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Abstract – We present here some additions to a fuzzy variable
radius niche technique called Dynamic Niche Clustering (DNC)
[3, 4 & 5] that enable the identification and creation of niches of
arbitrary shape through a mechanism called Niche Linkage. We
show that by using this mechanism it is possible to attain better
feature extraction from the underlying population.

I. INTRODUCTION

Most radius based niching algorithms in Genetic
Algorithms (GAs) tend to make a number of assumptions
about the fitness landscape and the types of peak that will be
encountered. These assumptions are that the peaks are
hyperspherical in shape, the size of the peaks are
approximately the same, and each peak is distinctly separate.
Of course, these assumptions very rarely coincide with the
demands of real-world applications where fitness landscapes
are noisy, multi-modal and highly irregular. Many of the
nichers in the literature make these assumptions by enforcing
a hard clustering philosophy, and perhaps more significantly,
employing only a single value of niche radius to describe all
of the niches1 in the search space. Choosing an appropriate
value for this single niche radius has become known as the
niche radius problem. A review of the many niche techniques
in publication is beyond the scope of this paper and the
reader is referred to the relevant literature for further details.

In [3,4 and 5] we presented a potential solution to the niche
radius problem called Dynamic Niche Clustering (DNC).
DNC is a fitness sharing [2, 7] based niching framework that
allows the creation of overlapping niches, each with its own
independent variable niche radius. However, the only
assumption that DNC makes is that the peaks are
hyperspherical in shape. In this paper, we present a further
extension to this framework that allows the creation of niches
of arbitrary shape through a mechanism we have termed
Niche Linkage. We show how this mechanism frees DNC of
the assumption that the peaks must be hyperspherical, and
that as a result, a drastic improvement in performance on
fitness landscapes containing ridges and plateaus can be
achieved. We also introduce the concept of niche dynamics
and its use both as an additional decision tool within the
framework, and as a possible measure of overall population
convergence. We start first by briefly reviewing the DNC
framework, and describing the Niche Linkage mechanism and
how it fits into DNC.

1 A niche is defined as a species or subset of individuals that are
quantifiably similar.

II. OVERVIEW OF DNC
DNC is a fuzzy variable radius fitness sharing based

niching framework that operates over a population in a
standard GA. It is superficially similar to classical
agglomerative clustering techniques in that it starts, in
generation 0, by looking at niches that initially contain one
individual. However, the fundamental difference is that DNC
is designed to operate over an evolving, dynamic population.
Only one stage of clustering is executed per generation, as
there is no point in performing a complete cluster analysis in
every generation. This is especially the case in the initial
generations where the population is randomly distributed
throughout the search space. It is only once the population
has completely converged that a full cluster analysis (for
example, k-means) would be useful and computationally
efficient. In DNC, the clustering is achieved through a
generational process of the movement, merging and splitting
of niches, running concurrently with the evolving GA
population.

A unique element of DNC is the fact that the niches are
fuzzy – that is they are allowed to overlap. Overlapping the
niches allows for a much greater acuity2 than that attainable
using a hard clustering technique whilst still maintaining
good niche coverage. Its use means that there is no need for
peaks to be distinctly separate. Hard clustering cannot
achieve this without using disproportionately small clusters.
In DNC, there is still an absolute minimum peak distance that
can be realised due to the nature of the merge action (see [5]),
but this distance can be decreased even further through the
use of the Hill-Valley function (see Section II-D).

The fundamental concept behind DNC is that the niches
are persistent – that is the same niches are maintained from
one generation to the next. In this way the niches are able to
track the fit individuals in a converging population. All
niches start with the same initial niche radius which is
calculated based on the relationship between population size,
the size of the search space, the amount of initial overlap
required between adjacent niches, and the assumption that the
initial population is uniformly distributed about the search
space. The premise is to start with small niches that gravitate
towards large clusters of fit individuals within their basin of
attraction. Then, as the small niches converge they are
merged into single, larger, more representative niches.

2 We define acuity as the algorithms ability to distinguish
between two very close peaks.
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A - DNC in Brief

We present here a brief outline of the DNC algorithm. For
full details the reader is referred to [3, 4 & 5]. The nicheset is
the set of niches in the current generation. Each niche is
persistent, so the same set of niches from generation t will be
carried over to generation t+1. The minimum and maximum
values of niche radius are also stored in the nicheset. These
values are dependent on the initial niche radius and are
defined as ½ the initial niche radius and 2 times the initial
niche radius, respectively.

