
Evolutionary Computation

Lee Altenberg

The Konrad Lorenz Institute for Evolution and Cognition Research, Martinstrasse 12,
Klosterneuburg, Austria A3400

Abstract

Evolutionary computation is a method of solving engineering problems using
algorithms that mimic Darwinian natural selection and Mendelian genetics, ap-
plied especially to optimization problems that are difficult to solve from first
principles. Earliest beginnings were in the 1950s, and by the mid 1990s it had
developed as an academic field with its own journals, conferences, and faculty.
Several phenomena discovered in evolutionary biology were also discovered in
parallel in evolutionary computation, including the evolvability problem, ge-
netic modification, constructive neutral evolution, and genetic robustness. The
related field of artificial life focuses on computational systems in which replica-
tion, natural selection, and ecological interactions are all emergent.

Keywords: crossover, encoding, evolutionary algorithm, evolvability, genetic
algorithm, genetic operator, genetic programming, No Free Lunch theorems,
objective function, optimization, representation, search space, selection
operator, simulated annealing

1. Glossary

A-Life “Artificial Life” — computational systems in which replication, natural
selection, and ecological interactions are not set by the designer but emerge
from the dynamics of the system.

EA “Evolutionary Algorithm” — an algorithm (sequence of mathematical op-
erations on a data set, a computer program) that incorporate analogs of
(1) natural or artificial selection and (2) variation generation.

EC “Evolutionary Computation” — the name for the entire research and en-
gineering fields centered on evolutionary algorithms.

EDA “Estimation of Distribution Algorithm” — An EA where the dynamics
are not on populations but rather on models of probability distributions

Email address: altenber@hawaii.edu ()
URL: dynamics.org/Altenberg/ ()

Preprint submitted to Elsevier Encyclopedia of Evolutionary Biology January 7, 2016



over the search space, which are updated with the goal of concentrating
probability on the fittest candidate solutions.

EP “Evolutionary Programming” — evolutionary algorithms where the search
space is a set of finite-state automata, originated by Fogel (1964).

ES “Evolution Strategies” — a class of evolutionary algorithms originated by
Rechenberg (1964) and Schwefel (1965) where the search space is Eu-
clidean space and the variation operators are Gaussian random perturba-
tions.

GA “Genetic Algorithm” — an evolutionary algorithm that incorporates re-
combination as a variation operator, originated by Holland (1975), empha-
sizing homologous crossover on bit string encodings of the search space.

GP “Genetic programming” — an evolutionary algorithm in which the objects
being evolved are executable data structures, originated by Koza (1990),
where programs are represented as parse trees of operator and variable
symbols, and the principal variation operator is exchange of subtrees be-
tween programs evolved in a population.

NFL “No Free Lunch” Theorems — the result from Wolpert and Macready
(1995) that all search algorithms have equal average performance when
averaged over all problem sets.

Encoding A representation of points in the search space that may change from
a native representation to an alternate representation, such as encoding
real numbers as a binary sequence.

Fitness In EC, “fitness” is used as a shorthand for “value of the objective
function,” rather than the population genetics usage where it means the
expected number of offspring.

Fitness Proportional Selection Selection in which the expected number of
offspring of a candidate solution is proportional to the value of its (possibly
rescaled) objective function.

Objective Function A measure of how good a candidate solution is to pro-
ducing a desired outcome.

Representation The way that candidate solutions in a search space are mapped
to the data structures that represent them in the algorithm.

Search space The collection of all candidate solutions to be searched through
by the evolutionary algorithm.

Simulated Annealing An evolutionary algorithm with a population of one
parent plus one mutant offspring (1+1 EA), where the offspring replaces
a less fit parent with probability one, and it replaces a more fit parent
with probability e−(wP−wO)/T , where wP is the parent fitness, wO is the
offspring fitness, and T is a “temperature” which is successively lowered
during a run of the search (the “annealing”).

2



2. Body text

2.1. Introduction

Evolutionary computation is an approach to engineering and optimization
in which solutions, instead of being constructed from first principles, are instead
evolved through processes modeled after the elements of Darwinian evolution.
Evolutionary computation is one of the principal methods in what is called
“nature-inspired computing”. Nature-inspired computing, which also includes
artificial neural networks, swarm intelligence, and fuzzy logic, has also been
called “soft computing”, or “computational intelligence” to distinguish it from
symbolic artificial intelligence. Technically, evolutionary computation is as an
example of heuristic search, i.e. search by trial and error, where in EC the
‘trials’ are candidate solutions, and the ‘error’ is the measurement of how far
a trial is from a desired outcome. The error is used to select which trials are
to be used to generate further trials. The fundamental rule-of-thumb is that
the best chance to further reduce the error is to generate new trials by making
modifications to the previous trials that had the lowest errors.

The evolutionary algorithm is the main object of interest in evolutionary
computation. There is a problem to be solved, and the solution is conceived to
lie somewhere in a space of possible candidate solutions—the search space. The
evolutionary algorithm searches for good solutions in the search space using this
typical structure:

1. Initialization: Randomly generate a population of samples from the
search space.

2. Iteration:

(a) Evaluation. Compute the value of the objective function for each
sample.

(b) Selection Operator: Use the values of objective function computed
for the evaluated samples to select the samples to be used in the next
step 2c.

(c) Variation Operators. Apply variation operators to the selected
samples to transform them into additional samples from the search
space.

3. Termination: If the termination criteria are met, halt the computation;
if not, return to step 2a.

The problem to be solved usually determines in an obvious way what the
search space is, and what the objective function is. For example, if one is trying
to find the maximum value of f(x, y) = sin(x2−2x−4) cos(−3y+y2 +1) on the
intervals −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the search space is the simply the intervals,
and the objective function is f(x, y) itself. To give a more elaborate example,
when trying to evolve artificial neural networks that implement a desired map
between inputs and outputs, the search space is the set of weights and topology

3



of the network connections. The objective function is a measure of how closely
a candidate map matches a desired map, using a measure of closeness such as
mean squared error over a test set of inputs.

