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Abstract

The Rayleigh quotient, which provides the classical variational charac-
terization of the spectral radius of Hermitian matrices, can be extended
to nonsymmetric nonnegative irreducible matrices, A, by the inclusion
of a diagonal similarity scaling, to yield the variational formula r(A) =
supx>0 infy>0 x

>DyAD−1y x/(x>x), where Dy is the diagonal matrix of the
vector y. Comparison is made to other variational formulae for the spectral
radius.

The classical variational characterization of the spectral radius of Hermitian matri-
ces is Rayleigh’s formula. Let A ∈ Cn×n be an n × n Hermitian matrix, and let
r(A) = max { |λ| : det(A− λI) = 0 } be its spectral radius. Rayleigh’s formula is
the maximum of the Rayleigh quotient (also known as the Rayleigh-Ritz ratio):

r(A) = sup
x 6=0

x>Ax∗

x>x∗
, (1)

where x∗ is the complex conjugate of x.
No such formula exists for general complex square matrices A ∈ Cn×n. We

note that in Rayleigh’s formula, both left and right sides of the matrix A enter
equivalently, which we refer to here as structural symmetry.

Variational formulae do exist for the class of irreducible nonnegative square ma-
trices. In contrast with the structurally symmetric form of the Rayleigh quotient, the
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most well-known formulae for the spectral radius of irreducible nonnegative matrices
are structurally asymmetric, in that the two sides of the matrix enter in different
roles. There is the classical Collatz-Wielandt formula:

r(A) = max
x>0

min
i

[Ax]i
xi

= min
x>0

max
i

[Ax]i
xi

,

where only one side of the matrix is involved in vector multiplication (although either
side could be chosen), and the Donsker-Varadhan-Friedland formula (Donsker and
Varadhan, 1975; Friedland, 1981):

r(A) = sup
p∈P

inf
x>0

n∑
i=1

pi
[Ax]i
xi

= sup
p∈P

inf
x>0

(p ◦ x−1)[Ax]i, (2)

where x−1 := [1/xi]
n
i=1, p◦x−1 = [pi/xi]

n
i=1, ◦ being the elementwise Hadamard prod-

uct, and the simplex is represented as P = {p : pi ≥ 0,
∑n

i=1 pi = 1 } ⊂ Rn. Here the
asymmetry enters in the different spaces of variation on the left and right vectors
multiplying A.

Fiedler et al. (1985) introduced a structurally symmetric variational formula for
the spectral radius:

r(A) = max
z>0

min
x>0, y>0, x◦y=z

y>Ax

y>x
.

Here, both sides of the matrix A are multiplied by vector variables. Asymmetries in
A manifest as inequality between y and x in the vectors at which the min and max
are attained.

A change of variables shows that the Donsker-Varadhan-Friedland formula and
the Fiedler formula are actually equivalent. The constraint x ◦ y = z in the Fiedler
formula means that the degrees of freedom in {x,y } are not actually 2n, but only
n, since there are n constraints yi = zi/xi. An additional n degrees of freedom come
from variation of z. The normalization by x>y brings the total variational degrees of
freedom to 2n− 1. With the constraints incorporated, the Fiedler formula becomes

r(A) = max
z>0

min
x>0

(z ◦ x−1)>Ax

z>e
= max

z>0
min
x>0

n∑
i=1

zi

z>e

[Ax]i
xi

,

which is the Donsker-Varadhan-Friedland formula since z/z>e ∈ P , which likewise
has 2n− 1 variational degrees of freedom. The inf and sup are replaced by min and
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max because, as Fiedler et al. (1985) show, the max and min are actually attained
for specific x > 0,y > 0.

In this brief note, we shall see that the methods used by Fiedler et al. (1985) to
prove Fiedler’s formula can be used to prove another structurally symmetric varia-
tional formula for the spectral radius. The formula exhibits the most natural way to
handle asymmetries in the matrix, which is through a diagonal similarity scaling. As
in the other variational formulae, it also has 2n − 1 degrees of variational freedom.
What is perhaps most remarkable is that the formula is not already widely known.

Let y ∈ Rn and define Dy := diag
[
y
]

to be the diagonal matrix with diagonal
elements yi. A diagonal similarity scaling of a matrix A is the product DyAD−1y

where we assume y > 0.

Theorem 1 (Structurally Symmetric Variational Formula for the Spectral Radius).

Let A ∈ Rn×n be a nonnegative irreducible n×n matrix, with Perron root r(A), and
Perron vectors u>A = r(A)u> and Av = r(A)v, normalized so that u>v = 1. Let
x,y ∈ Rn. Then

r(A) = sup
x>0

inf
y>0

x>DyAD−1y x

x>x
. (3)

Moreover, the sup and inf are attained at x̂>Dŷ = u> and D−1ŷ x̂ = v, i.e. x̂iŷi = ui
and x̂i/ŷi = vi, hence uivi = x̂2i , which have solutions

x̂i =
√
uivi,

ŷi = ui/xi = ui/
√
uivi =

√
ui/vi

= xi/vi =
√
uivi/vi =

√
ui/vi,

for which we find that

x̂>DŷAD−1ŷ x̂

x̂>x̂
=

u>Av

u>v
= u>Av = r(A)u>v = r(A).