Each niche is described by a midpoint, midi, in decoded
parameter space, and a current niche radius, σshi. The initial
value of niche radius is calculated using the following
equation. See [5] for a detailed explanation.

(1)

Here, d is the number of dimensions in the search space
and p is the population size. For this work λ=1. Each niche
has a number of additional parameters; the generation and
position at which the niche spawned and a list of references
to the individuals that are currently members of this niche.
Two more radii are defined for each niche; an inner niche
radius and an outer niche radius. The purpose of these will
become clear later (see [5] for more details), but they are
defined as ½ the current niche radius, and 2 times the current
niche radius, respectively. In order to determine the niche
dynamics, the location of the niche in the previous generation
is also stored. An individual is considered to be a member of
a niche if it lies within the hypersphere described by the
niches midpoint and current niche radius. Individuals can be
a member of more than one niche.

B - The Initial Generation

The nicheset is initially empty. The first generation of
individuals is randomly generated and a new niche is created
for each individual with its midpoint centred on that
individual and with that individual as its only member. The
fitness of the niche is equal to the fitness of the member
individual. We then remove redundant niches by performing
the following process.

1) Calculate and sort the nearest niche pairset – Each niche
is compared to each other niche in the nicheset and the
Euclidean distance between the midpoints is stored in a list of
nearest niche pairs, along with references to the two niches
under comparison.

2) Cycle through the sorted list of niche pairs starting with
the closest pair – If the midpoints of a pair of niches lie
within the inner niche radius of one another, and the Hill-
Valley function (see Section II-D) does not indicate that a
valley lies between the two points, then delete the niche with
lower fitness.

C - The DNC Generational Process

This process is executed before selection is performed in a
standard GA.

1) Recalculate the niche members – If any individual is not
currently a member of a niche, then a new niche is created
with its midpoint centred on that individual, and niche radius
calculated using equation 1.

2) Move the midpoints of each niche – Each niche’s
midpoint is modified by the following equation:

(2)

Here, midj is the midpoint of niche j, nj is the niche count of
niche j, xi is the location of individual i, and fi is the fitness of
individual i.

3) Calculate and sort the nearest niche pairset

4) Cycle through the sorted list of nearest niche pairs
starting with the closest pair – For a given pair of niches, if
the midpoint of either niche lies inside the inner niche radius
of the other niche and the Hill-Valley function (see Section
II-D) does not indicate that a valley lies between the two
midpoints, then the two niches are merged together into a
single niche. See [5] for full details of the merge process.

5) Cycle through the niches in the nicheset – If any niche
has a population size greater than 10% of the total population
size, check a number of random pairs of individuals from
within the niche using the Hill-Valley function (see Section
II-D). If a valley is detected, then the niche is split into 2 new
niches. See [5] for full details of the split process.

6) Apply the sharing function – The fitness of each
individual is divided by the extended triangular sharing
function of the niche to which it is a member. In the case
where an individual is a member of more than one niche, its
fitness is only divided by the niche with greater value sharing
function, mi:

(3)

Here, dij is the Euclidean distance between individual i and
the midpoint of niche j, nj is the niche count of niche j, σshj is
the niche radius of niche j, and mi is the resultant sharing
function for individual i.

D - The Hill-Valley Function

The Hill-Valley function is a fitness topology function that
was adapted from [8] and initially used in DNC in [5]. It is an
analytical decision tool that is used to indicate if a significant
valley lies between two points in the fitness landscape. We
have modified it in the interim to also indicate if a significant
peak lies between the two points. The operation is simple;
given two endpoints in Euclidean space, generate a line
segment that intersects them both. Then, choose a number of
points along the line segment and calculate the fitness at
those points. For a peak to be significant, the fitness of an
interpolated point must be greater than the endpoint with
higher fitness. The converse is true for a valley to be
significant. If a valley is detected, return the difference in
fitness between the lowest interpolated point and the endpoint
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with least fitness (this will be negative). If a peak is detected,
return the difference in fitness between the highest
interpolated point and the endpoint with highest fitness (this
will be positive). In the case where both a peak and a valley
are detected between the two endpoints, always return the
depth of the valley.