Exploration of the search space is performed by using previously sampled
and evaluated points to generate new points to be evaluated. The points in the
search space are concretely represented by some data structure in the algorithm,
and variation operators that randomly perturb these data structures generate
the new points.

The classical variation operators are mutation and crossover (i.e. recombina-
tion). Mutation is implemented by altering the state of symbols in a string, such
as flipping a bit in a binary string from a 0 to a 1 or vice versa. Crossover is im-
plemented by recombining parts of one parent with parts of another. Crossover
may be analogous to homologous chromosomal recombination when the posi-
tions in the data structure are fixed, as in a fixed-length bit string, or in a
fixed set of real-valued parameters. But there are other search spaces where it
is impossible to make the analogy to linear chromosomes. For example, in the
Traveling Salesman problem, the search space consists of all tours of a set of
cities. Taking parts of one tour and recombining them with parts of another tour
is likely to produce a path that repeats some cities and misses others. Special
“mutation” operators that ensure that a path is a tour are needed.

Choosing which samples to apply the variation operators to is the task of
the selection operator. Here, a population structure needs to be introduced.
In what is called the “1+1 EA,” the population consists of a single sample of
the search space. A new sample is generated by applying a variation operator
to that sample, to generate a population of size 2. The values of the objective
function for the two samples are evaluated and compared, and the sample with
the better objective function is selected to generate the next sample. Larger
populations may be used, in which case they may maintain enough variation
so that recombination may be used as a variation operator. Many different
selection operators are possible in large populations. Both the Wright-Fisher
multinomial sampling model and the Moran sampling model have been used.

The selection operators that carry out the computational analog of selective
breeding may in fact be the exact same operators used in agriculture, such as
culling, or ranking.

2.2. History of Evolutionary Computation

Evolutionary computation developed in three phases: the first phase con-
sisted of numerous independent experiments in evolutionary algorithms in the
1950s and 1960s. Principal researchers during this period were Nils Aall Barri-
celli in the early 1950s, George E. P. Box and Alex S. Fraser in the late 1950s,
and Hans J. Bremermann in the early 1960s.

The second phase began in the late 1960s and early 1970s where, out of these
multiple lines of investigation emerged three lineages that persisted and pro-
duced academic offspring: Lawrence Fogel (1964) established evolutionary pro-
gramming, Ingo Rechenberg (1964) and Hans-Paul Schwefel (1965) established

4



evolution strategies, and John H. Holland (1975) established genetic algorithms.
Deriving from the genetic algorithm lineage, John Koza (1990)established the
field of genetic programming.

The third phase came when these four lineages, which had established their
own conferences, merged in the mid 1990s into a unified evolutionary compu-
tation community. Out of this convergence the field gained its first journals,
Evolutionary Computation at MIT Press in 1993, IEEE Transactions on Evo-
lutionary Computation in 1997, and Genetic Programming and Evolvable Ma-
chines at Springer in 2000. Before the advent of these journals, research in evo-
lutionary computation appeared mainly in the proceedings of the International
Conference on Genetic Algorithms, the Evolutionary Programming conferences,
the Parallel Problem Solving from Nature conferences in Europe, and scattered
articles throughout academic journals. Because the journal citation index Web
of Science does not currently index many of these sources, a large body of the
founding literature in evolutionary computation remains invisible to it.

The founding papers in the field from 1953 to 1997 have been collected by
David B. Fogel (1998) into a single volume, Evolutionary Computation: The
Fossil Record.

The history of evolutionary computation differs markedly from that of the
field of artificial intelligence. Artificial intelligence had a specific birth as a
new field in a proposal for a 1956 Dartmouth conference organized by Dart-
mouth mathematician John McCarthy, Marvin Minsky at Harvard, Nathaniel
Rochester at IBM, and Claude Shannon at Bell Labs (McCarthy et al., 1955
(2006). John Holland, it should be noted, was one of the invitees. In the found-
ing of evolutionary computation, the Ivy League played almost no role, and the
research took root in diverse state universities and industrial research labs in
the United States, and universities in Europe and Australia.

Evolutionary computation has developed largely independently from the es-
tablished field of theoretical population genetics. Yet interchanges between the
evolutionary computation and evolutionary biology communities occurred as
early as 1980 in Europe during a workshop on the “Evolution of Evolutionary
Mechanisms” held in Göttingen, West Germany (Wagner, 1981), while in the
United States, interactions between the two communities were fostered by the
advent of the Santa Fe Institute, in which John Holland from the University
of Michigan and evolutionary theoretician Marcus W. Feldman from Stanford
University were key participants. Paixão et al. (2015) have made a recent effort
enhance the flow of theoretical results between fields by creating a modeling
framework that encompasses both evolutionary algorithms and computational
models of evolution.

2.3. Variety in Evolutionary Computation Techniques

Designers of evolutionary algorithms have explored a very large space of tech-
niques in the hope of improving the performance of evolutionary algorithms over
the very wide variety of engineering problems to which they have been applied.
Explorations include the values of algorithm parameters such as mutation and

5



crossover rates, selection strength, and population size, encodings, spatial pop-
ulation structure, generation overlap, niching, fitness sharing, multi-objective
optimization methods, feasibility constraints, etc. The theory of evolutionary
dynamics has yet to reach the point where one can convert the information one
has about an optimization problem into the choices of which techniques and
parameters to use. For specific models however, progress is being made in ob-
taining rigorous theoretical results (portal papers include Oliveto et al. (2007);
Valiant (2009)).