Proof. We follow the method of proof of Fiedler’s theorem from Fiedler et al. (1985,

pp. 83–86). First, we show that for any x > 0, infy>0
x>DyAD−1

y x

x>x
≤ r(A). Given x,

let y = u/x. Then

x>DyAD−1y x

x>x
=

x>Du/xADx/ux

x>x
=

u>ADx/ux

x>x
= r(A)

u>Dx/ux

x>x

= r(A)
x>x

x>x
= r(A),
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hence

φ(x) := inf
y>0

x>DyAD−1y x

x>x
≤ r(A). (4)

Second, we show that supx>0 φ(x) ≥ r(A). Consider φ(
√
uv):

φ(
√
uv) = inf

y>0

√
uv
>
DyAD−1y

√
uv

√
uv
>√

uv
= inf

y>0

√
uv
>
DyAD−1y

√
uv

u>v

= inf
y>0

√
uv
>
DyAD−1y

√
uv.

Substitute z = y ◦
√

v/u, so y = z ◦
√
u/v. Then

φ(
√
uv) = inf

y>0

√
uv
>
DyAD−1y

√
uv = inf

z>0

√
uv
>
D

(z◦
√

u/v)
AD−1

(z◦
√

u/v)

√
uv

= inf
z>0

z>DuADvz
−1.

Fiedler et al. (1985, p. 84) and Eaves et al. (1985, Corollary 3) showed that matrices
diagonally scaled by their Perron vectors, DuADv, exhibit for all z > 0,

z>DuADvz
−1 ≥ e>DuADve, (5)

hence, infz>0 z
>DuADvz

−1 is attained at z = e, which yields

φ(
√
uv) = inf

z>0
z>DuADvz

−1 = e>DuADve = u>Av = r(A).

Therefore,

sup
x>0

φ(x) ≥ φ(
√
uv) = r(A). (6)

Since by (4) , supx>0 φ(x) ≥ r(A) and by (6) φ(x) ≤ r(A) for all x > 0, we obtain

sup
x>0

φ(x) = sup
x>0

inf
y>0

x>DyAD−1y x

x>x
= r(A).

Remark: An interpretation of this result is that the diagonal similarity scaling
D√

u/v
AD√

v/u
renders A “as symmetric” as possible, to the point where it is fit to

be used in Rayleigh’s quotient. The vector
√
u/v could be thought of as a measure

of the asymmetry of A.
This result is readily extended to the spectral bound

s(A) := max {Re(λ) : det(A− λI) = 0 }, of essentially nonnegative matrices,
in which off-diagonal elements are nonnegative and diagonal elements are real.
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Corollary 1. Let A ∈ Rn×n be an irreducible essentially nonnegative n× n matrix.
Let x,y ∈ Rn. Then the spectral bound of A is

s(A) = sup
x>0

inf
y>0

x>DyAD−1y x

x>x
.

Proof. Let t = min {Aii }. Then B = A− tI ≥ 0, and r(B) = s(A)− t. Hence

s(A) = r(B) + t = sup
x>0

inf
y>0

x>Dy(A− tI)D−1y x

x>x
+ t

= sup
x>0

inf
y>0

(
x>DyAD−1y x

x>x
− t

x>DyID
−1
y x

x>x

)
+ t

= sup
x>0

inf
y>0

x>DyAD−1y x

x>x
− t+ t.

Rayleigh’s formula is recovered from (3) in the case of symmetric nonnegative
irreducible matrices, S. We have

φ(x) = inf
y>0

x>DySD
−1
y x

x>x
= inf

y>0

y>DxSDxy
−1

x>x

Since DxSDx is symmetric, it is line-sum symmetric, i.e. DxSDxe = (DxSDx)>e.
Hence by (5), infy>0 e

>Dy(DxSDx)D−1y e is attained for y = e. Thus

φ(x) = inf
y>0

y>DxSDxy
−1

x>x
=

e>DxSDxe

x>x
=

x>Sx

x>x
so

r(S) = sup
x>0

φ(x) = sup
x>0

x>Sx

x>x
= sup

x 6=0

x>Sx

x>x
,

which is Rayleigh’s formula, where x > 0 can be weakened to x 6= 0 since by Perron-
Frobenius theory the maximum is attained for x > 0.

While the Rayleigh quotient can be used to obtain all of the eigenvalues of Hermi-
tian matrices, as is done in the Courant-Fischer theorem (Horn and Johnson, 1985,
p. 179), no such direct use of (3) for nonsymmetric matrices is possible, because inf
and sup do not apply to the complex eigenvalues that may exist.

Conclusion: The formula (3) in Theorem 1 wraps the matrix A in a diagonal
similarity scaling DyAD−1y , which is able to accommodate any asymmetries in A,
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and when the rescaled product is placed into the Rayleigh quotient, its maximiza-
tion produces the spectral radius. The formula applies to irreducible nonnegative
matrices, but much of Perron-Frobenius theory has been extended beyond this class
of matrices. It remains to be addressed just how widely (3) remains true for these
extended matrix classes, and how it may be applied to resolvent positive operators
more generally.
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