III. SOME ISSUES WITH DNC
When two niches are merged, a new single midpoint is

calculated based on the individuals within the original niches.
It is possible for the new midpoint to be moved a
significantly large enough distance to bring the new midpoint
within merging range of another niche. These two niches will
then be merged and this can move the new midpoint to within
merge range of another niche. These will then be merged,
which can move the new niche to within merge range of
another niche, and so on. Thus, it is possible for a single
niche to absorb many smaller niches and become excessively
large. In order to prevent this, we restrict merging from
taking place if a niche that has already been merged in this
generation has moved further than its inner niche radius at the
start of this generation. This allows several niches that are
directly on top of one another to be merged together, but
stops the uncontrolled growth of ‘run-away’ niches. Table 1
shows the effects of restricted merges on the number of
niches per generation on De Jong F5 (Shekel’s Foxholes, see
[6] for a definition) with a population size of 300. It is clear
that the restricted merge slows down the convergence of
niches. The ‘pre’ column shows the effects of removing
redundant niches in the initial generation (see Section II-B).

Table 1. Effects of merge restriction on #niches per generation

Gen (t) pre 0 1 2 3 4 5 6 7

DNC 180 106 56 33 30 28 30 26 30

restricted
merge DNC

180 153 91 54 34 31 29 30 26

One unfortunate side-effect of employing distance based
fitness sharing within DNC is its inability to correctly deal
with ridges and plateaus within the fitness landscape (this is
due to the assumption that the peaks are hyperspherical in
shape). In Figure 1, a simple 1-dimensional ridge is shown
along with two covering niches. The solid line represents the
actual raw fitness. The dotted line represents the shared
fitness on the peak (using the extended triangular sharing
function, see Section II-C for details). The shared fitness is
essentially what the GA sees once sharing has been applied.
As is clearly visible, there are so-called phantom peaks
within a ridge region which should be flat. This leads to the
population migrating from the comparatively lower regions
of fitness at the centre of the niches, to the phantom peaks
where the fitness is higher. The niches, in turn, track the
population to these phantom peaks, which creates new
phantom peaks that the population in the next generation will
go on to occupy, and so on. So with ridges and plateaus we
get the constant migration of individuals and niches, and
hence relatively poor performance on fitness landscapes
containing these features.

Figure 1. Phantom Peak Formation on a Simple Ridge Function

IV. NICHE LINKAGE

We present here our proposed solution to the ridge and
plateau problem by a mechanism we have termed Niche
Linkage. Fundamentally, Niche Linkage is the action of
linking two or more overlapping niches with a line segment
between the midpoints, and then treating the linked niches as
a single niche. In this way it is possible to create a niche of
any shape that can be approximated in a piecewise linear
fashion. This concept is very similar in principle to the
Agglomerative-Partitional Clustering (APC) mechanism
employed in [9]. Here, the authors take the clusters
discovered by a classical clustering method over a static data
set, and then connect those centroids that coexist within
regions of relatively high density. The Niche Linkage
mechanism is subtly different in operation and approach, in
that DNC is a continuous process that must operate over a
dynamic population of individuals in a GA. So not only must
we consider when to link two niches, but also when to sever
those links. We must also consider how sharing is applied to
the individuals within linked niches.

A niche may be linked to more than one niche. Two niches
are termed to be immediately linked if a link exists between
them. Two niches are described as directly linked if a route
from one niche can be traced via immediate links to the other
niche.

A - When and How to Link

In the APC mechanism described in [9], the decision to
connect two centroids was made based on an estimation of
the density of observations lying within a fixed distance from
the line segment between the two centroids. For APC this
estimation is made only once. Niche Linkage, on the other
hand must check whether to link pairs of niches in every
generation. To perform density estimations between pairs of
niches in every generation would be computationally very
expensive. So, to simplify the link decision, we only consider
those niches that overlap to some degree. Figure 2 shows two
suitable candidate niches in a 2-dimensional space. Here, xij

indicates the amount of overlap between the two niches, i and
j. The inner circles represent the inner niche radii. Given that
xij >= 0, if the Hill-Valley function indicates that neither a
peak nor a valley lies between the two midpoints, then the
niches are linked. This decision to link is made in step 4) of
the Generational Process (see Section II-C) after all merges
have been completed.
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Figure 2. Minimum Niche Overlap for Niche Linkage

B - When and How to Sever Links

Links can be severed in a number of different ways. If a
niche that is linked is deleted from the nicheset, all the
immediate links between that niche and any other niche are
immediately severed. If a linked niche is merged with another
niche, then all the immediate links from the two original
niches must be checked again for overlap and the presence of
peaks or valleys. If either test fails, the link is severed. If a
linked niche is split into two new niches by the split process,
then all the immediate links from the original niche are
severed. Finally, in the Generational Process step 5) (see
Section II-C) where we check each niche in the nicheset, a
further step is added. If a niche is linked, then each of the
immediate links from that niche must be retested for overlap
and the presence of peaks or valleys. Any links that fail these
tests are severed.