Evolutionary algorithms employ a great palette of special operators which
may have no analogy in biology. One area under extensive development is multi-
objective evolutionary optimization. Another example that has burgeoned into
a research program is the method called estimation of distribution algorithms
(EDAs) introduced by Mühlenbein and Paass (1996). An early method was to
merge all of the genomes in the population into a single gene pool and sample
the alleles at each locus to generate a new genotype, so that the entire popula-
tion serves as the parent (Syswerda, 1993). EDAs derive from an abstract view
about what the operators of selection, mutation, and recombination are actu-
ally doing: they produce (implicitly) a probability distribution from which the
genotypes of offspring are sampled. EDAs produce these probabilities explicitly,
as a dynamical system on probability models whose parameters are adjusted by
the objective function values of sampled candidate solutions, in the hope of
concentrating the probability on the best candidate solutions. EDAs readily in-
corporate techniques from machine learning to generate the probability models
(Lozano et al., 2006; Pelikan et al., 2015).

A significant development in evolutionary computation came with the ad-
vent of genetic programming, because the data structures representing candi-
date solutions are no longer of fixed length, but can grow in complexity. Genetic
programming evolves code structures that are themselves executable. Programs
can be represented as parse trees, and pairs of parse trees can be recombined by
exchanging their subtrees. Figure 1 shows an illustration of how a mathematical
function can be represented as a parse-tree in genetic programming, and how
subtree exchange between two copies of a program (in this case, for a Gaus-
sian distribution) produces an offspring that encodes a different function. Many
other techniques have been developed for variation operators in genetic program-
ming, for example, by placing the executable structures back one step from the
variation operators through “cellular encoding” (Gruau, 1994) or “developmen-
tal encoding” (Mouret and Tonelli, 2014), in which the executable structures
are constructed from the encoding through an ontogenic development process.

2.4. Contrasts Between Evolutionary Computation and Organic Evolution

The motivation behind the development of evolutionary algorithms is opti-
mization — finding approximate or exact solutions to diverse problems within
the constraints of the computational resources available. The amount of compu-
tation required to find an optimum or to achieve a desired level of approximation
is therefore a central concern. Such rate of improvement per computation can
be considered a measure of evolvability. In organismal evolution, everything is

6



µ

σ

π
x

÷

2 −

e

×

∧×
√
×1

2

×
2 ∧
σ 2

−
∧÷

µ

σ

π
x

÷

2 −

e

×

∧×
√
×1

2

×
2 ∧
σ 2

−
∧÷

1√
2π σ

e
(x−µ)2

2σ2
1√

2π σ
e

(x−µ)2

2σ2

�

µ

σ

x

÷
−

e

×

∧

√
×1

2

×
2 ∧
σ 2

−
∧÷

µx

÷
−

∧
2

×
2 ∧
σ 2

1�
(x−µ)2

2σ2 σ
e

(x−µ)2

2σ2

Figure 1: Genetic programming subtree exchange between two parse trees. Two identi-
cal parent trees encode the algorithm for the Gaussian normal density. Their recombinant
offspring encodes a new mathematical expression.

conditioned on the survival of the lineage, as pointed out by Palmer and Feld-
man (2012), and evolvability may conflict with survival if it is tied to increased
production of deleterious variation, or leads to the evolution of short-sighted
traits that sabotage long-term survival (Nunney, 1989; Altenberg, 2005) or re-
duces total population size (Frank, 2013). Lineage survival is precluded as an
element of evolutionary optimization because the algorithms are fundamentally
search algorithms, and a ‘population’ is simply the set of previously sampled
points from which new samples are to be generated. In other words, popula-
tion persistence is guaranteed by construction. Evolvability is thus the primary
performance goal of evolutionary algorithms.

In terms of sheer computational power, computer-based evolutionary algo-
rithms cannot compare with the number of evolutionary operations taking place
in the biosphere (reproduction, mutation, recombination, natural selection).
There are an estimated 3×1027 cells of the ocean cyanobacterium Prochlorococ-
cus marinus alive at any one time (Flombaum et al., 2013) (on the order of the
number of atoms in a ton of gold), and with a once-daily cell division, a genome
size of 2 × 106 base pairs, and an estimated mutation rate of 5.4 × 10−7 muta-
tions per base pair (Osburne et al., 2011), there are some 3 × 1027 mutations
generated daily. That is enough to sample all of the 4-mutation neighbors of a
parental sequence. The raw information content of organismal genomes, which

7



ranges on the order of 105 to 1010 bits, is matched by very few instances of the
data structures searched with evolutionary algorithms. The current record is
set by some special examples in which genetic algorithms have been performed
on one-billion-bit strings (Iturriaga and Nesmachnow, 2012).

A run of an evolutionary algorithm typically begins with a population con-
structed from uniformly sampled random points in the search space. In organic
evolution, by contrast, the initial condition was the origin of life itself. At some
point life evolved into organisms with DNA-based genomes, but none of the
scenarios for the origin of nucleotide-based genomes propose that the initial se-
quences were uniformly sampled random sequences. So the initial stage in a
run of an evolutionary algorithm, where recombination, mutation, and selection
are being performed on a population of random sequences, has no parallel in
organic evolution, where the processes are always observed in populations that
have been evolving for a very long time.

