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Abstract. Current theories regarding code growth (bloat) in genetic
programming focus on the presence and growth of introns. In this paper
we show for the first time that code growth can occur, albeit quite slowly,
even in code that has a significant impact on fitness.

1 Introduction

The tendency of programs generated using genetic programming (GP) to grow
without corresponding increases in fitness (code bloat) is well documented in
the GP literature [TJ2IBI45/67]. Growth has also been demonstrated in non-
tree based evolutionary paradigms [3I89]. Current research on code growth in
GP strongly suggests that it will occur in any evolutionary technique which
uses variable size representations [4J6] and Langdon has shown that growth can
occur in non-population based search techniques [I0]. Interestingly, Miller has
found that growth did not occur with an evolutionary search using graph based
structures [IT[12].

Importantly, most code growth consists of code which does not significantly
contribute to a program’s performance (commonly known as introns). Thus,
significant resources are devoted to handling code which does not directly impact
the fitness of the evolved solutions.

There are several theories regarding the causes of code growth. Most of
these focus on introns, as most observed growth consists of non-contributing
code. However, Luke has argued that introns are not actually the cause of code
growth [7]. Additionally, Smith and Harries have shown that growth can occur
in code that does influence fitness (exons) if the exons only have a negligible
effect on performance [13].

We examine several different types of exons and show that growth can occur
even with exons that have a significant impact on the programs’ fitness.
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2 Background

Code growth is a significant problem, as rapid program growth consumes con-
siderable resources without significantly contributing to a solution. Additionally,
the additional code may interfere with finding better solutions, since most of the
code manipulation by will occur in regions of relatively low importance.

To date three likely explanations for code growth of been proposed: growth
for protection [3/42], a removal bias in crossover that leads to growth|[14], and
a form of genetic drift towards larger solutions [I5]. These three causes are not
mutually exclusive and there is some evidence in support of each cause. In all
three suggested causes introns are presented as playing a fundamental role.

2.1 Crossover and Program Size

In the simplest GP, with crossover and without subtree mutation, the only source
of larger programs is crossover. Removing a small branch and adding a large
branch creates a larger tree. Whereas removing a large branch and adding a
small branch creates a smaller tree. However, if both offspring are kept the
average program size does not change. Thus, the only way the average program
size can increase during a GP run is if larger offspring are preferentially chosen
during selection.

This is less true of subtree mutation, as depending on how the mutation
is implemented it may preferentially generate larger (or smaller) trees. How-
ever, a ‘fair’ subtree mutation will generate new programs whose average size is
the same as the population’s average size. Again steady growth will only occur
if larger offspring are preferentially chosen during selection. Notably Langdon
used a version of crossover, called size fair crossover, in which the removed and
added branches must be of approximately the same size [16]. In this case growth
was significantly reduced, presumably because the amount of variation in the
offsprings’ sizes was reduced.

2.2 Types of Code

In order to understand the phenomenon of code growth it is useful to examine
the types of introns produced by GP. From its inception it was realized that
GP has a tendency to create programs with large sections of code that do not
significantly effect the program’s behavior or performance [I]. A few examples
of such code include:

+ (0% X) (1)
+(X - X) (2)
+ (1/ X ) where X >>1 (3)

In each of these cases the code marked with an X does not significantly contribute
to the program’s behavior or performance (for case 2 it is the difference of the
two sections). We are making the assumption that none of the operators have
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side effects. Historically the generic term ‘intron’ has been applied to code that
doesn’t have an effect and the term ‘exon’ to code that does have an effect.
(Some authors have termed example 3 an intron, although it does have a small
effect, whereas other authors consider it to be an exon.)

Although none of these sections of code have a significant effect, their other
properties vary. In the first example X can not effect the program’s behavior, re-
gardless of how X is changed. Such code has been referred to as inviable code [14].
In the second example changing either X would effect the performance of the
program. In the last example the code labeled X does effect performance, but
probably to an insignificant degree. The value of X would have to be significantly
changed to effect the output significantly.