C - Sharing in Linked Niches

The use of the triangular sharing function (see Section II-
C) requires the calculation of the distance between the
individual in question and the covering niches midpoint.
However, with linked niches, there is no one single midpoint.
So, if an individual is a member of a linked niche, the sharing
function, mi, is calculated as follows:

(4)

Here, nj is the niche count of niche j. So, the sharing
function is the number of individuals within the niche. The
use of a rectangular sharing is driven by the need to spread
the individuals evenly over the ridge or plateau.

V. NICHE DYNAMICS

There are a number of different dynamic quantities that can
be determined within niches. The most obvious, and perhaps
the most useful, is the rate of change of position of a niche’s
midpoint. This can be calculated as the Euclidean distance of
the change in location from a niche’s midpoint at the end of
the previous generation, to the niche’s final location after
DNC in the current generation, i.e.

(5)

Because niches are persistent, that is they are retained from
one generation to the next, they will track a converging
population, and as such, ∆midj is a very good indicator for
overall population convergence. Another good indicator is
the number of niches per generation. There are some other
dynamics that can be useful, for example, the rate of change
of niche fitness, ∆fj, and the rate of change of niche count,

∆nj. Table 2 shows the average values of niche dynamics for
DNC over De Jong F5 with population size 300.

Table 2. Niche Dynamics on De Jong F5

Generation # niches ∆midj ∆fj ∆nj

0 153 5.72 -4.57 5.84

1 91 5.95 168.29 2.63

2 54 3.94 92.43 0.11

3 34 2.84 41.18 -1.08

4 31 1.34 26.97 -1.35

5 29 2.54 6.91 -1.24

6 30 0.88 30.51 0.46

7 26 0.41 6.31 0.15

8 32 0.4 9.93 -0.28

9 27 0.36 -9.77 0.26

Here, it is clear that as the population converges onto the
peaks both the number of niches and the dynamics start to
stabilise. Once converged, there is little movement of the
niches, as can be seen from the low value of ∆midj. The
number of niches also remains stable. The small variations in
the later generations can be attributed to stochastic sampling
errors with the GA.

VI. TEST FUNCTIONS

We describe here some simple 2D test functions that
visibly demonstrate Niche Linkage’s ability to create niches
of arbitrary shape and successfully identify ridges and
plateaus within a fitness landscape.

(6)
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g(d,r) describes a bell-shaped curve, where d is the
Euclidean distance from the middle of the peak, and r is the
radius of the peak. The curve is shown in Figure 3a, with
r=0.1. Function f1 describes a simple ridge with a bell-shaped
cross-section of width w (described by g(d,r)), starting at
point P0 and ending at point P1. For this paper,
P0=(0.25,0.25) and P1=(0.75,0.75), so the ridge is oriented
along the y=x axis.. Function f2 describes a simple plateau in
the middle of the search space. Function f3 describes an ‘S’
shaped ridge with a bell-shaped cross-section of width, w
(described by g(d,r)). Function f4 is the Davis function [1].
The four test functions are shown in Figure 3b-e.

Figure 3. Ridge cross-section and Test Functions f1-f4

VII. RESULTS

We provide comparisons of basic DNC as reported in [5],
and DNC with Niche Linkage as described in this paper. We
also include the time results of standard fitness sharing, as
described in [6], as a reference. The GA parameters used
were as follows; pm=0.03, pc=0.7 with 1 point crossover,

population size for f1-f3 was 300, and 1000 for f4, graycoding
was used with 20 bits per parameter, and each run was for 50
generations with Ggap=1. The remainder stochastic sampling
with replacement selection scheme was used with no elitism.