In evolutionary algorithms, there is a clean separation between logical parts
of the algorithm: the code for the objective function and the variation and
selection operators is entirely separate from the code for the data structures
representing the search space, and the entire algorithm is contained in applica-
tion code separate from the operating system and hardware of the computer.
In organic evolution we see the exact opposite: these logical elements are all
physically enmeshed—the molecular machinery that produces mutation and re-
combination and organismal survival and reproduction is all a product of the in-
formation in the genome, cytoplasm, and whole organism, acting in the context
of its environment. Some efforts have gone in to blurring the logical separations
in evolutionary algorithms, notably the encoding of mutation and recombination
rates into the genomes of the individual (see Genetic Modifiers, below). The
field of artificial life distinguishes itself from evolutionary algorithms in that
it places a priority on getting reproduction, replication, mutation, recombina-
tion, fitness, spatial movement, and ecological interactions to all emerge from
the computational system instead of being written by hand in separate parts of
the program, emulating the enmeshment of logical levels found in biology (see
Artificial Life, below).

2.5. Contrasts Between Evolutionary Computation and Computational Models
of Evolution

When evolutionary algorithms are compared with computational models of
evolution, the most obvious difference is that computational models of evolu-
tion place a priority on biological realism, while evolutionary algorithms place
a priority on computationally efficient optimization. As “nature inspired” com-
puting, EC has drawn upon many biological and population processes as a source
of ideas to try out in algorithmic form, but little priority is given to keeping
them biologically realistic.

In the drive toward more biological realism, computational models of evo-
lution have gone beyond the rather limited set of constructs used tradition-
ally in population genetics models, such as additive, multiplicative, low-order
epistatic, random, and Gaussian fitness functions. Kauffman and Levin (1987)

8



introduced the more structured, tunably-rugged NK fitness landscapes. Knibbe
et al. (2007) included insertions, deletions, and duplications in a model with
a complex genotype-phenotype map. Computational models of RNA folding
(Schuster et al., 1994), protein folding (Lobkovsky et al., 2011), and gene regula-
tory networks (Wagner, 1994) have provided biologically grounded fitness land-
scapes for exploring evolutionary dynamics. More recently, laboratories have
been able to obtain fitness estimates for small regions of fitness landscapes, and
computational models of evolution on these empirical fitness landscapes have
been utilized to explore and even predict evolution (Visser and Krug, 2014).

The fitness landscapes encountered in evolutionary algorithms are derived
from a vast variety of real engineering problems, which may be seen as “wild”
rather than constructed. Evolution on these fitness landscapes ranges beyond
the standard population genetics models and the special cases explored thus far
in computational models of evolution. They may therefore have value as models
to expand the palette of observed evolutionary phenomena.

2.6. Parallel Discoveries of Evolutionary Phenomena in Evolutionary Compu-
tation

There are several phenomena that were discovered in the field of evolution in
parallel with their discovery in the evolutionary biology community. Here, sev-
eral principal examples will be given, under the names given to the phenomena
in the evolutionary biology literature.

The Problem of Evolvability. The earliest experiences with evolutionary al-
gorithms showed that the combination of Darwinian selection with ran-
dom variation does not necessarily work to produce adaptation. Fried-
berg (1958); Friedberg et al. (1959) attempted to evolve computer pro-
grams through selection and variation operators, but found that the pro-
cess frequently stagnated. Conrad (1974a) pointed out that in computer
programs, “slight changes in such a rule (e.g. in the pattern of internal
inputs) result in radical changes in the behaviour of the system.” In organ-
isms, the physical nature of molecular dynamics makes gradual changes in
function possible, and Conrad even proposed that gradualism could itself
be increased in evolution (Conrad, 1974b).

But even where gradualism is abundant, epistasis, multi-modality, and
deception can stymy evolutionary algorithms from finding global optima or
even good approximations. Good performance of evolutionary algorithms
was found early on to depend critically on the encoding or representation
of the search space, and on parameters of the algorithm such as mutation
rate, population size, and selection operators.

A key theoretical breakthrough was the paper, “No Free Lunch Theorems
for Search” by Wolpert and Macready (1995, 1997). They showed that
over the space of all problems, all search algorithms have the same average
performance. The only way that a search algorithm such as an evolution-
ary algorithm can have superior performance is if the set of problems is

9



matched to the algorithm, or said in another way, that the algorithm has
implicit knowledge about the search space. Concretely, the variation op-
erators have to be able to generate candidate solutions with ever better
objective function values as the population evolves. This depends on how
the variation operators acting on the representations relate to the objec-
tive function (Altenberg, 1995).

Genetic Modifiers In 1967, Nei (1967) introduced a model for the evolution
of recombination in which a modifier locus controls the rate of recombi-
nation between two other loci under viability selection. Feldman (1972)
gave the first evolutionary stability analysis of the model. Simultaneously,
on the evolutionary computation side, Reed et al. (1967) included genetic
modification for mutation and crossover rates and mutation size in their
genetic algorithms. Rechenberg (1973) began to incorporate genetic con-
trol of the “strategy parameters” for his evolutionary algorithms, which
included mutational step sizes, and this was termed “self-adaptation” by
Schwefel (1987).

Constructive Neutral Evolution. An early discovery in the field of genetic
programming was that the size of evolved programs would keep growing
in time, even though there was no explicit selection for larger programs.
This was dubbed “bloat”. One of the explanations proposed in Langdon
and Poli (1997) to account for code bloat in genetic programming was that
the number of long programs that could implement a given function was
much greater than the number of short programs. Offspring produced by
exchanging subtrees of parent programs would often have identical fitness
to the best parent, and so evolution along neutral networks was possible.
Longer programs would evolve as an entropic phenomenon of evolution
along neutral networks. As described by Langdon and Poli (1997):

In general variable length allows many more long representa-
tions of a given solution than short ones of the same solution.
Thus (in the absence of a parsimony bias) we expect longer rep-
resentations to occur more often and so representation length to
tend to increase. That is fitness based selection leads to bloat.

