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Abstract - This paper introduces a coevolutionary
approach to genetic algorithms (GAs) for exploring
not only wihtin a part of the solution space defined
by the genotype-phenotype map but also the map it-
self. In canonical GAs with the fixed map, how large
area of the solution space can be covered by possible
genomes and consequently how better solutions can
be found by a GA rely on how well the genotype-
phenotype map is designed, but it is difficult for de-
signers of the algorithms to designe the map with-
out a-priori knowledge of the solution space. In the
proposed algorithm, the genotype-phenotype map is
improved adaptively during the searching process for
solution candidates. It is applied to 3-bit deceptive
problems as a kind of typical combinatorial optimiza-
tion problems, which are well-known by that the dif-
fculty against GAs can be controlled by the genotype-
phenotype map, and shows fairly good performance
beside a conventional GA.

I. INTRODUCTION

Genetic algorithms (GAs) can be applied to the
task finding feasible solutions for optimization problems
where a solution candidate is encoded into a computer-
editable description as a genome. Solution candidates
are progressively improved by applying simulated genetic
operations like mutation and recombination onto a pop-
ulation of genomes. There are really large number of
applications of GAs[8], [7].

However, in general, it cannot be assured that a GA
can explore enough large area of the solution space de-
fined by possible solution candidates for the given prob-
lem to find reasonable solutions. It depends on so-called
the genotype-phenotype map, an decoding manner from
genomes to the corresponding solution candidates as phe-
notypes, but it is difficult to obtain a-priori knowledge of
the problem to determine the suitable map. Therefore,
GA is usually executed with a single correspondence be-
tween genomes and their phenotypes namely the map is
constant. Consequently, even if using the GA-based ap-
proaches, experienced human designer of GAs are still

required to explore the genotype-phenotype map itself
for finding the better one.

This paper introduces a coevolutionary approach to
relax the difficulty. It consists of two populations of
genomes where one is used for exploring inside the part
of solution space to find the solution and another for ex-
ploring the genotype-phenotype map. This enables to
explore not only within a part of the solution space de-
fined by the genotype-phenotype map but also the map
itself. The original idea of the proposed method comes
from a viewpoint of supporting the engineering design as
stated above, but it is also an useful enhancement for
GAs themselves to relax native difficulty existed in con-
ventional GAs to determine the genotype-phenotype map
without a-priori knowledge of the solution space.

In the following, we firstly give brief overview for re-
lated studies and then introduce the proposed method
with discussions about its expectable performance from
this point of view in connection with the schema the-
orem. It is applied to 3-bit deceptive problems intro-
duced by Goldberg which are well-known by that the
difficulty against GAs can be controlled by the genotype-
phenotype map. Finally, we conclude.

II. RELATED STUDIES

There have been studies on so-called fitness landscape
in which the influence of genetic operations over the
shape of the explorable area of GAs are discussed[6], [10].
Ranges of parameters of genetic operations are proposed
but can be applied for limited problems only. Conse-
quently, adaptive ways to adjust parameters according to
the problem are becoming more popular in these days[2],
[9], [11]. Genetic operations determine the topology of
the genetic space and are closely related to the perfor-
mance of GAs too.

Concerning about the genotype-phenotype map, a
well-known characteristic of the string type genome is
the schema theorem, which gives an aspect for the evolu-
tionary process that long, high-order schemata will have
a less survival probability. Therefore, it is thought better
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to place genes related each other at closer on genomes.
To realize it without a-priori knowledge of the problem,
methods operating a string of 2-tuples of a gene and its
position on a genome are proposed[5], [3].

There is another interesting work proposing a method
to find not a genotype-phenotype mapping directly but
better schemata as building-blocks for relaxing the diffi-
culty of finding better genotype-phenotype mapping[4],
where a coevolutionary approach is utilized. It is closely
related interesting approach to our method.

There are also articles trying to theoretically analyze
the effect of the genotype-phenotype map on the perfor-
mance of GAs from the point of biological view[1], [13].
This will help to explain results of our approach.

III. THE COEVOLUTIONARY APPROACH

A. Seed, Rule, Genotype and Phenotype

The proposed method consists of two populations of
genomes, where one consists of sequences of values and
another indicates positions of corresponding values in
a genotype of a solution candidate. The former corre-
sponds to genes and the latter corresponds to loci. A
genome of a solution candidate is generated by rearrang-
ing a sequence of genes by using corresponding loci in-
formation. In the following, to avoid confusion, we refer
a sequence of genes as a seed, a loci description as a
rule, and a genome of a solution candidate regenerated
from a seed and a rule as just a genome. Their roles
are not restricted but intuitively a population of rules
determine a part of the solution space and a population
of seeds explores inside it. In this sense, modifying rules
by applying genetic operations onto them corresponds to
explore the genotype-phenotype map itself.