Theoretical and experimental work has typically focused on the more restric-
tive introns. In part this has occurred because it is simpler to rigorously pre-
dict the effect (or non-effect) of code that never influences performance. Also,
for some time it was assumed that the more restrictive types of code had the
biggest impact on code growth. However, studies by Smith and Harries and more
recently by Luke have shown that code with a very small effect on performance
(example 3 above) can be as important for code growth as code with absolutely
no effect [I3J7].

In this paper we test the various types of exons and demonstrate that growth
can occur even in regions of code that have a significant impact on fitness.

2.3 Suggested Causes of Code Growth

In roughly equivalent theories, Nordin and Banzhaf [3], McPhee and Miller [4],
and Blicke and Thiele [2] have argued that code growth occurs to protect pro-
grams against the destructive effects of crossover. Several studies have shown
that crossover is much more likely to decrease fitness than to increase fitness
(destructive crossovers)[15/17]. In addition, these studies show that a large pro-
portion of crossover operations result in no change in fitness (neutral crossovers).

As noted above, evolved programs often contain large sections of introns
that can not have a significant effect on fitness even when changed by crossover
or mutation. The protective hypothesis proposes that there is an evolutionary
benefit to increasing the proportion of introns, as crossover in these regions is
more likely to be neutral, which is evolutionarily preferable to the destructive
CTOSSOVers.

A second theory of code growth is based on the structure of program search
spaces. It has been experimentally observed that for many problems the number
of programs of a given fitness that are larger than a given size is much greater
than the number of programs with the given fitness that are smaller than the
given sizes [I5]. Thus, ignoring other factors, a search is more likely to find larger
programs of a given fitness than it is to find smaller programs of that fitness,
simply because there are more larger programs within the search space.

The third theory of code growth is the removal bias hypothesis [I4]. It as-
sumes that removing a small subtree will have a relatively smaller effect on
performance than removing a large subtree. In particular, smaller subtrees are
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more likely to consist of inviable code. However, if a branch is added to the mid-
dle of a section of inviable code it will, be definition, have no effect, regardless
of the size of the added branch.

Thus, removing a small branch and adding a branch of any size is not likely
to have an effect, whereas removing a large branch is likely to an effect, again
regardless of the size of the added branch. Most changes that effect fitness are
destructive. Thus, the theory hypothesizes that there is a bias in favor of offspring
created by removing a small branch and against offspring created by removing
a large branch. The net effect of such a bias would clearly be a general pattern
of growth.

3 Experiments

Introns are important in all three of the hypothesized cause of code growth.
However, as noted previously, Smith and Harries [I3] and Luke [7] have shown
that growth can also occur in exons that have no significant effect on fitness, such
as the code X in: +(1/X) where X > 1. The question remains whether growth
will occur in significant exons such as: +(14+X) where X is approximately 1. To
answer this question we study growth when only significant exons are possible.

3.1 The Test Problem

For this experiment we must be able to precisely control what types of exons
are possible and to eliminate all introns. This necessitates very simple functions,
which in turn necessitates a very simple test problem. Our test problem is to
evolve an expression with the value 10. Fitness is the absolute value of the
difference between the value of the evolved expression and 10.

3.2 The Genetic Program

We use a simple, generational GP, written in C++. The programs are tree struc-
tured. The only function (internal node) used is a +, so the trees are binary. The
90/10 rule is used in selecting crossover points to be consistent with most other
GP paradigms. (90% of the selected crossover points are internal nodes, 10%
are leaf nodes.) Mutation consists of mutating an individual node into a random
node of the same type (internal or leaf). However, mutation has no effect on
internal nodes because only one function (+) is used. Leaf nodes are randomly
changed into one of the other terminals. For some of the experiments only a
single leaf type is used, in these cases mutation has no effect. Other details of
the GP are shown in Table [

3.3 Function and Terminal Sets

In general, the functions and terminals determines what types of exons and
introns can evolve. In our experiment the only function is 4+ so only exons are
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Table 1. Summary of the Genetic Program parameters.