On the evolutionary biology side, Covello and Gray (1993) proposed that
RNA editing may have evolved through a mechanism that Stoltzfus (1999)
named “constructive neutral evolution,” in which needlessly complex mech-
anisms evolve through a process of neutral evolution simply because there
may be a much greater number of complex ways to produce a phenotype
than simple ways. Stoltzfus (1999) includes in this list the phenomenon of
“scrambled genes” in ciliates, and the process independently called “sub-
functionalization” by Force et al. (1999) in which independently function-
ing modules within a gene become separated into multiple genes, another
essentially entropic process. Echoing the explanation by Langdon and
Poli (1997) of bloat, we find the explanation by Stoltzfus (1999) for gene
scrambling:

10



Given such a buffer against the otherwise adverse effects of
micronuclear gene rearrangements, a long-term net increase in
scrambling would be expected, simply because there are many
more scrambled than unscrambled configurations.

The Evolution of Genetic Robustness. As described above, program bloat
is one of the emergent properties discovered in evolving computer pro-
grams through genetic programming. Before Langdon and Poli (1997)
proposed their entropic mechanism for bloat, an earlier hypotheses was
that the code bloat gave programs a “defense against crossover” (Single-
ton and Keenan, 1993). They discovered that much of the code in bloated
programs could be deleted or exchanged without consequence for the pro-
gram’s behavior. The bloated programs were thus phenotypically robust
to the variation operator, and the extra code diverted the crossover opera-
tor from hitting sensitive parts of the program. Altenberg (1994) proposed
that inherently-neutral code would proliferate in the long-term evolution
of populations of programs. Nordin and Banzhaf (1995) examined the dis-
tribution of fitness effects of subtree exchange (Figure 2) and found that,
indeed, the proportion subtree exchanges with no effect on program per-
formance (neutral crossovers) increased several-fold during the population
evolution.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 5 10 15 20 25 30 35 40

A
v
e

ra
g

e
 S

ta
n

d
. 

F
it
n

e
s
s

Generations

Average Fitness

"Average Fitness"

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

A
v
e

ra
g

e
 L

e
n

g
th

 i
n

 B
it
s

Generations

Absolute Complexity and Efficient Complexity

"Absolute Length"
"Efficient Length"

Effects of Crossover during Evolution

"Crossover Effect "

-100 or less
-50

0
50

100 0
5

10
15

20
25

30
35

0

1000

2000

3000

4000

5000

6000

7000

Fitness Change after Crossover (%)

Generations

Number of Crossover Events

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

A
v
e

ra
g

e
 L

e
n

g
th

 i
n

 B
it
s

Generations

Absolute Complexity and Efficient Complexity

"Absolute Length"
"Efficient Length"

Figure 2: Distribution of fitness effects of recombination during an evolutionary run with
genetic programming, from Nordin and Banzhaf (1995). The proportion of neutral crossovers
increases during the run.

On the evolutionary biology side, interest in computational models of RNA
folding revealed the existence of large mutationally-connected networks of
RNA sequences that folded into the same secondary structure, leading to
questions about how evolution would proceed on such neutral networks. In
1999, two papers (Bornberg-Bauer and Chan, 1999; Nimwegen et al., 1999)
showed that evolution on neutral networks could move a population to
genotypes with greater probability of producing neutral mutants, the same

11



outcome of increased genetic robustness observed in genetic programming
by Nordin and Banzhaf (1995).

2.7. Artificial Life

The field that has come to be known as “artificial life” (Langton, 1984, 1986)
also focuses on computational systems that exhibit Darwinian evolution. But
the motivations behind artificial life and the design of its evolving systems depart
significantly from the field of evolutionary computation. In it most ambitious
form, the goal of artificial life is to create new “instances of life” in addition to
the actual biological world—i.e. systems that exhibit all the essential features
of life—in order to advance our understanding of life by having more than the
single “data point” of terrestrial living systems. The means to this goal is to
create artificial systems that exhibit the principal features of life: structures
whose activities result in the maintenance and reproduction of the structures
(autopoeisis (Varela et al., 1974)), ecological interactions, and reproduction with
variation that allows Darwinian evolution to occur. Another widespread goal is
to design artificial systems that exhibit an unbounded increase in complexity in
time.

As stated by a founder of the field, Langton (1986):

The ultimate goal of the study of artificial life would be to create ‘life’
in some other medium, ideally a virtual medium where the essence
of life has been abstracted from the details of its implementation in
any particular hardware. We would like to build models that are so
life-like that they cease to be models of life and become examples of
life themselves.

The root document of the field is von Neumann (1966) “Theory of Self-
Reproducing Automata.” It spawned numerous efforts to construct cellular au-
tomata in which configurations of cell states would self-reproduce through the
automaton dynamics. Langton (1984) discovered such a cellular automaton,
called the “Langton loop.” A different approach was the successful construc-
tion by Ray (1993) of a virtual machine, Tierra, where a specific configuration
of instructions would compute its own replication. By including error prone
operators, the self-reproducing configuration could evolve. The evolutionary
dynamics of Tierra produced emergent phenomena such as parasitism, where
mutants parasitized other programs for their own replication, and a rich struc-
ture of ecological interactions. Several other virtual machine systems have been
subsequently developed, including Avida (Adami and Brown, 1994) and Amoeba
(Pargellis, 1996).

In these systems, sets of instructions in a virtual machine language per-
form the computation that replicates the set of instructions. Replication is
not performed by separate variation or selection operators. Thus, replication
emerges from the computational dynamics. Selection—the differential survival
and replication of structures in the virtual machine—is also emergent from the
computation, when some sets of instruction (the “digital organisms”) outcopy

12



others. Mutation, however, is typically hand-coded into the construction of the
virtual machine by making some instructions probabilistic. Also, until recently,
the programmer had to design by hand the initial self-replicating configuration
of instructions that founds the population. But LaBar et al. (2015) searched
through 3 billion randomly generated programs in the Avida system and discov-
ered 170 programs that produce self-replication.

