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Abstract

Evolutionary programming was first offered as an alternative method for
generating artificial intelligence. Experiments were offered in which finite
state machines were used to predict time series with respect to an arbitrary
payoff function. Mutations were imposed on the evolving machines such
that each of the possible modes of variation were given equal probability.
The current study investigates the use of self-adaptive methods of evolu-
tionary programming on finite state machines. Each machine incorporates
a coding for its structure and an additional set of parameters that deter-
mine in part how it will distribute new trials. Two methods for accom-
plishing this self-adaptation are implemented and tested on two simple
prediction problems. The results appear to favor the use of such self-adap-
tive methods.

1 INTRODUCTION

Evolutionary computation has a long history (Fogel 1995, Ch. 3). Some of
the first efforts modeled evolution as a genetic process (Fraser 1957;
Bremermann 1962; Holland 1975). In these simulations, a population of
abstracted chromosomes are modified via operations of crossover, inver-
sion and simple point mutation. An external selection criterion (objective
function) is used to determine which chromosomes to maintain as parents
for successive generations. These procedures have come to be termed
genetic algorithms. Alternatively, Rechenberg (1965) and Schwefel (1965),
and also Fogel (1962, 1964), offered methods for simulating evolution as a
phenotypic process, that is, a process emphasizing the behavioral link
between parents and offspring, rather than their genetic link. These simu-
lations also maintain a population of abstracted organisms (either as indi-
viduals or species) but emphasis is placed on the use of mutation
operations that generate a continuous range of behavioral diversity yet
maintain a strong correlation between the behavior of the parent and its
offspring. These methods are known as evolution strategies and evolutionary
programming, respectively.

 This paper focuses on experiments with evolutionary programming. In
particular, self-adaptive parameters that provide information on the gen-
eration of offspring represented as finite state machines are incorporated



into evolving solutions and are simultaneously subjected to mutation and
selection. Such operations have been applied to real-valued function opti-
mization problems, but can be extended to problems in discrete combina-
torial optimization. The paper begins with background on the use of self-
adaptation in evolutionary computation. The results of experiments com-
paring the efficiency of two self-adaptive methods on finite state machines
for time series prediction are described. Finally, potential avenues for fur-
ther investigation are discussed.

2 SELF-ADAPTIVE EVOLUTIONARY COMPUTATIONS

The ultimate effectiveness of any evolutionary optimization algorithm is
determined by the relationship between the shape of the response surface
(landscape) being searched and the mutation operations that are used to
generate new trial solutions. The rate of optimization may be much greater
if the mutative distribution can be tuned to follow grooves and valleys on
the surface, rather than simply spray new trials with equal average step
sizes in each dimension. The idea for allowing an evolutionary algorithm
to self-adapt the manner in which it distributes new trials goes back at
least to I. Rechenberg in 1967 (Rechenberg 1994), but was more explicitly
detailed in Schwefel (1981).

 For example, consider the problem of finding the r eal-valued n-dimen-
sional vector x that minimizes F(x). Each trial solution is taken to be a pair
of vectors (x, σ), where x is the vector of object variables to be assessed by
F(x), and σ is a vector of standard deviations (often described as strategy
parameters) corresponding to the step sizes of a zero mean multivariate
Gaussian random variable. Offspring are created from each parent by the
following rules:

 (1)

 (2)

where τ and τ’ are operator-set parameters, N(µ, σ) is a normally distrib-
uted random variable with mean µ and standard deviation σ, and Ni (0,1)
describes a standard Gaussian resampled anew for the ith component of σ.
Figure 1 indicates the potential for such a method to distribute trials in
relation to the contours of the adaptive landscape. The technique distrib-
utes solutions in directions that have provided improved solutions in the
past. Schwefel (1981) extended this method to allow for arbitrary correla-
tions between perturbations.

 Fogel et al. (1991) independently offered a similar self-adaptive proce-
dure for evolutionary programming in which the standard deviations are
altered using a Gaussian random variable. Specifically , the method is:

 (3)

 (4)

xi′ xi N 0 σi,( )+=

σi′ σi exp τ N 0 1,( )⋅ τ′ Ni 0 1,( )⋅+( )⋅=

xi′ xi N 0 σi,( )+=

σi′ σi α σi N 0 1,( )⋅ ⋅+=



where α is a scaling parameter. If any value σi’ becomes nonpositive, it is
reset to a small arbitrary value ε. Fogel et al. (1992), at the suggestion of
Sebald (1991), incorporated an additional procedure to allow for arbitrary
correlations between the strategy parameters. Comparisons in Saravanan
and Fogel (1994) indicate that the method of Schwefel (1981) generally out-
performs the method of Fogel et al. (1991) when limited to uncorrelated
perturbations of the strategy parameters. No comparisons have been made
between the methods incorporating complete covariance matrices.