A seed s can be defined according to a-priori knowl-
edge of the problem if you have. For instance, you
can define s as s ∈ R × R · · ·R if you know the real-
coded vector type genome is enough to describe and ex-
plore any solution candidates. We basically assume a
binary string genome in the following and consequently
it is enough to think about a binary string seed s ∈
{0, 1} × {0, 1} · · · {0, 1} = {0, 1}l where l is the number
of genes in a genome, but the method itself is not re-
stricted to binary string genomes. A rule r is defined as
an permutation of numbers indicating positions of corre-
sponding bits in a genome, i.e. a rule r can be defined
as r ∈ L × L · · ·L = Ll where L = {1, 2, ..., l} if the
duplication of elements is allowded.

Let S and R as a set of seeds and rules respectively.
We indicate a genome generated by applying the j-th
rule rj of R onto the i-th seed si of S as xij . We can
define any combination manner of si and rj to generate
xij , and apply a-priori knowledge of the problem here.

Two simple cases for the seed si = (si(1), si(2), ..., si(l))
and the rule rj = (rj(1), rj(2), ..., rj(l)) are

xij(k) = si(rj(k)), (1)

and
xij(rj(k)) = si(k). (2)

We would like to note here that bits in a genome are
potentially left undefined when using the combination
manner Eq.2 with rules for which the duplication of el-
ements is allowded. In such case, special treatments for
the undefined bits are necessary. The most simple way
is to introduce “default value”.

In both cases, the definition length of sub-strings of the
seed si and the rule rj on what schemata of the genome
xij is mapped are related to k. That is, schemata of
a genome are mapped onto same long sub-strings of a
corresponding rule using the combination manner in Eq.1
while the length of sub-strings of a seed are independent
to the length of schemata. In this case, the length of
sub-strings of a seed can become short as enough.

On the other hand, by using the combination manner
in Eq.2, the length of sub-strings of a rule is equal to that
of a corresponding seed but they both are independent
to the length of schemata of the genome. In this case,
the length of sub-strings of both a seed and a rule can
become short as enough. From this point of view, Eq.2
is more flexible and is thought to be superior to Eq.1 but
it should be investigated more carefully.

B. Evaluation of Seed and Rule

A fitness value of a genome xij can be calculated by a
combinatorial function f(·) of mapping from a genome to
a solution candidate and mapping from a solution can-
didate to a fitness value. Some kind of fitness values for
rules and seeds can be thought but we here introduce
the maximum fitness value of genomes generated from a
seed as a fitness value of the seed and also the maximum
fitness value of genomes generated by a rule as a fitness
value of the rule as follows

fs(si) = max
rj∈R

f(xij), (3)

fr(rj) = max
si∈S

f(xij). (4)

C. Algorithm

The procedure of the proposed algorithm is as follows:

1. Initialization: Initialize both sets S and R of seeds
and rules by randomly generated strings.
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TABLE I

Fitness values of 3-bit strings

bit-string y e(y) bit-string y e(y)
P1 P2 P1 P2

(0,0,0) 28 0 (1,0,0) 14 26
(0,0,1) 26 14 (1,0,1) 0 28
(0,1,0) 22 30 (1,1,0) 0 0
(0,1,1) 0 0 (1,1,1) 30 22

2. Evaluation of genomes: Generate possible
genomes by using seeds and rules in the current sets
of S and R, and evaluate them.

3. Evaluation of seeds and rules: Calculate fitness
values of seeds and rules as in Eq.3 and Eq.4.

4. Genetic operations: Apply genetic operations
onto seeds and rules to generate new sets S ′ and
R′ of seeds and rules.

5. We call a procedure from 2 to 4 as a generation.
Repeat generations until conditions to terminate are
satisfied.

6. Output a solution candidate corresponding to a
genome with the maximum fitness value over gen-
erations as a result.

IV. COMPUTER SIMULATIONS

A. 3-bit Deceptive Problems

The deceptive problem is an optimization problem in
which large and smooth basins for not the global opti-
mum but local optima are defined so as to mislead the
search to the sub-optimal solutions. It is done by vi-
olating the static building-block hypothesis, i.e. when
genomes are 2-bit strings, the four potential building-
blocks of {0∗, ∗0, 1∗, ∗1} are schemata, and the static
building-block hypothesis is violated if fitness values are
defined as f(0∗) > f(1∗) or f(∗0) > f(∗1) if the global
optimum is at point 11.