Another distinction between evolutionary computation and artificial life is
that the latter do not employ objective functions for use by selection opera-
tors. There is no “goal” or outcome to optimize; the digital organisms are not
“candidate solutions” to some exogenously defined problem as is usually the
case with evolutionary algorithms. Selection in A-Life systems could be called
“natural” in that differential survival and reproduction of the digital organisms
is an emergent outcome of the computations in the virtual machine. The emer-
gent properties of artificial life systems such as Avida have made them useful for
exploring the dynamics of evolution, for example the phenomenon of “survival
of the flattest” (Wilke et al., 2001), the evolution of the germline/soma division
(Goldsby et al., 2014), and the evolution of complexity (Lenski et al., 2003).

3. List of Relevant Web Pages

Journals in Evolutionary Computation:

Artificial Life, MIT Press, http://www.mitpressjournals.org/toc/artl/
1/4

Evolutionary Computation, MIT Press, http://www.mitpressjournals.
org/loi/evco

Genetic Programming and Evolvable Machines, Springer, http://www.

springer.com/computer/ai/journal/10710

IEEE Transactions On Evolutionary Computation (TEVC) http://cis.
ieee.org/ieee-transactions-on-evolutionary-computation.html

Swarm and Evolutionary Computation, Elsevier, http://www.journals.
elsevier.com/swarm-and-evolutionary-computation/

4. Biography

Lee Altenberg is a Senior Fellow at the Konrad Lorenz Institute for Evolu-
tion and Cognition Research. As an undergraduate at the University of Califor-
nia, Berkeley, he was interested in complex systems phenomena in nature, and
decided that evolutionary theory would provide a rich field for discovery. He
studied theoretical population genetics with Glenys Thomson, and studied with
Marcus W. Feldman at Stanford University for his doctorate, introducing his
advisor to the work of John H. Holland. In his postdoctoral work at Stanford
and Duke University he developed early mechanistic models of evolution that

13

http://www.mitpressjournals.org/toc/artl/1/4
http://www.mitpressjournals.org/toc/artl/1/4
http://www.mitpressjournals.org/loi/evco
http://www.mitpressjournals.org/loi/evco
http://www.springer.com/computer/ai/journal/10710
http://www.springer.com/computer/ai/journal/10710
http://cis.ieee.org/ieee-transactions-on-evolutionary-computation.html
http://cis.ieee.org/ieee-transactions-on-evolutionary-computation.html
http://www.journals.elsevier.com/swarm-and-evolutionary-computation/
http://www.journals.elsevier.com/swarm-and-evolutionary-computation/


shaped the genotype-phenotype map in the direction of modularity and the evo-
lution of evolvability. He introduced an analytical framework for the evolution of
the distribution of fitness effects and evolvability from population genetics into
the field of evolutionary computation. He served as Associate Professor in the
Department of Information and Computer Sciences at the University of Hawai‘i
at Manoa. His recent focus has been on obtaining new results in spectral theory
to answer questions of complex information transmission in evolution.

5. References

Adami, C., Brown, C. T., 1994. Evolutionary learning in the 2D artificial life
system “Avida”. In: Artificial Life IV. Vol. 1194. MIT Press, Cambridge, MA,
pp. 377–381.

Altenberg, L., 1994. The evolution of evolvability in genetic programming. In:
Kinnear, K. E. (Ed.), Advances in Genetic Programming. MIT Press, Cam-
bridge, MA, Ch. 3, pp. 47–74.

Altenberg, L., 1995. The Schema Theorem and Price’s Theorem. In: Whitley,
D., Vose, M. D. (Eds.), Foundations of Genetic Algorithms 3. Morgan Kauf-
mann, San Mateo, CA, pp. 23–49.

Altenberg, L., 2005. Evolvability suppression to stabilize far-sighted adapta-
tions. Artificial Life 11 (4), 427–444.

Bornberg-Bauer, E., Chan, H. S., 1999. Modeling evolutionary landscapes: mu-
tational stability, topology, and superfunnels in sequence space. Proceedings
of the National Academy of Sciences U.S.A. 96 (19), 10689–10694.

Conrad, M., 1974a. Evolutionary learning circuits. Journal of Theoretical Biol-
ogy 46 (1), 167–188.

14



Conrad, M., 1974b. Molecular information processing in the central nervous
system. In: Conrad, M., Guttinger, W., Cin, M. D. (Eds.), Physics and
Mathematics of the Nervous System. Springer, pp. 82–107.

Covello, P. S., Gray, M. W., 1993. On the evolution of RNA editing. Trends in
Genetics 9 (8), 265–268.
URL doi:10.1016/0168-9525(93)90011-6

Feldman, M. W., 1972. Selection for linkage modification: I. Random mating
populations. Theoretical Population Biology 3, 324–346.

Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao,
N., Karl, D. M., Li, W. K., Lomas, M. W., Veneziano, D., et al., 2013. Present
and future global distributions of the marine cyanobacteria prochlorococcus
and synechococcus. Proceedings of the National Academy of Sciences 110 (24),
9824–9829.

Fogel, D. B. (Ed.), 1998. Evolutionary Computation: The Fossil Record. IEEE
Press, Piscataway, NJ.

Fogel, L. J., 1964. On the organization of intellect. Ph.D. thesis, University of
California, Los Angeles.

Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., Postlethwait, J.,
1999. Preservation of duplicate genes by complementary, degenerative muta-
tions. Genetics 151, 1531–1545.

Frank, S. A., 2013. Microbial evolution: regulatory design prevents cancer-like
overgrowths. Current Biology 23 (9), R343–R346.

Friedberg, R. M., 1958. A learning machine: Part i. IBM Journal of Research
and Development 2 (1), 2–13.

