GP behaviors for depths 0 –
26, we arbitrarily define B 5, B 7, B 9, and B11 to correspond to
5-, 7-, 9-, and 11-node subtrees, respectively.

B 5 = {k, 2k, 2k + 1, 4k + 2, 4k + 3}. (6)

B 7 = B 5 ∪ {8k + 4, 8k + 5}. (7)

B 9 = B 7 ∪ {16k + 10, 16k + 11}. (8)

B11 = B 9 ∪ {32k + 20, 32k + 21}. (9)

Note that the particular selection of elements for B5, B7, B9,
and B11 is arbitrary. What each of these sets has in common,
however, are that each corresponds to a minimal binary tree.

Now let k ∈  K. We can then represent the growth of a tree
by B5 as

A' = A ∪ B5(k) =  A ∪ {2k, 2k + 1, 4k + 2, 4k + 3}. (10)

Likewise, we can do the same for B7, B9, and B11.
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Consequently, we can represent a stochastic model of tree
growth for depths 0 – 26 as a recursive operation upon integer
sets, namely

A' = A ∪ B i (k), (11)

where i is a discrete random variable with sample space S B = {5,
7, 9, 11} and k is a discrete, uniformly distributed random
variable with sample space S B  = K. It can be demonstrated that
an appropriate probability distribution function corresponding
to i entails the following relationship3

P(i  = 5) = 2 P(i  = 7) = 4 P(i  = 9) = 8 P(i  = 11). (12)

Example. Given A = {1, 2, 3, 6, 7, 12, 13, 14, 15}. Set A
decomposes into J = {1, 3, 6, 7} and K = {2, 12, 13, 14, 15}.
Assuming that the second element of K and that B 5 have been
chosen, A' = {1, 2, 3, 6, 7, 12, 13, 14, 15, 24, 25, 50, 51}. See
Figure 1 for an example of both A and A' being mapped onto
the lattice shown in (3).

Figure 1. Sets A and A' are mapped onto the lattice of the proposed model. Left
is set A; right, set A'. The gray circle corresponds to a tree depth of five.

C. Variations

There are several additional variations that need to be
considered in the modeling of tree growth in GP. The first set
of variations assists in identifying the upper and lower density
bounds of tree growth, while the second set of variations address
methods of population initialization.

The density of a set A can be defined as follows:

density
A
A

≡
( )

−( )+( ) 

N

2 12 1log max
, (13)

where N(A) is the number of elements in A and max(A)
identifies the maximum value in A. This definition corresponds
to a ratio that is the number of nodes of a tree that is
normalized by the number of nodes in a full tree of identical
depth.

                                                            
3 This assumes that the comparison is with standard GP, in which the
probability of selecting an internal node for crossover is uniform.

To identify the upper density bound, equation (11) can be
restated as

A' = A ∪ B3 (k). (14)

Equation 13 corresponds to the case whereby tree growth is
entirely determined by three-node subtrees. Note that if k were
instead deterministic such that all k ∈  K is selected for
replacement by B3, the resulting tree would approach being full.

To identify a lower density bound, equation (11) can be
restated as

A' = A ∪ B n (k), (15)

where B n is the least dense set of those sets B that are used in
modeling growth. It is assumed that density for sets B are
determined at k = 1. For the proposed model for depths 0 – 26,
the set that is least dense is B11.

It is possible to modify equation (11) to account for varying
methods for population initialization. While such modifications
have been done to model Koza’s ramped half-and-half for
depths 2 – 6, the exposition of these modifications have been
left to a future paper.

III. DETERMINATION OF SEARCH SPACE BOUNDARIES

The specified model was subsequently used to derive
boundaries in the size-shape search space of trees from depths 0
– 26. This derivation consisted of four steps, namely:
•  Used Monte Carlo methods to sample the proposed lattice-

aggregate model corresponding to equation (11).
• Extracted depth and number of nodes from each sample.
•  Computed the cumulative distribution of the numbers of

nodes per tree for trees that correspond to a depth d for d =
{0, 1, 2, …26}.

•  Determined isopleths in size-shape space that correspond to
contours of constant distribution.