Objective Find an expression with the value 10
Function Set +

Terminal Set varies

Population Size 800

Crossover Probability [0.9 (0.1 are copied without crossover)
Mutations Probability|0.001

Selection 3 member tournament

Generations 100

Maximum Tree Size [None

Elitism 2 copies of the best individual are preserved
Initial Population Ramped, half-and-half

Number of trials 50

possible. Our experiments consist of trying several different terminal sets and
examining the resulting growth. The function/terminal sets used are:

{+, 1.0} The only function is +; the only terminal is the constant 1l.0. A
perfect solution consists of 10 terminal nodes (1’s) and 9 functions (+’s). There
are a large number of binary trees that produce a perfect solution, but they are
all the same size: 19 nodes (but not the same depth). It should be clear that
introns are not possible with this function/terminal set. In addition, all code has
the same ‘fitness value’, changing the size of a program by N nodes will always
change the expression’s value by N/2.

{+,0.5, 1.0} This is a slightly more complicated set. Introns are not possible,
but there is an option between 1’s and 0.5’s. Clearly a larger (optimal) program is
possible using 0.5’s instead of 1’s, so some code growth can occur. In particular,
an optimal program of all 1’s is of size 19 and an optimal program of all 0.5s is
of size 39 (including +’s). Optimal programs with a mix of 0.5’s and 1.0’s will
fall somewhere within this range.

{+,0.1,1} Again introns are impossible, but now the option is between 1 and
0.1.

{+, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0} This final set gives evolution a variety of
terminals to chose from, but as in the previous cases, they all produce exons.

4 Results

Figure [ shows the average program size for each of the terminal sets. All four
sets of data show similar behavior in the early generations; a rapid drop in
size followed by a rapid rise. The drop seems to occur because in the initial,
random population the largest programs have values furthest from 10 and are
immediately removed from the population. This pushes the average size quite
low. Once the largest individuals are removed the smallest individuals are the
least fit and the average size rises. Both of these changes seem to be dependent
on the composition of the initial population and are not related to regular code
growth.
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Fig. 1. Average size for each of the terminal sets. Growth occurs even when only exons
are possible, but the rate depends on the exon choices.

Once these initial shifts in size takes place each of the populations settles on
a different size because of the difference in the average value of the terminals.
As noted previously, for the set {+, 1} exactly 10 terminals (and 9 +’s) are
necessary for an optimal program. Thus, as predicted, the average program size
is 19. In contrast, for the set {+, 0.5, 1.0} an average program contains an equal
number of 0.5’s and 1.0’s. So, an average optimal program should have 12 or 14
terminals and 11 or 13 +’s. This leads to an average size of roughly 25, which is
close to the results seen in Figure [l The slight discrepancy occurs because 0.5’s
are favored in the first few generations. Similar reasoning applies for the other
terminal sets.

Beyond these initial issues it is clear that for all of the sets (except {+, 1})
steady, slow code growth is occurring, although the rates of growth depend on
the terminal set. (As noted previously with the set {+, 1} growth is not possible
without degrading fitness, so the lack of growth for that set is not surprising.)
This clearly demonstrates code growth when only exons are possible.

Figure 2l shows the average fitness (difference from the target value) for each
of the function sets. The values are calculated by averaging across all 800 in-
dividuals per population and across all 50 trials. Because of the very simple
nature of the problem in every trail at least one optimal solution is found and
preserved within the first 3 generations for every terminal set. In general, the
individuals within the population converge on an optimal solution very quickly;
after selection almost all of the programs are optimal. Thus, growth is not oc-
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Fig. 2. Average fitness for each of the terminal sets. Fitness remains constant or im-
proves slightly.

curring as part of the search for an optimal solution. Although the population
has converged on an optimal solution, Figure [ shows a non-zero average er-
ror because the data is recorded after crossover and mutation. These operations
tend to degrade the optimal programs. Thus, the non-zero fitness corresponds
to the average degradation produced by crossover and mutation in the optimal
programs.

