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Abstract- In order to retain some degree of decision-
making ability in a complex and dynamic environmen-
t, there are many attempts to build autonomous mobile
robots. However, conventional methods pay little atten-
tion to the unreliability of sensors. Because of the cor-
ruption by noise and the difference of sensitivity, even the
same kind of sensors shows different observation under
the same condition. This causes a problem that a minor
change of the environment of the sensor system has great
influence on the perception ability of the robot. To im-
prove the reliability of sensors, we present a method for
evolutionary calibrating sensors using genetic program-
ming as calibration mechanism. In our approach, sensor
calibration logic is implemented on evolvable hardware.
Therefore, as the learning goes on, sensor interpretation
circuit reconfigures itself to a more suitable form during
runtime. Through two experiments on different tasks, we
confirmed that our method improved the correctness of
interpretation significantly.

1 Introduction

Most robots employ specialized controllers that are careful-
ly designed by hand, using knowledge of the robot, its envi-
ronment and the task. This approach faces a couple of se-
rious problems. Some of the prior knowledge like certain
aspects of the robot dynamics or the characteristics of the
robot’s sensors is usually hard to obtain, and making domain
knowledge computer-accessible often requires tremendous
amounts of programming time[21]. Because of these diffi-
culties, the mobile robot must retain some degree of decision-
making ability in a complex and dynamic environment. Sev-
eral attempts have been proposed to build autonomous mo-
bile robots[4, 16, 17, 20, 21]. To improve robot perfor-
mance, many researchers tried to optimize the sensor system
of robots[1, 12, 13, 14]. These approaches can be classified as
sensor evolution. Sensor evolution is a kind of phylogenetic
learning process by which basic categories of perception are
selected and refined[5]. However, these approaches have one
problem. They pay little attention on the lack of reliability
of typical sensors. The existing sensors often are not capable
of directly measuring the quantity of interest. Furthermore,
sensor measurements are typically corrupted by noise. Of-

ten, the distribution of this noise is not known[20]. We notice
the lack of reliability. To improve the reliability of sensors,
we propose a method to calibrate sensors using evolutionary
method. In the proposed method, genetic programming is
used to calibrate sensors. Due to the tree structure of genetic
trees, it is easy to incorporate prior knowledge. So genet-
ic programming can improve search procedure by using the
result of other experiment. In our approach, sensor calibra-
tion logic is implemented on evolvable hardware. Because of
its dynamic reconfigurability, evolvable hardware can offer
considerably higher performance while adapting to a chang-
ing environment[18]. By adoption of evolvable hardware, we
implement a specified logic for sensor calibration that recon-
figures its logic during runtime. We apply our method to two
kinds of experiments. In experiment 1, we evolve interpreta-
tion logic of sensors according to the sensitivity of each sen-
sor under the same condition. In experiment 2, we evolve
interpretation logic of one sensor under the different condi-
tions. Using our method, we succeed at reducing error rate
considerably in each experiment. This paper is organized as
follows. Section 2 explains automatic sensor calibration us-
ing genetic programming. Section 3 illustrates our method
for sensor evolution and implementation detail.In Section 4,
some experimental results are shown. Section 5 reviews re-
lated work. Section 6 discusses future work.

2 Motivation of Automatic Sensor Calibration

Autonomous mobile robots perceive their environments
through sensors. But even the same kind of sensor report-
s very different data. Table 1 is a good example of such
problem. These data were sensed using sensors of a Khepera
robot[23]. Khepera robot perceives its environment through
eight IR sensors. Each sensor reports its observed data in the
range of from 0 to 1023. Figures 2 and 3 illustrate the mea-
surement environment. Table 1 is the data measurement by
the sensors for environment 1. Table 2 is the observed data of
environment 2.

As known from the graphs and tables, sensors of a Khep-
era robot are very unreliable. Even at the same condition,
the observed data have very large deviation. This causes the
following problems. First, each sensor is likely to output d-
ifferent estimation under the same condition. Second, due to
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Figure 1: Sensed data of environment 1

Situation 1 Situation 2 Situation 3 Situation 4

Figure 2: Experimental environment 1-Under the same con-
dition, only the observing sensor is changed
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Figure 3: Experimental environment 2-Using the same sen-
sor, only the environment is changed

Table 1: Experimental environment 1
Ave=Average, SD=Standard Deviation

Situation 1 2 3 4

Ave 236.02 187.62 59.91 71.14
SD 146.67 117.88 77 79

Table 2: Experimental environment 2
Situation 1 2 3 4

Ave 316.5 140.35 43.47 39.21
SD 75.59 76.81 53.29 51.31
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Figure 4: Sensor evolution procedure

the overlapped section, it is difficult to determine robot’s cor-
rect location. Third, even a minor change of environment or
sensor configuration has great influence on the perception a-
bility of a robot. To address these problems, it is necessary to
calibrate each sensor automatically.