Friedberg, R. M., Dunham, B., North, J. H., 1959. A learning machine: Part
II. IBM Journal of Research and Development 3 (3), 282–297.

Goldsby, H. J., Knoester, D. B., Ofria, C., Kerr, B., 2014. The evolutionary
origin of somatic cells under the dirty work hypothesis. PLoS Biology 12 (5).

Gruau, F., 1994. Genetic micro programming of neural networks. In: Kinnear,
Jr., K. E. (Ed.), Advances in Genetic Programming. MIT Press, Cambridge,
MA, pp. 495–518.

Holland, J. H., 1975. Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor.

Iturriaga, S., Nesmachnow, S., 2012. Solving very large optimization problems
(up to one billion variables) with a parallel evolutionary algorithm in CPU
and GPU. In: P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC),
2012 Seventh International Conference on. IEEE, pp. 267–272.

15

doi:10.1016/0168-9525(93)90011-6


Kauffman, S. A., Levin, S., 1987. Towards a general theory of adaptive walks
on rugged landscapes. Journal of Theoretical Biology 128, 11–45.

Knibbe, C., Coulon, A., Mazet, O., Fayard, J.-M., Beslon, G., 2007. A long-term
evolutionary pressure on the amount of noncoding dna. Molecular Biology and
Evolution 24 (10), 2344–2353.

Koza, J. R., June 1990. Genetic programming: A paradigm for genetically breed-
ing populations of computer programs to solve problems. Tech. Rep. CS-TR-
90-1314, Stanford University, Department of Computer Science, Stanford,
CA.

LaBar, T., Adami, C., Hintze, A., 2015. Does self-replication imply evolvability?
In: Proceedings of the European Conference on Artificial Life 2015. pp. 595–
602.

Langdon, W., Poli, R., 1997. Fitness causes bloat. In: 2nd On-line World Confer-
ence on Soft Computing in Engineering Design and Manufacturing (WSC2).
pp. 1–10.

Langton, C. G., 1984. Self-reproduction in cellular automata. Physica D: Non-
linear Phenomena 10 (1), 135–144.

Langton, C. G., 1986. Studying artificial life with cellular automata. Physica
22D, 120–149.

Lenski, R. E., Ofria, C., Pennock, R. T., Adami, C., 2003. The evolutionary
origin of complex features. Nature 423 (6936), 139–144.

Lobkovsky, A. E., Wolf, Y. I., Koonin, E. V., 2011. Predictability of evolutionary
trajectories in fitness landscapes. PLoS Comput. Biol 7 (12), e1002302.

Lozano, J. A., Larrañaga, P., Inza, I., Bengoetxea, E. (Eds.), 2006. Towards
a New Evolutionary Computation: Advances on Estimation of Distribution
Algorithms. Vol. 192 of Studies in Fuzziness and Soft Computing. Springer.

McCarthy, J., Minsky, M. L., Rochester, N., Shannon, C. E., 1955 (2006). A
proposal for the dartmouth summer research project on artificial intelligence,
august 31, 1955. AI Magazine 27 (4), 12.

Mouret, J.-B., Tonelli, P., 2014. Artificial evolution of plastic neural networks: A
few key concepts. In: Kowaliw, T., Bredeche, N., Doursat, R. (Eds.), Grow-
ing Adaptive Machines. Vol. 557 of Studies in Computational Intelligence.
Springer Berlin Heidelberg, pp. 251–261.
URL http://dx.doi.org/10.1007/978-3-642-55337-0_9

Mühlenbein, H., Paass, G., 1996. From recombination of genes to the estima-
tion of distributions i. binary parameters. In: Voigt, H.-M., Ebeling, W.,
Rechenberg, I., Schwefel, H.-P. (Eds.), Parallel Problem Solving from Nature
— PPSN IV. Vol. 1141 of Lecture Notes in Computer Science. Springer Berlin

16

http://dx.doi.org/10.1007/978-3-642-55337-0_9


Heidelberg, pp. 178–187.
URL http://dx.doi.org/10.1007/3-540-61723-X_982

Nei, M., 1967. Modification of linkage intensity by natural selection. Genetics
57, 625–641.

Nimwegen, E., Crutchfield, J. P., Huynen, M., 1999. Neutral evolution of mu-
tational robustness. Proceedings of the National Academy of Sciences U.S.A.
96, 9716–9720.

Nordin, P., Banzhaf, W., 1995. Complexity compression and evolution. In: Es-
helman, L. (Ed.), Genetic Algorithms: Proceedings of the Sixth International
Conference. Morgan Kaufmann, San Francisco, pp. 310–317.

Nunney, L., 1989. The maintenance of sex by group selection. Evolution 43 (2),
245–257.

Oliveto, P., He, J., Yao, X., 2007. Time complexity of evolutionary algorithms
for combinatorial optimization: A decade of results. International Journal of
Automation and Computing 4 (3), 281–293.
URL http://dx.doi.org/10.1007/s11633-007-0281-3

Osburne, M. S., Holmbeck, B. M., Coe, A., Chisholm, S. W., 2011. The sponta-
neous mutation frequencies of prochlorococcus strains are commensurate with
those of other bacteria. Environmental microbiology reports 3 (6), 744–749.

Paixão, T., Badkobeh, G., Barton, N., cCörücs, D., Dang, D.-C., Friedrich,
T., Lehre, P. K., Sudholt, D., Sutton, A. M., Trubenová, B., 2015. Toward a
unifying framework for evolutionary processes. Journal of Theoretical Biology
383, 28–43.

Palmer, M. E., Feldman, M. W., 2012. Survivability is more fundamental than
evolvability. PloS ONE 7 (6), e38025.

Pargellis, A., 1996. The evolution of self-replicating computer organisms. Phys-
ica D: Nonlinear Phenomena 98 (1), 111–127.