This process is shown in Figure 2 for 50,000 sets. Isopleths were
generated for 99%, 75%, median, 25%, and 1% distributions.
Note that given the relatively steep fall-offs in the distribution
of sets in size-shape space, the 99% and the 1% isopleths do
approximate boundaries that specify where trees do or do not
occur in this search space.

A similar procedure was applied to determine isopleths for
equations (14) and (15). Again, given relatively steep fall-offs in
distribution, the 99% isopleth for equation (14) approximated
the uppermost bound of search, while the 1% isopleth for
equation (15) approximated the lowermost bound of search.

IV. MODEL RESULTS AND PREDICTIONS

Figure 3 summarizes the isopleths for equations (11), (14), and
(15). The isopleths suggest the existence of at least four distinct
regions for depths 0 – 26. These regions are as follows:
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Figure 2. Derivation of isopleths of constant distribution for equation (11). Top
plot shows the Monte Carlo results. Middle shows the numerical values of
constant distribution, plus curve fits. Bottom shows just the curve fits.
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Figure 3. Predicted regions of search. There are at least four regions that the
model predicts that ultimately limit where GP can search in size-shape space.

• Region I. This is the region where most solutions in standard
GP occur (for binary trees). Full mixing of various size /shape
subtrees in the derivation of solutions occurs here. The width
of Region I is driven largely by population initialization.

•  Regions II. These are the regions where increasingly fewer
individuals appear the further away from Region I. Only
partial mixing of size/shape subtrees occurs here, with mixing
becoming non-existent towards the boundaries furthest away
from Region I. Region IIa is delineated by the boundaries
that are approximately located by the 99% isopleth for
equation (14) and the 99% isopleth for equation (11).
Region IIb is delineated by the boundaries that are
approximately located by the 1% isopleth for equation (14)
and the 1% isopleth for equation (11).  The transition
between Regions II and III is pronounced.

•  Regions III. These are the regions where practically no
individuals appear. Region IIIa is delineated by the
boundaries that are approximately located by the 99%
isopleth for equation (14) and bound for full trees. Region
IIIb is delineated by the boundaries that are approximately
located by the 1% isopleth for equation (14) and bound for
minimal trees.
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•  Regions IV. These are the regions that are precluded from
binary trees.

V. COMPARISON TO EXPERIMENTAL DATA

In earlier papers [8, 9], we published work on a tunably
difficult problem in genetic programming that we have since
named the binomial-3. We can use those empirical results as an
instance to test against this paper’s theoretical results. (Other
empirical results could have also been used, but because of
limited space, only the binomial-3 results were given.)

Figure 4 portrays several of the previously published data sets
for tuning values of 1, 3, 10, 100, and 1000 (in order of
increasing difficulty). Each dot represents a best-of-trial
individual out of a population of 500; each graph represents the
ensemble performance of 600 trials (i.e., a sampling of 30,000
individuals total per graph). In the left column of Figure 4 are
the results of adjusted fitness versus the number of nodes; in the
right, the results of number of nodes versus depth. The 99%
and the 1% isopleths for equation (11) are superimposed on the
graphs on the right.

In spite of significantly varying degrees of problem difficulty
and wide variation in shapes and sizes across 3,000 statistically
independent trials, better than 99% of all of the best-of-trial
individuals fall in the area described as Region I and less than
1% in Regions II. No trials were found to be in Region III.

VI. DISCUSSION AND SUMMARY

This paper has described a lattice-aggregate model for the
purpose of describing the evolution of shape and size in genetic
programming. It presumes nothing about the programmatic
content associated with each node. It could also be argued that
the described method of growth also presumes little, if anything
about tree generation, manipulation, crossover, or mutation.
The region boundaries that are indicated by the proposed
model should apply to a broad range of problems with arity-2
functions at depths that have been examined by the model (i.e.,
depths 0 – 26). These results should also hold across various
implementations and flavors of tree-manipulating systems,
including those that are not of GP. 4