In order to provide a meaningful performance metric we
considered the ratio of the area of the ridges covered by
linked niches, and the actual area of the ridge. The closer this
value is to 1.0, the more ideal the niche coverage. We also
include the number of linked niches and the values of niche
dynamics in the final generation along with the time taken to
process 50 generations. All values are averaged over 20
different GA runs.

Table 3. Performance Comparison

DNC with Niche Linkage
DNC without
Niche Linkage

f1 f2 f3 f4 f1 f2 f3 f4

Ratio 1.017 0.975 1.15 0.865 0.96 0.925 0.089 0.758

#Linked 1 1 1.1 9.3 - - - -

∆#niches 3.1 2.1 4.5 16.5 3.3 1.2 7.7 18.2

∆midj 0.017 0.025 0.19 0.28 0.029 0.047 0.28 0.32

Table 4. Time Comparison (seconds)

f1 f2 f3 f4

DNC with Niche
Linkage

23.6 21.6 36.7 2114

DNC without
Niche Linkage

21.1 20 30.4 1874

Fitness Sharing 468.9 458.9 471.3 6291

Figure 4. Nicheset of Generation 50 on f1

Figure 5. Nicheset of Generation 50 on f2
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Figure 6. Nicheset of Generation 50 on f3

As is clear from Table 3, DNC with Niche Linkage
consistently outperforms DNC on all four test functions. It is
also evident from the niche dynamics data that without Niche
Linkage, DNC suffers from the migrating phantom peaks
problem described in Section III. This is suggested by the
higher value of ∆midj, indicating that there is significant
movement of niches even though the low value of ∆#niche
shows that the number of niches is stable. Table 4 shows that
there is comparatively little additional computational expense
incurred for including Niche Linkage in DNC. It also shows
that even with population sizes of 1000, DNC is an order of
magnitude faster than standard fitness sharing.

Figures 4, 5 and 6 show the final nicheset in generation 50
for functions f1, f2 and f3 respectively. Niches are shown as
circles and links between niches are shown by line segments
between their midpoints. Only those niches that are directly
linked are shown. In Figure 4, the ridge feature aligned along
the y=x axis is clearly identified by a single multiply-linked
niche. In Figure 5, the plateau is identified by the
interconnected mesh of niches in the centre of the search
space. In Figure 6, the ‘S’ shaped curve is also clearly
identified by a single multiply-linked niche, however there
are a number of redundant niches present.

VIII. CONCLUSION

In this paper, we have shown that the introduction of Niche
Linkage frees DNC of the assumption that the peaks must be
hyperspherical in shape, which in turn allows DNC to create
niches of arbitrary shape and therefore more accurately
model the fitness landscape. This provides improved feature
extraction and the ability to identify ridges and plateaus
within the search space. We have also shown that the
computational cost of adding Niche Linkage to DNC is
relatively small, especially when compared to the cost of
using standard fitness sharing. However, Niche Linkage has
yet to be tested on high-dimensional functions or problems
where the ridges or plateaus are of non-equal fitness.

The use of the Hill-Valley function is critical for DNC to
operate properly. However, there are some drawbacks to
employing it. The Hill-Valley function only works in
Euclidean space and is highly sensitive to noise. A noise
spike can lead the Hill-Valley function to report a valley
lying between two points when in fact it is just noise. This

can lead to incorrect decisions being made with regards to the
merging, linking and splitting of niches. A further problem is
that the interpolated samples are always the same. So if the
two endpoints have not changed from one generation to the
next, no new information is gathered with regards to the
presence of valleys.

We also introduced the concept of niche dynamics as an
indicator of overall population convergence. Because there is
no direct link from the individuals in one generation to the
population of a subsequent generation, there is no simple way
to determine whether a population has converged. Due to the
fact that niches are persistent from one generation to the next
and will reliably track individuals on optima, it is very simple
to determine population convergence based on the niche
dynamics. There are many potential uses for niche dynamics,
both as a convergence measure and as an additional decision
tool. For example, once the nicheset has converged the
amount of exploration could be increased by dynamically
increasing the population size. A further use of niche
dynamics is at a local level. Once a niche has converged, an
analysis of the contents of the niche could be made. If the
spread of individuals within the niche is very small and
confined to within the inner niche radius, the niche may
actually be too large. A gradual reduction of that niche’s
niche radius could then produce a much more accurate model
of the peak. This would, in turn, allow for the creation of a
truly dynamic, self-tuning, niching evolutionary algorithm.
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