Figure 2l shows that the fitnesses are fairly constant, although the average
fitnesses for the sets {+, 1, 0.5} and {+, 1, 0.1} appear to be improving slightly
(the error is getting smaller). Thus, the data show a slow increase in size with
almost no change in fitness. The only way this can occur is if the larger terminals
are being selectively replaced by more of the smaller terminals. E.g. 1’s are
replaced by 0.5’s in the set {4+, 0.5, 1.0}. This observation is confirmed for the
set {+, 0.5, 1.0} in Figure Bl The percentage of 1’s decreases, while the percentage
of 0.5’s increases. Similar results were observed for the set {+, 0.1, 1}.

Thus, we see that typical code growth (or bloat) can occur with exons that
have a significant effect on fitness, albeit much more slowly than is normally
observed. This is different from the work of Smith and Harries, which only showed
that exons without a significant effect on fitness produce growth.

The most interesting case of terminal replacement is for the set {4+, 0.1,
0.2, 0.4, 0.6, 0.8, 1.0}. Figure ] shows the percentage of each terminal for this
case. Initially the larger terminals (1 and 0.8) are heavily favored. This probably
occurs because the larger terminals are necessary to reach the target value of
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Fig. 3. Percentage of code consisting of each function and terminal for the set {+, 1,
0.5}. The 1’s are being replaced by 0.5’s.

10. However, these larger terminals, particularly 0.8 and 1, are quickly replaced,
primarily by the terminal 0.2.

Interestingly, the smallest terminal, 0.1, is still being removed, albeit slowly.
One explanation is that the other terminals are all multiples of 0.2 and thus can
sum to 10 in many ways without including any 0.1’s; whereas a program must
contain an even number of 0.1’s to reach exactly 10. Thus, having 0.1’s may make
it less likely that a program’s offspring will be optimal because of the difficulty in
getting the proper number of 0.1’s. This is significant because it suggests the GP
is favoring programs that are likely to reach 10 after being mixed by crossover.
Evolution is favoring programs for their offsprings’ survivability.

5 Conclusions

First, we have clearly shown that typical code growth (or bloat) can occur with
exons that significantly effect fitness, albeit quite slowly.

In our experiments, terminals with larger values are preferentially replaced by
(more) terminals with smaller values. One explanation for this is that smaller ter-
minals are less suspetiable to crossover and mutation. For this problem, changing
a few 0.1’s has less impact on fitness than changing a few 1’s. Further evidence
for this hypothesis is that growth is faster with 0.1’s than with 0.5’s. Following
the above reasoning 0.1’s would seem to be less susceptible to crossover than
0.5’s, thus the evolutionary advantage of including them leads to growth. Fig-
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Fig. 4. Percentage of code consisting of each function for the set {+, 0.1, 0.2, 0.4, 0.6,
0.8, 1.0}. Several shifts in the percentage of each terminal are taking place.

ure 2] also supports this conclusion; as 1.0’s are replaced by smaller terminals
the average fitness improves implying that the programs are less damaged by
crossover and mutation.

This suggests a new term: code stability. More stable code is code that is
less degraded by crossover and mutation. These results are preliminary evidence
that in general code growth occurs to promote code stability. This idea will be
addressed in more detail in future work.

We again note that for the set {0.1, 0.2, 0.4, 0.6, 0.8, 1.0} the larger terminals
are systematically replaced, but by 0.2 not 0.1. We hypothesized that this occurs
because in a population dominated by terminals that are multiples of 0.2 having
0.1’s makes it less likely that offspring will reach the value 10. Thus, we have
a second example of evolution not just favoring programs with a higher fitness,
but favoring programs whose offspring after crossover are likely to have a higher
fitness.
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