Pelikan, M., Hauschild, M., Lobo, F., 2015. Estimation of distribution algo-
rithms. In: Kacprzyk, J., Pedrycz, W. (Eds.), Springer Handbook of Compu-
tational Intelligence. Springer Berlin Heidelberg, pp. 899–928.
URL http://dx.doi.org/10.1007/978-3-662-43505-2_45

Ray, T. S., 1993. An evolutionary approach to synthetic biology: Zen and the
art of creating life. Artificial Life 1 (1 2), 179–209.

Rechenberg, I., 1964. Cybernetic solution path of an experimental problem (Ky-
bernetische Lösungsansteuerung einer experimentellen Forschungsaufgabe).
In: Fogel, D. B. (Ed.), Evolutionary Computation: the Fossil Record. IEEE
Press, New York. 1998, pp. 301–309.

17

http://dx.doi.org/10.1007/3-540-61723-X_982
http://dx.doi.org/10.1007/s11633-007-0281-3
http://dx.doi.org/10.1007/978-3-662-43505-2_45


Rechenberg, I., 1973. Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart.

Reed, J., Toombs, R., Barricelli, N. A., 1967. Simulation of biological evolution
and machine learning: I. selection of self-reproducing numeric patterns by
data processing machines, effects of hereditary control, mutation type and
crossing. Journal of theoretical biology 17 (3), 319–342.

Schuster, P., Fontana, W., Stadler, P. F., Hofacker, I. L., 1994. From sequences
to shapes and back: A case study in RNA secondary structures. Proceedings
of the Royal Society of London B: Biological Sciences 255 (1344), 279–284.

Schwefel, H.-P., 1965. Kybernetische evolution als strategie der experimentellen
forschung in der strömungstechnik. Master’s thesis, Technical University of
Berlin.

Schwefel, H.-P., 1987. Collective phenomena in evolutionary systems. Preprints
of the 31st Annual Meeting of the International Society for General System
Research, Budapest 2, 1025–1033.

Singleton, A., Keenan, N., 1993. Defense against crossover, discussion in the
Genetic Programming Workshop at the Fifth International Conference on
Genetic Algorithms.

Stoltzfus, A., 1999. On the possibility of constructive neutral evolution. Journal
of Molecular Evolution 49, 169–181.

Syswerda, G., 1993. Simulated crossover in genetic algorithms. In: Whitley,
L. D. (Ed.), Foundations of Genetic Algorithms 2. Morgan Kaufmann, San
Mateo, CA, pp. 239–255.

Valiant, L. G., 2009. Evolvability. Journal of the ACM (JACM) 56 (1), 3.

Varela, F. G., Maturana, H. R., Uribe, R., 1974. Autopoiesis: the organization
of living systems, its characterization and a model. Biosystems 5 (4), 187–196.

Visser, d. J., Krug, J., 2014. Empirical fitness landscapes and the predictability
of evolution. Nature Reviews Genetics 15, 480–490.

von Neumann, J., 1966. Theory of Self-Reproducing Automata. University of
Illinois Press, Champaign, IL, edited and completed by Arthur W. Burks.

Wagner, A., 1994. Evolution of gene networks by gene duplications: a mathe-
matical model and its implications on genome organization. Proceedings of
the National Academy of Sciences U.S.A. 91, 4387–4391.

Wagner, G. P., 1981. Evolution of evolutionary mechanisms: A workshop held at
Berlepsch Castle (Göttingen, West Germany), November, 1980. Evolutionary
Theory 5, 185–186.

18



Wilke, C. O., Wang, J. L., Ofria, C., Lenski, R. E., Adami, C., 2001. Evolution
of digital organisms at high mutation rates leads to survival of the flattest.
Nature 412 (6844), 331–333.

Wolpert, D. H., Macready, W. G., 1995. No free lunch theorems for search.
Tech. Rep. SFI-TR-95-02-010, Santa Fe Institute, Santa Fe, NM.
URL citeseer.nj.nec.com/wolpert95no.html

Wolpert, D. H., Macready, W. G., 1997. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1, 67–82.

6. Selected Further Reading

Adami, C., 1998. Introduction to Artificial Life. Springer, New York.

Banzhaf, W., Nordin, P., Keller, R. E., Francone, F. D., 1998. Genetic
Programming: An Introduction. Morgan Kaufmann, San Francisco.

Bentley, P., Corne, D., 2002. Creative evolutionary systems. Morgan
Kaufmann.

De Jong, K. A., 2006. Evolutionary Computation: A Unified Approach.
MIT press.

Jansen, T., 2013. Analyzing Evolutionary Algorithms: The Computer
Science Perspective. Springer.

Poli, R., Langdon, W. B., McPhee, N. F., 2008. A field guide to ge-
netic programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, (With contributions by J. R.
Koza).

Mitchell, M., 2009. Complexity: A guided tour. Oxford University Press.

7. Acknowledgments

I thank David B. Fogel and editor Norman Johnson for their helpful com-
ments. This work was supported by the Konrad Lorenz Institute for Evolution
and Cognition Research; the Mathematical Biosciences Institute at The Ohio
State University, USA, through National Science Foundation Award #DMS
0931642.

19

citeseer.nj.nec.com/wolpert95no.html

	Glossary
	Body text
	Introduction
	History of Evolutionary Computation
	Variety in Evolutionary Computation Techniques
	Contrasts Between Evolutionary Computation and Organic Evolution
	Contrasts Between Evolutionary Computation and Computational Models of Evolution
	Parallel Discoveries of Evolutionary Phenomena in Evolutionary Computation
	Artificial Life

	List of Relevant Web Pages
	Biography
	References
	Selected Further Reading
	Acknowledgments