 The idea for self-adapting the distribution of new trials also arose inde-
pendently in genetic algorithms and genetic programming. Schaffer and
Morishima (1987) offered a method for self-adapting crossover points.
Each binary string encoded not only the n-bit solution vector, but an addi-
tional n-bit binary mask that determined the crossover points on the solu-
tion vector and was itself subject to mutation. Angeline and Pollack (1992)
added mutation operators to a genetic program (Koza 1992) that protected
entire subtrees from both crossover and mutation. Angeline and Pollack
(1994) argued that protected subtrees raise the representational level of the
primitive language in a task-specific manner .

Recently, Angeline and Pollack (1993) offered a different form of self-
adaptation in evolutionary programming as applied to finite state autom-
ata in which individual links and output symbols could be randomly “fro-
zen,” effectively negating any probability for mutation. The current
investigation examines the potential for more gradually affecting the prob-
ability of mutating links and output symbols in finite state machines used
for time series prediction.

Figure 1: Contour plots of a response surface mapped onto two variable
dimensions (after Bäck et al. 1991). Under independent Gaussian perturbations
to each component of every parent, new trials are distributed such that the
contours of equal probability are aligned with coordinate axes (left picture).
This will not be optimal in general because the contours of the response surface
are rarely similarly aligned. Schwefel (1981) suggested a mechanism for
incorporating self-adaptive covariance terms. Under this procedure, new trials
can be distributed in any orientation (right picture). The evolutionary process
adapts to the contours of the response surface, distributing trials so as to
maximize the probability of discovering improved solutions.

Line of equal probability density to place an offspring



3 EXPERIMENTS

The base-line method of evolutionary programming investigated was sim-
ilar to that of Fogel et al. (1966) and refined in Fogel (1991). Each machine
in the population was judged in terms of a fitness function which r epre-
sents the cost or benefit of each possible err or or correct prediction. Each
machine received a tournament score based on its fitness r elative to q other
machines selected at random from the population (Fogel 1991); in each
competition, if its fitness was equal to or gr eater than its opponent, it
received a “win.” Parents for the next generation were chosen by ranking
the population based on the number of wins (instead of raw fitness) and
selecting those individuals scoring in the top half. Each parent created a
single offspring in accordance to specific mutation operations.

 Five modes of mutation were used to create offspring: add a state, delete
a state, change the initial state, change an output symbol, and change a
next-state transition. The mutation operation selected a specific mode of
mutation for any single manipulation of a machine uniformly across
modes. The specific component to modify was chosen in accor dance with
a uniform distribution from the set of such components in the machine
(e.g., if an output symbol was to be changed, each output symbol had an
equal chance of being selected). The number of mutations per parent was
given by a Poisson random variable with a rate of 3.0. The maximum num-
ber of states for any machine was set to 25 and the minimum number of
states was set to three. Two self-adaptive evolutionary programs for finite
state machines were examined: selective self-adaptation and multi-muta-
tional self-adaptation.

Selective Self-Adaptation

In this method of self-adaptation, a mutability parameter was associated
with each component of a finite state machine. For each mutation, a com-
ponent was selected based on the relative value of its mutability parame-
ters. Specifically , the probability that the ith component was selected was
given by:

 (5)

where P(i) is the mutability parameter for the ith component, and the sum-
mation is taken with the index k running over all components. Separate
mutability parameters were maintained for each state (i.e., probability of
deleting the state), each output symbol on a transition based on an input
symbol, and each next-state transition. For example, if the chosen muta-
tion was to delete a state, the mutability parameters associated with each
state of the machine were used to determine the relative probability of
deleting each state. Similarly, when the chosen mutation indicated chang-
ing an output symbol associated with a transition in the machine, the par-
ticular transition was chosen using the mutability parameters associated
with the output symbols of the machine’s transitions.