It would be appropriate to say that the proposed approach is
a structuralist one, which is distinct from those taken in
previous work. There are three major departures:
•  Structure produces its own behavior. The notion is not new

and has occurred in other fields (e.g., see [12]). However, the

                                                            
4 The proviso, of course, being that the programmatic representation of
an individual is not articulated (terminology mine). In an unarticulated
representation, a tree directly represents a coding solution, as opposed
to an articulated representation, in which a tree represents an
intermediary. For example, Koza et al. [10] makes frequent use of
articulated representations by employing Gruau’s method of cellular
encoding [11]. In this case, GP provides an intermediary program,
which is then executed to manipulate graph structures that ultimately
generate a final solution. In this case, the results of the lattice-aggregate
model would likely apply to the intermediate, but not the final
solution.

notion is, perhaps, not as intuitive in an analysis of GP
dynamics because programmatic content seems inextricably
linked with the structure of that content. The proposed
model offers sufficient explanatory power to account for a
broad range of observed phenomena that has been obtained
under a wide variety of domain-specific problems.
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Figure 4. Comparison of proposed model with an instance of empirical data.
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•  Structure is a predominant factor in determining where search
occurs. The use of a log scale in Figure 3 obscures, somewhat,
just how small is the allowable search space in size and
number of nodes, if only because of the use of a log scale. For
example, there are 268,434,725 allowable combinations of
size and number of nodes from depths 0 – 26. In this same
depth range, Region I (where most search occurs)
encompasses only 12,573 combinations. In other words,
Region I represents only 0.005% of the entire allowable
search space in size and number of nodes.

• Content and manipulation of that content are secondary factors
in the evolution of shape and size of individuals. True, most of
what occurs in this narrow “bottle” of size and shape has been
of intense interest in the GP community. However, given the
fairly significant effect of structure on the evolution of size
and shape, one should (perhaps) scrutinize theories of code
growth that presuppose fitness as a primary driver.
Not all work in GP presupposes that fitness causes code

growth and that fitness is the primary driver in the evolution of
size and shape. Langdon et al. [2], drew on early comparisons
with Flajolet and Odlyzko’s work on random trees [13].
Langdon has since amplified this comparison and has speculated
that exponential growth is a primary driver [14]. However,
there are three departures away from this other work, as well.
• The proposed model is not designed to be a comprehensive means

of generating random trees. It does not use an efficient
numbering scheme (cf. [4]). It is neither an efficient nor
uniform method of tree generation (cf. Rémy’s algorithm in
[15]). It does suggest, however, the use of set and number
theory, and invites comparison with work in DLAs and
stochastic OL-systems.

•  The proposed model accounts for the deviations away from his
estimates of mean performance in the depth 0 – 26 range.
General estimates of size and shape in [2, 3, 14] were
significantly lower in the depth range 0 – 26 than those
papers’ indicated empirical results. Furthermore, the model
estimates in those works also underestimates growth in this
depth range in comparison to their own empirical work (e.g.,
Figure 10 in [14]).

•  The proposed model predicts for identifiable partitions in the
search space of size and shape. Predictions of tree size and
shape in [14] are based on a combinatorial estimate of
program likelihood—structure is neither explicit nor
fundamental to the generation of this estimate.
Consequently, the distribution of programs in the space of
size and depth is relatively smooth within the boundaries of
full and minimal trees. That paper’s author has subsequently
stated, “The use of a depth limit rather than size limit on the
evolution of the program trees may encourage the formation
of nearly full trees of the maximum permitted depth (p. 425,
[3]).” The proposed model predicts for the existence of
identifiable partitions in the search space of size and shape,
namely Regions I, II, III, and IV. Although the existence of
Region IV has been well-established and is known to be
taboo, the proposed model indicates that Regions III are also

taboo. These regions are a direct consequence of structure
and their presence does imply that there might not exist any
fitness function in standard GP that will allow for search in
Regions III. We leave to future work for empirical evidence
of such regions.

VII. CONCLUSIONS

This paper described a general theoretical model of size and
shape evolution in genetic programming. The proposed model
incorporated a mechanism that was analogous to ballistic
accretion in physics. The model has indicated a four-region
partition of GP search space. It further indicated that two of
these regions are not searchable by GP.
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