The 3-bit deceptive problems are formulated as a prob-
lem finding a combination of N 3-bit strings {y1, ...,yN}
which maximizes the fitness value given by

∑N
i=1 e(yi),

where e(yi) is a fitness value of 3-bit strings yi =
(yi(1), yi(2), yi(3)) (yi(j) ∈ {0, 1} ∀j) defined so as to
violate the static building-block hypothesis.

We prepare two N = 50 problems P1 and P2 where
the optimal 3-bit strings are yi = (1, 1, 1) (∀i = 1, ..., N)
and yi = (0, 1, 0) (∀i = 1, ..., N) respectively. Fitness
values for every 3-bit strings are given by Table I.

B. Conventional GA

For the sake of comparison, a conventional GA with sin-
gle population of genomes are applied to the deceptive
problems, where three decoding methods of “loose cod-
ing”, “tight coding” and “random coding” are used. A
genome x = (x(1), x(2), ..., x(l)) where length l = 3N
and x(i) ∈ {0, 1} for all i = 1, 2, ..., l is decoded into a
solution candidate {y1, ...,yN} as follows:

loose coding the solution candidate is composed of 3
bits at intervals of N bits.

yk(m) = x(k + (m − 1)N), m = 1, 2, 3 (5)

tight coding the solution candidate is composed of a
series of 3 bits.

yk(m) = x(3(k − 1) + m), m = 1, 2, 3 (6)

random coding the solution candidate is composed of
randomly chosen 3 bits.

yk(m) = x(random). (7)

The main characteristic of the coding is the definition
length which denotes how far bits belonging the same
string are located on the genotype. The definition length
of “loose coding” is N , that of “tight coding” is 1, and
the average of the definition length of “random coding”
is (l+1)/(3+1). This is closely related to the difficulty of
the problem, i.e. the larger definition length means the
difficult problem. In this case, “loose coding” completely
decomposes 3-bits strings into a genome and makes the
problems the most difficult while “tight coding” make
them easy.

We apply tournament selection with the size=2, the
one-point crossover, and the bit-flip mutasion as the ge-
netic operations. We also apply so-called elitest strategy
where a genome corresponding to the best solution candi-
date in a generation is forced to remain in the population
of the next generation. A fitness value of a solution can-
didate is defined so as to normalized in a range [0, 1] as,

1
30N

N∑

i=1

e(yi), (8)

and parameters are summarized in Table II. We have
tried different values for the crossover rate and the mu-
tation rate and the best so far are used.

Figure 1 and Fig. 2 are the convergence curves of the
maximum fitness values averaged over 30 trials and stan-
dard deviations are also shown. It is shown that the
optimal solutions with fitness value 1.0 are found in both
problems by using “tight coding” and the worse solutions
by “loose coding”.
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TABLE II

Parameters for the conventional GA

Population size 10,000
Crossover rate 60 % of population
Mutation rate 0.67 % per gene
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Fig. 1. The maximum fitness values averaged over 30 trials
for the conventional GA applied to the problem P1
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Fig. 2. The maximum fitness values averaged over 30 trials
for the conventional GA applied to the problem P2

C. Application of the Proposed Method

The propose method is applied to the problems. Let the
size of the set S be 100, for which the length of a seed
si ∈ S is l = 3 × N = 150 and the k-th element of
a seed is as si(k) ∈ {0, 1}, and let the size of the set
R be also 100, for which the duplication of elements in
a rule is not allowded, i.e. the k-th element of a rule
rj ∈ R is as rj(k) ∈ {1, 2, ..., l} where rj(a) �= rj(b)
for all a �= b (a, b ∈ {1, 2, ..., l}). Consequently, 10,000
genomes, the same number of genomes with the case of
conventional GA, are evaluated in every generations.

We try both of decoding manners described in Eq. (1)

TABLE III

Parameters for the proposed method

Population size of seed 100
Population size of rule 100
# of evaluated genomes 10,000

Crossover rate 60 % of population
Mutation rate 0.67 % per seed/rule

and Eq. (2) to generate genomes. Every genome is
mapped to a solution candidate according to so-called
“loose coding” manner as described in Eq.5. A fitness
value of a solution candidate is defined so as to normal-
ized in a range [0, 1] as described in Eq.8. We apply
the tournament selection with the size=2, the one-point
crossover, the bit-flip mutation as the genetic operations
for the set S of seeds, and the tournament selectoin with
the size=2, PMX[12], and bit-swapping between differ-
ent two positions as the mutation for the set R of rules.
We also apply so-called elitest strategy where a seed and
a rule corresponding to the best solution candidate in a
generation are forced to remain in the sets S and R of
the next generation. Other parameters are summarized
in Table III.