P i( )
P k( )∑

-----------------



 All mutability parameters for each machine were initially set to a mini-
mum value of 0.001. Thus each component of any initial machine was
equally likely to be selected for mutation at the beginning of any trial.
Mutability parameters for components of states subsequently incorpo-
rated as a result of an add-state mutation were also set to the minimum
value. The mutability parameters were themselves mutated in a similar
fashion to Fogel et al. (1991), specifically

 (6)

where σi is the parent’s mutability parameter for the ith component, σi’ is
the offspring’s mutability parameter for the ith component, and α is a scal-
ing factor equal to 0.01 in the following experiments. Any mutability
parameter that fell below a minimum value of ε = 0.001 was reset to the
minimum; no upper limit was imposed.

Multi-mutational Self-adaptation

In a similar manner as selective self-adaptation, multi-mutational self-
adaptation associated a mutability parameter with each component of
each machine. But in contrast, each mutability parameter designated the
absolute probability of modification for that particular component. Thus
the probability for each component to be mutated was independent of the
probabilities of other components to be mutated, this offering greater
diversity in the types of offspring machines that could be generated from a
parent.

For each offspring, each mutability parameter was compared to the out-
come of a uniform random variable on (0,1) (denoted U(0,1)). If the ran-
dom number was lower than the mutability parameter, the appropriate
mutation was executed. For example, mutation would delete each state for
which the outcome of the U(0,1) fell below that state’s mutability parame-
ter. Similarly, each output symbol and next-state transition were mutated
when the resampled U(0,1) fell below the associated mutability parameter.
Multi-mutational self-adaptation also modified the mutability parameters
using the same technique and standard deviation as with selective self-
adaptation. Unlike selective self-adaptation in which the chosen standard
deviation is of little importance because the probabilities of specific muta-
tions are all relative to other mutations, the standard deviation of the
Gaussian noise is extremely important under the multi-mutational
approach. Given too large a variance, the mutability parameters can
decrease the stability and potential evolvability of the resulting offspring.
For the current study, the minimum value for a mutability parameter in
multi-mutational self-adaptation was set to 0.005. Thus no component had
less than a 1 in 200 chance of being modified at any time. If adding Gauss-
ian noise to the parameter resulted in a value less than this minimum it
was reset to 0.005. The maximum value for the parameter was set to 0.999.
Initial values for the parameters of machines in the initial population were
set to 0.005.

 To offset the potential increase in the deletion rate of states in evolving
machines, the probability of adding a state to an offspring was increased to

σi′ σi α N 0 1,( )⋅+=



0.3. The chance of mutating the initial state of a machine in multi-muta-
tional self-adaptation remained at 0.2.

Design

The above methods were tested on two simple prediction tasks. The first
was offered in Fogel et al. (1966). A base string of symbols served as an ini-
tial observation from an environment. The environment was taken to be
the string (101110011101)*. Fitness was assessed as the fraction of correct
predictions made over all observed symbols. A new symbol was intro-
duced into the environment every five generations (i.e., a complete itera-
tion of mutation, competition, and selection). Ten symbols were provided
as the initial set of observations. The second environment was taken to be
the string (101100111000110010)*. For each environment, the population
size was 100 machines and trials were executed over 750 generations. Each
experiment consisted of 50 trials with the basic evolutionary program (i.e.,
all modes of mutation having equal probability, all specific components
having equal probability), the selective self-adaptation method and the
multi-mutational self-adaptation method.

Results

Figure 2 indicates the score of the best machine in the population at each
generation averaged over all 50 trials with each of the three methods on
the environment (101110011101)*. The curves demonstrate an asymptotic
rise toward 100 percent correct, as the cyclic pattern in the environment is
mapped by successively better finite state machines. But the rate of
improvement across the three methods appears to favor the self-adaptive
methods. Figure 3 shows the t-test score comparing both self-adaptive
methods to the basic evolutionary programming. Grey areas under the
graphs denote a difference in the means which returned a P-value less
than 0.05. Although there appears to be significant evidence of an
improvement with the self-adaptive methods, caution must be used when

Figure 2: The fraction correct of the best machine in the population at each
generation averaged over all 50 trials with each method applied to the
environment (101110011101)*. Both self-adaptive methods appear to be at least
as efficient as, or mor e efficient than, the evolutionary pr ogram without self-
adaptation on the chosen environment.



interpreting these data because they represent a sequence of dependent tri-
als. Figure 4 indicates the score of the best machine in the population at
each generation averaged over all trials with each method on the environ-
ment (101100111000110010)*. The results are similar to those depicted in
Figure 2. Figure 5 indicates the relevant t-scores comparing the self-adap-
tive methods with the base-line method for this more complex environ-
ment.