3 Evolving Genetic Programs for Sensor Cali-
bration

Figure 4 illustrates the detailed sensor calibration procedure.
Sensor calibration is performed on evolvable hardware (EH)
and an external processor.

The tree structure is converted into a binary string rep-
resentation for implementation on evolvable hardware. The
hardware-represented individual compares sensor data with
the values from the max and min sub-trees. The number of
correctly measured data is counted. The external processor
maintains information on individual configuration and per-
forms arithmetic calculations like division. Configuration in-
formation of GP individuals on evolvable hardware is imple-
mented in hardware form by a control program on the ex-
ternal processor. Figure 5 shows an example GP tree. In
order to determine the interpretation section of sensed data,
genetic trees w ith two subtrees named as the max tree and
the min tree maintain the maximum and minimum values of
the section. If the environment or sensor system changes, the
max tree and the min tree are c hanged through evolution-
ary reshaping of genetic trees. Genetic trees are composed of
software function nodes, hardware function nodes, and hard-
ware terminal nodes. Software function nodes are respon-
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Figure 5: Example

sible for genetic operation. They specify genetic operation
probability according to the depth of a node and determine
the maximum and minimum value. Hardware function nodes
and terminal nodes implement hardware logic to produce the
maximum and minimum values to comparator. The values
are represented in 10 bits as the output of the GP tree. For
hardware efficiency, we use a relatively small population size.
Crossover, mutation, and reproduction operators for adapting
the shape and size of GP trees are used. Crossover probability
is 0.1 and mutation probability is 0.4. As the crossover and
mutation probability shows, mutation is more frequently used
than crossover. For correct perception, fine tuning of sensor
criteria is important. So, mutation becomes the preferred op-
erator. Fitness of programs is measured at each generation
by � � ��� � �� � ������������. Here, ��� ��� �� denote
the number of false classified sensor data of the other sec-
tions. �������� is the number of correctly classified sensor
data of target section. The fitness function represents the ra-
tio of false classification to correctly classified data. As the
value of the fitness function becomes closer to 0, more cor-
rect interpretation of sensor is possible. For experiment, we
selected XC6216 FPGA (field programmable gate array) of
XILINX[24]. The FPGA is mounted on H.O.T. Works board
from VCC[25]. The configuration is decomposed into part 1
and part 2. Part 1 consists of input registers, 10-bit compara-
tors, and hardware-implemented individuals. At this config-
uration, each individuals act as a comparison operand. Part 2
is composed of a 12-bit counter and an output register. The
comparison and counting tasks are the most time-consuming
part of sensor evolution. Because sensor data compared in
parallel, the burden of the central processing unit is reduced.

4 Experiment and Result

Two kinds of experiments are performed to verify the pro-
posed method. The experimental environments consist of a
single robot and an obstacle. Sensors of a Khepera robot are
used for automatic sensor calibration using genetic program-
ming. The goal of experiment 1 is to find the appropriate
interpretation criteria for each sensor. In experiment 1, G-
P runs until the optimal interpretation criteria of one sensor
is found. Then, the best individual is used as initial chro-
mosome of searching process for other sensors. The goal of
experiment 2 is to find the appropriate interpretation criteri-
a of a sensor under four different conditions. By using GP
approach, experiment 2 tries to minimize the overlapped sec-
tion of four different observed sensor data. Table 2 shows the