Figure 3 and Fig. 4 show time courses of the maximum
fitness values averaged over 30 trials, in which “type 1”
indicates the decoding manner in Eq. 1 and “type 2”
for Eq.2. Despite of using “loose coding”, the proposed
method outperforms the conventional GA with “random
coding” in both problems.

D. Discussion

The proposed method shows quite good performance for
the problem P2. This means that the coevolutionary
search proposed here is working well. At first sight, the
result might be strange since the problem P1 appears
easier than P2, because once a seed s with s(i) = 1 ∀i is
obtained, any rule can be applied to generate the optimal
solution and there becomes no need to search for a rule
in P1. However, if coevolutionary search works well and
rules can contribute enough, the possible number of seeds
with fifty “1”s out of 150 bits, which can be translated
to the optimal solution in P2, is 150C50. It is quite larger
than 150C150 = 1, the possible number of seeds can be
translated to the optimal solution in P1.

We then observe of the proportion of “1”s in the elitest
genome given by Eq.9.

Proportion of “1” =
1
l

l∑

k=1

x(k), (9)
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Fig. 3. Time courses of the maximum fitness values averaged
over 30 trials for the problem P1
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Fig. 4. Time courses of the maximum fitness values averaged
over 30 trials for the problem P2

where x(k) is the value of the k-th bit of the target
genome x. Figure 5 and Fig. 6 show the proportions
averaged over 30 trials against problems P1 and P2 re-
spectively. Since the optimal solution of the problem
P2 is y = (0, 1, 0), the proportions should be distributed
around 1/3 = 0.333 after sufficient number of generations
in Fig. 6. Actually, the proposed method leads the pro-
portions to around 0.333 while the simple genetic algo-
rithm mislead to the sub-optimal solution of y = (1, 0, 1)
with the proportions around 2/3 = 0.666. In Fig. 5 where
1.0 corresponds to the optimal solution y = (1, 1, 1), the
behavior of the proposed method is not so radical than
that in Fig. 6 but it is still better than the conventional
one with keeping the proportions higher.

To know how rules work well, we investigate results for
the problem P2 from the viewpoint of the distribution
of the optimal string y = (0, 1, 0) and the sub-optimal
string y = (1, 0, 1) within seeds and genomes. Figure 7
shows the rate of the strings in the populations of seeds
and Fig. 8 shows the rate in generated genomes. The
rate of the optimal string contained in seeds not dra-
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Fig. 5. Proportion of “1”s to the bit-length for the problem
P1.
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Fig. 6. Proportion of “1”s to the bit-length for the problem
P2.

matically but slightly increases in Fig. 7 but that con-
tained in genomes monotonically increases with genera-
tions. These results show that the rearranging seeds by
rules works very well.

The remaining question is which combination manner
is better than another. To investigate this, we introduce
the definition length d1 and d2 for the codings of Eq. 1
and Eq. 2 respectively. Which are calculated as follows,

d1 =
1

(3 − 1)N

N∑

j=1

( max
m=1,2,3

{rj(k + (m − 1)N)}

−min{rj(k + (m − 1)N)}), (10)

d2 =
1

(3 − 1)N

N∑

j=1

(max{r−1
j (k + (m − 1)N)}

−min{r−1
j (k + (m − 1)N)}), (11)

where r−1
i (x) = j for ri(j) = x. They are normalized

within a range [0, 1].
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Fig. 7. The rate of the optimal and the sub-optimal strings
within seeds.

0 200 400 600 800 1000

Generation

0

0.2

0.4

0.6

0.8

1

R
at

e
of

pa
rt

ia
ls

ol
ut

io
n

sGA optimal
sGA sub-optimal
type1 optimal
type1 sub-optimal
type2 optimal
type2 sub-optimal

Fig. 8. The rate of the optimal and the sub-optimal strings
within seeds and genomes.

Figure 9 shows the definition length of the best genome
for the problem P2 averaged over 30 trials. It is ob-
served that the definition length is fluctuated during a
trial and between trials around 0.75 which denotes easier
than “loose coding” but more difficult than “tight cod-
ing”. There are no significant trend with generations and
also no differences between the two codings.

V. Conclusion

In this paper, We proposed a coevolutionary GA to
evolve not only genomes but also the genotype-phenotype
map. The proposed method was applied to the 3-bit
deceptive problems and outperformed a simple GA.
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