4 DISCUSSION

The practicality of evolutionary optimization algorithms can be signifi-
cantly increased through the incorporation of self-adaptive parameters
that determine how each parent will distribute future trials (Bäck and
Schwefel 1993). Including such parameters frees the human operator from
having to select mutation distributions (or genetic operators in genetic
algorithms) ad hoc. The majority of efforts in self-adaptation have per-
tained to real-valued continuous function optimization problems

Figure 3: Consecutive t-test scores comparing the results of each self-adaptive
method to the baseline results without any self-adaptation on the environment
(101110011101)*. (a) No self-adaptation vs. selective self-adaptation (b) No self-
adaptation vs. multi-mutational self-adaptation. Positive scores favor the
method without self-adaptation while negative scores favor the self-adaptive
methods. Grey areas under the graphs show generations where the P-value
was less than 0.05. T-scores across generations are correlated and thus no
definitive statistical conclusion can be firmly stated. The r esults do justify an
expectation that further analysis will indicate statistically significant
differences in favor of the self-adaptive methods.

(a)

(b)



(Schwefel 1981; Bäck and Schwefel 1993; Fogel et al. 1991; Saravanan and
Fogel 1994), but they can be extended to discrete combinatorial optimiza-
tion problems such as the evolution of finite state machines for time series
prediction.

Self-adaptation on continuous representations allows for parents to con-
tinue to generate offspring in directions on the adaptive landscape (error
surface) that have proved useful in the past. It essentially serves as a mem-
ory of previous trajectories; those that have worked well recently are rein-
forced while those that have not generated useful trial solutions are
purged from the population. But “direction” is difficult to apply to discr ete
representations. Although it might be useful in some particular real-val-
ued continuous optimization problem to iteratively increase the value of a
certain parameter (e.g., move toward increasingly greater values of x while
searching for the minimum of f(x)), it is not, by analogy, useful to continue
changing an output symbol or next-state transition if such changes have
been of value in the past (cf. Lenat 1983).

Self-adaptation has proved useful on discrete structures (e.g., finite state
machines) when a possibility for freezing parameters has been included
(Angeline and Pollack 1993), prohibiting mutation to certain components
and thereby maintaining informational gains held within the coding struc-
ture. Rather than mandating either the extreme of completely freezing
parameters or the extreme of mutating all parameters with equal probabil-
ity, the self-adaptive methods examined in the current investigation can
transition between these extremes. In essence, the methods allow for a
gradual freezing of useful input-output and next-state transitions.

 The efficiency of any evolutionary optimization algorithm is dir ectly
dependent on the shape of the adaptive landscape being searched and the
mutation operations that are used to search the state space. It is crucial that
there be a strong functional relationship between each parent and its off-
spring, while simultaneously offering the potential for nearly continuous

Figure 4: The fraction correct of the best machine in the population at each
generation averaged over all 50 trials with each method applied to the
environment (101100111000110010)*. Both self-adaptive methods appear to be
at least as efficient as or mor e efficient than the evolutionary pr ogram without
self-adaptation on the chosen environment.1



functional diversity (Fogel 1988; and others). This can often be accom-
plished by the use of zero mean multivariate Gaussian mutations on real-
valued function optimization problems (Fogel and Atmar 1990; Bäck and
Schwefel 1993; Fogel and Stayton 1994; and others). Maintaining func-
tional links between parents and offspring when using discrete representa-
tions is more difficult. The pr oposed self-adaptive methods may provide a
general mechanism for achieving this end. The preliminary results appear
to indicate improved convergence rates when using either self-adaptive
method as compared to failing to use any such method. More careful
assessment of the statistical significance of these r esults, extensions to
more complex environments and comparisons between the realized muta-
tion variance (i.e., the mean number of imposed mutations per machine)
remain for further investigation.

Figure 5: Consecutive t-test scores comparing the results of each self-adaptive
method to the baseline results without any self-adaptation on the
environment (101100111000110010)*. (a) Selective self-adaptation vs. no self-
adaptation. (b) Multi-mutational self-adaptation vs. no self-adaptation.
Positive scores favor the self-adaptive methods while negative scores favor
the method without self-adaptation. See Figure 3 for a discussion of the
interpretation of these data.

(a)

(b)



Footnotes

1 The results for the multi-mutative and non-adaptive techniques in this
experiment were incorrectly presented in Fogel et al. (1994). The current
depictions in Figures 4 and 5 correct any discrepancies.
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