Table 3: Result of experiment 1
Error
rate Section1 Section2 Section3 Section4

Without
calibration 2.3586 1.9507 2.7594 2.3496

With
calibration 1.8582 0.7873 1.6923 0

Improvement 0.21 0.60 0.39 1.00

Table 4: Result of experiment 2
Error
rate Section1 Section2 Section3 Section4

Without
calibration 2.8498 1.2458 1.8375 0.2726

with
calibration 2.4054 0.5050 1.4064 0

Improvement 0.16 0.60 0.24 1.00

problem of the experiment 2. In situation 1, the robot rotates
to gather sensor data for learning. During rotation, there is no
change of the experimental environment. Only the observing
sensor is changed as the robot rotates. According to the lo-
cation angle of four sensor sets, robot rotates four times and
records one thousand sensor data at each stop. After rotation,
observed data of four sensors are selected and the selected
data are used for learning. Using these data and the fitness
function, the robot searches the optimal interpretation criteria
for each sensor. In experiment 2, the robot does not rotate.
The robot starts at its initial location. After data gathering,
the robot moves forward for the predefined duration with the
fixed velocity and gathers data again. This procedure is re-
peated four times. Using the gathered data and the fitness
function, the robot searches the optimal interpretation criteri-
a which minimize the overlapped section. According to the
configuration information of the selected GP individual, the
individual section (representing the maximum and minimum
value of interpretation criteria) on evolvable hardware is re-
configured. Using this new configuration, the number of data
that are interpreted as truth is counted by a counter on evolv-
able hardware. Using the counted number, the fitness of each
individual is computed. Table 3 and table 4 illustrate the ex-
perimental results. Table 3 shows the result of the experiment
1. With calibration, the error rate is reduced by maximum
100And in each section, the optimal criterion is found within
20 generations. Table 4 describes the result of the experiment
2. Error rates are reduced by 100

5 Related Works

According to Brignell, there are two prime motives for the
development of smart sensors. The first is to achieve in-
ternal compensation of detects. The second prime motive
is to take the advantages of developments in digital sig-
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nal transmission[3]. Evolvable hardware is a reconfigurable
hardware whose configuration is under the control of an evo-
lutionary algorithm. Because it can reconfigure itself dur-
ing runtime, evolvable hardware is able to provide the flex-
ibility of general purpose processor and the performance of
ASICs[8, 19]. Therefore, evolvable hardware is suitable for
processes that perform repetitive tasks with slight modifica-
tion of algorithms. Automatic sensor calibration is a good
example of such processes. In order to make sensor intel-
ligently, there are two kinds of approaches: sensor optimiza-
tion and selection of the interested area. It is possible to define
that sensor evolution is an approach to construct an optimized
sensor topology. Lee introduced a sensor system that learned
determination criteria autonomously using genetic program-
ming and neural networks[10]. Menczer reported on experi-
ments using a class of ”latent energy environment” models to
define environments of carefully controlled complexity[15].
He studied an agent system that optimized its sensor system
against the environment. Lichtensteiger evolved the morphol-
ogy of an artificial compound eye with 16 light sensors on a
robot[12]. Mark optimized eye parameters such as number of
agent eye and observation range using PCA and GA[14]. Bal-
akrishnan also performed similar reseach. Balakrishnan opti-
mized the range and placement of the sensors using evolution
of neuro-controllers[1]. Sensor evolution research is not lim-
ited on the sensor of a single robot. Hackwood used reverse
annealing to determine the optimized locations of multiple
robots for observing[7]. Selection of the interested area is ef-
fort to find more relevant sensory information. Liese studied
a model for the evolution of the spectral sensitivity of visu-
al receptors for agents in a virtual environment[13]. Ziegler
evolved efficient information processing pathway using arti-
ficial chemistry[22]. Nolfi proposed a system that improves
its ability by exposing itself only to a sub-class of stimuli to
which it knows how to respond efficiently[16]. Cariani in-
troduced an evolutionary method that can obtain epistemic
autonomy by adaptively changing perceptual repertoires of
sensors[5]. Our work tries to optimize the interpretation cri-
teria by learning. Therefore, it seems that our work belongs
to sensor optimization category. But our work corresponds
to the base of both approaches. For correct perceiving of the
environment, the reliability of a sensor system should be as-
sured. Through automatic sensor calibration, our work aim-
s to improve the reliability of sensors. Usually, intelligen-
t interpretation of sensory data is tried using artificial neu-
ral networks[17, 20]. In this work, we chose genetic pro-
gramming as our learning engine. Genetic programming is
a stochastic search method suitable for addressing inductive
learning tasks. It uses tree-structured chromosomes inspired
by the functional programming of LISP[2, 9]. Therefore,
genetic programming can evolve very expressive program-
s automatically. Furthermore, it is easy to incorporate prior
knowledge. Because the computation cost of artificial neural
networks is too high for sensor calibration and prior knowl-
edge obtained by other sensor can be used easily, genetic pro-

gramming is more suitable than artificial neural networks in
the approach like ours.

6 Conclusion

We presented a method for sensor calibration using evoklu-
tionary method. This method was motivated by the obser-
vation that, with evolutionary calibration, autonomous robots
can adapt to their environmental change more easily. We e-
volved the optimized interpretation criteria for the overlapped
sensor data and addressed the problem of misperception by d-
ifferent sensitivity of sensor under the same condition. With
evolvable hardware, we could reduce the burden of the cen-
tral processing unit from repetitive comparisons and count-
ing. Future research can be done in two directions. One is the
adaptation to the environment when light sensors are neces-
sary. Another future work includes correctness amelioration
by data fusion of a couple of sensors.
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